Capitoli di libri

  1. G. Mascali and V. Romano, Heat Generation and Dissipation, chapter 5 of “Handbook of Optoelectronic Device Modeling and Somulation”, Vol. 2, CRC Press (2017) .
  2. G. Alì, M. Culpo, R. Pulch, V. Romano, S. Schöps, PDAE Modeling and Discretization, chapter 2 of “Coupled Multiscale Simulation and Optimization in Nanoelectronics”, Springer (2015).
  3. G. Alì, A. Bartel, M. Günther, V. Romano, S. Schöps, Simulation of Coupled PDAEs: Dynamic Iteration and Multirate Simulation, chapter 3 of “Coupled Multiscale Simulation and Optimization in Nanoelectronics”, Springer (2015).
  4. A.M. Anile, N. Nikiforakis, V. Romano, G. Russo, Discretization of semiconductor device problems (II), chapter 5 of “Handbook of Numerical Analysis Vol. XIII: special volume Numerical Methods in Electromagnetics”, Elsevier North-Holland (2005).
  5. A. M. Anile, G. Mascali and V. Romano, Recent developments in Hydrodynamical modeling of semiconductors, pagg. 1-54 in “Mathematical problems in semiconductor physics”, A.M. Anile editor, Lecture Notes in Mathematics, Springer (2003).
  6. A.M. Anile and V. Romano, Relativistic radiation hydrodynamics: a covariant theory of flux-limiters, contributo a The Renaissance of General Relativity and Cosmology, edited by G.Ellis, A.Lanza and J.Miller, page 59, Cambridge University Press, (1993).

Articoli

  1. L. Luca, V. Romano, Comparing linear and nonlinear hydrodynamical models for charge transport in graphene based on the Maximum Entropy Principle., International Journal of Non-Linear Mechanics (2018), https://doi.org/10.1016/j.ijnonlinmec.2018.01.010.
  2. M. Coco, V. Romano, Simulation of electron-phonon coupling and heating dynamics in suspended monolayer graphene including all the phonon branches, Journal of Heat Transfer (2018), in press.
  3. C. R. Drago, V. Romano, Optimal control for semiconductor diode design based on the MEP energy-transport model, J. Theoretical and Computational Transport(2018), 46(6-7): 459-479.
  4. A. Majorana, V. Romano, Numerical solutions of the spatially homogeneous Boltzmann equation for electrons in n-doped graphene on a substrate, J. Theoretical and Computational Transport(2017), 46(3): 176-185.
  5. G. Mascali, V. Romano, Charge Transport in graphene including thermal effects, SIAM J. Appl. Mathematics (2017), 77: 593-613.
  6. G. Mascali, V. Romano, Exploitation of the Maximum Entropy Principle in Mathematical Modeling of Charge Transport in Semiconductors, Entropy 2017, 19(1), 36; doi:10.3390/e19010036 (open access article).
  7. G. Alì, V. Romano, Existence and uniqueness for a two-temperature energy-transport model for semiconductors, J. mathematical Analysis and Application, Vol. 449: 1248-1264 (2017).
  8. A. Majorana, G. Mascali, V. Romano, Charge transport and mobility in monolayer graphene, J. of Mathematics in Industry, DOI: 10.1186/s13362-016-0027-3 (2016).
  9. M. Coco, G. Mascali, V. Romano, Monte Carlo analysis of thermal effects in monolayer graphene, J. of Computational and Theoretical Transport, Vol. 45 (7): 540-553 (2016).
  10. M. Coco, A. Majorana, V. Romano, Cross validation of discontinuous Galerkin method and Monte Carlo simulations of charge transport in graphene on substrate, Ricerche Mat. DOI 10.1007/s11587-016-0298-4 (2016).
  11. V. Romano, A. Majorana, M. Coco, DSMC method consistent with the Pauli exclusion principle and comparison with deterministic solutions for charge transport in graphene, Journal of Computational Physics (2015) 302:267-284.
  12. V. D. Camiola, V. Romano, Hydrodynamical Model for Charge Transport in Graphene, J Stat Phys (2014) 157:1114–1137.
  13. G. Alì, G. Mascali, V. Romano, R. C. Torcasio, A hydrodynamical model for covalent semiconductors with a generalized dispersion relation, European Journal of Applied Mathematics, European Journal of Applied Mathematics, Available on CJO 2014 Doi:10.1017/S0956792514000011 (2014).
  14. V. D. Camiola, V. Romano, 2 DEG-3DEG charge transport model for MOSFET based on the Maximum Entropy Principle, SIAM J. Appl. Mathematics (2013) 73 (4) 1439–1459.
  15. G. Stracquadanio, V. Romano, G. Nicosia, Semiconductor device design using the Bimads algorithm, J. Comp. Physics (2013) 242 304-320.
  16. V.D. Camiola, G. Mascali, V. Romano, Simulation of a double-gate MOSFET by a non-parabolic energy-transport model for semiconductors based on the maximum entropy principle, Mathematical and Computer Modelling (2013) 58 321-343.
  17. G. Alì, G. Mascali, V. Romano, R. C. Torcasio, A Hydrodynamic Model for Covalent Semiconductors with Applications to GaN and SiC, Acta Appl Math (2012) 122 (1) 335-348.
  18. G. Mascali and V. Romano, A non parabolic hydrodynamical subband model for semiconductors based on the maximum entropy principle, Mathematical and Computer Modelling (2012) 55 1003–1020.
  19. V. D. Camiola, G. Mascali, V. Romano, Numerical simulation of a double-gate MOSFET with a subband model for semiconductors based on the maximum entropy principle, Continuum Mechanics and Thermodynamics 24 (4-6) (2012) 417-436.
  20. G. Mascali and V. Romano, A hydrodynamical model for holes in silicon semiconductors: the case of non-parabolic warped bands, Mathematical and Computer Modelling (2011) 53 (1-2) 213-229.
  21. G. Mascali and V. Romano, A hydrodynamical model for holes in silicon semiconductors: the case of parabolic warped bands, COMPEL (2012) 31 (2) 552-582.
  22. V. Romano and A. Rusakov, 2D numerical simulations of an electron-phonon hydrodynamical model based on the maximum entropy principle, Comput. Methods Appl. Mech. Eng. (2010) 199 (41-44) 2741-2751.
  23. V. Romano and M. Zwierz, Electron-phonon hydrodynamical model for semiconductors, Z. Angew. Math. Phys. 61 (2010) 111-1131.
  24. G. Mascali and V. Romano, Hydrodynamic subband model for semiconductors based on the maximum entropy principle, IL NUOVO CIMENTO (2010) 33 C (1) 155-163.
  25. V. Romano and A. Rusakov, Numerical simulation of coupled electron devices and circuits by the MEP hydrodynamical model for semiconductors with crystal heating, IL NUOVO CIMENTO (2010) 33 C (1) 223-230.
  26. S. La Rosa, G. Mascali and V. Romano, Exact maximum entropy closure of the hydrodynamical model for Si semiconductors: the 8-moment case, SIAM J. of Appl. Mathematics (2009) 70 (3)710–734.
  27. S. La Rosa and V. Romano, Maximum Entropy Principle Hydrodynamical Model for Holes in Silicon Semiconductors: the case of the warped bands, J. Phys. A: Math. Theor. 41, 215103 (2008).
  28. V. Romano, Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy principle, J. Math. Physics 48, 123504 (2007).
  29. V. Romano, M. Torrisi and R. Tracinà, Approximate solutions to the quantum drift-diffusion model of semiconductors, J. Math. Physics 48, 23501 (2007).
  30. V. Romano, 2D numerical simulation of the MEP energy-transport model with a finite difference scheme, J. Comp. Physics 221, pag. 439-468 (2007).
  31. A.M. Blokhin, R.S. Bushmanov and V. Romano, Nonlinear asymptotic stability of the equilibrium state for the MEP model of charge transport in semiconductors, Nonlinear Analysis 65 2169-2191 (2006).
  32. A.M. Blokhin, R.S. Bushmanov, A. S. Rudometova and V. Romano, Linear asymptotic stability of the equilibrium state for the 2-D MEP hydrodynamical model of charge transport in semiconductors, Nonlinear Analysis 65 1018-1038 (2006).
  33. A.M. Anile, A. Marrocco, V. Romano, J.M. Sellier, 2D numerical simulation of the MEP energy-transport model with a mixed finite elements scheme, J. Comp. Electronics 4 231-259 (2005).
  34. G. Mascali, V. Romano, J.M. Sellier, MEP parabolic hydrodynamical models for holes in Silicon semiconductors, Il Nuovo Cimento B 120 197-215 (2005).
  35. M. Junk and V. Romano, Maximum entropy moment system of the semiconductor Boltzmann equation using Kane’s dispersion relation, Cont. Mech. Thermodyn. (2005) 17 (3) 247-267.
  36. A.M. Blokhin, A.S. Bushmanova and V. Romano, Global existence for the system of the macroscopic balance equations of charge transport in semiconductors, J. Math. Analys. Appl. (2005) 305 72-90.
  37. G. Mascali and V. Romano, Si and GaAs mobility derived from a a hydrodynamical model for semiconductors based on the maximum entropy principle, Physica A (2005) 352 459-476.
  38. G. Mascali and V. Romano, Simulation of Gunn oscillations with a non-parabolic hydrodynamical model based on the maximum entropy principle, COMPEL (2005) 24 (1) 35-54 (2005).
  39. V. Romano and A. Valenti, Exact invariant solutions for a class of energy-transport models of semiconductors in the two dimensional stationary case, Communications in Nonlinear Science and Numerical Simulation (2005) 10 499-514.
  40. V. Romano, J. M. Sellier, M. Torrisi, Symmetry analysis and exact solutions for the drift-diffusion model of semiconductors, Physica A (2004) 341 62-72.
  41. A.M. Blokhin, A.S. Bushmanova and V. Romano, Asymptotic stability of the equilibrium state for the hydrodynamicl model of charge transport in semiconductors based on the maximum entropy principle, Int. J. Eng. Science (2004) 42 915-934.
  42. A.M. Blokhin, R. S. Bushmanov and V. Romano, Asymptotic stability of the equilibrium state for the macroscopic balance equations of charge transport in semiconductors, Computational Technologies (2003) 8 (3) 7-22.
  43. G. Mascali and V. Romano, Hydrodynamical model of charge transport in GaAs based on the maximum entropy principle, Continuum Mechanics and Thermodynamics (2002) 14 405-423.
  44. V. Romano and A.Valenti, Symmetry analysis and exact invariant solutions for a class of energy-transport models of semiconductors, J. Phys. A (2002) 35 1751-1762.
  45. V. Romano, 2D simulation of a silicon MESFET with a nonparabolic hydrodynamical model based on the maximum entropy principle, Journal of Computational Physics (2002) 176 70-92.
  46. O. Muscato and V. Romano, Simulation of submicron diodes with a non-parabolic hydrodynamical model based on the maximum entropy principle, VLSI-Design (2001) 13 (1-4) 273-279.
  47. V. Romano, Non-parabolic band hydrodynamical model of silicon semiconductors and simulation of electron devices, Mathematical Methods in the Applied Sciences (2001) 24 (7) 439-471.
  48. A.M. Anile and V. Romano, Hydrodynamical modeling of charge transport in semiconductors, MECCANICA (2001) 35 249-296.
  49. V. Romano and M. Torrisi, Asymptotic waves in the hydrodynamical model of semiconductors based on Extended Thermodynamics, ZAMM (2001) 81 (1) 53-63.
  50. A.M. Blokhin, A.S. Bushmanova and V. Romano, Stability of the equilibrium state for a hydrodynamical model of charge transport in semiconductors, ZAMP (2001) 52 476-499.
  51. F. Liotta, V. Romano and G. Russo, Central schemes for balance laws of relaxation type, SIAM J. Numerical Analysis 38 (4) 1337-1356 (2000).
  52. A.M. Anile, O. Muscato and V. Romano, Moment equations with maximum entropy closure for carrier transport in semiconductor devices: validation in bulk silicon, VLSI Design 10 335-354 (2000).
  53. V. Romano, Non parabolic band transport in semiconductors: closure of the production terms in the moment equations, Cont. Mechan. Thermodyn. 12 (1) 31-51 (2000).
  54. A.M. Anile, M. Junk, V. Romano and G. Russo, Cross-validation of numerical schemes for extended hydrodynamical models of semiconductors, Mathematical Models and Methods in Applied Sciences 10 833-861 (2000).
  55. A.M. Anile, V. Romano and G. Russo, Extended Hydrodynamical Model of Carrier Transport in Semiconductors, SIAM J. Appl. Mathematics 61 (1) 74-101 (2000).
  56. V. Romano and G. Russo, Numerical solutions for hydrodynamical models of semiconductors, Mathematical Models and Methods in Applied Sciences, 10 (7) 1099-1120 (2000).
  57. V. Romano and M. Torrisi, Application of weak equivalence transformations to a drift-diffusion model, J. Phys. A: Math. Gen. 32 7953-7963 (1999).
  58. A.M. Anile and V. Romano, Non parabolic band transport in semiconductors: closure of the moment equations, Cont. Mechan. Thermodyn. 11 (5) 307-325 (1999).
  59. F. Liotta, V. Romano and G. Russo, Central scheme for systems of balance laws, International Series of Numerical Mathematics, 130 651-660 (1999).
  60. A.M. Blokhin, V. Romano and Yu L. Trakhinin, Stability of shock waves in relativistic radiation hydrodynamics, Ann. de l'Inst. H. Poincaré, Physique Théorique 67 145-180 (1997).
  61. G. Mascali and V. Romano, Maximum entropy principle in relativistic radiation hydrodynamics, Ann. de l'Inst. H. Poincarè, Physique Théorique , 67 (2) 123-144 (1997).
  62. V. Romano and D.K.Palagachev, Existence and uniqueness of asymptotic wave solutions for the hydrodynamical model of semiconductors, Comm. in Appl. Analysis 1 (1) 61-74 (1997).
  63. V. Romano, Shock waves in relativistic radiation hydrodynamics, Supplemento ai Rendiconti del Circolo Matematico di Palermo, 45 573 (1996).
  64. A.M. Blokhin, V. Romano and Yu L. Trakhinin, Some mathematical properties of radiating gas model obtained with a variable Eddington factor, ZAMP 47 639-658 (1996).
  65. V. Romano, Asymptotic waves for the hydrodynamical model of semiconductors, Wave Motion 24 151-167 (1996).
  66. D. Pavòn, J. Triginer and V. Romano, Causal Cosmology, Proceeding of the International Conference Encuentros Relativistas Espagnoles 94, Menorca september 1994.
  67. V. Romano and D. Pavòn, Dissipative effects in Bianchi type-III cosmologies, Physical Review D 50 (4) 2572-2580 (1994).
  68. A. Bonanno and V. Romano, A flux-limited gauge-invariant approach to cosmological perturbations, Physical Review D 49 (12) 6450-6459 (1994).
  69. G. Alì and V. Romano, Jump conditions for a radiating relativistic gas, Journal of Mathematical Physics 35 (6) 2878-2901 (1994).
  70. A. Bonanno and V. Romano, Covariant flux-limited diffusion theory in Bianchi cosmologies, Journal of Mathematical Physics 35 (2) 885-898 (1994).
  71. V. Romano and D. Pavòn, Causal dissipative Bianchi cosmology, Physical Review D 47 (4) 1396-1403 (1993).
  72. A. Bonanno and V. Romano, Covariant flux-limited diffusion theory for anisotropic source term, Astrophysical Journal 404 (1) 264-267 (1993).
  73. A. M.Anile and V. Romano, Covariant flux-limited diffusion theories, Astrophysical Journal 386 325 (1992).

Proceedings

  1. I. Deretzis, V. Romano, A. La Magna, Electron quantum transport in disordered graphene, pag. 3-12, in in “Scientific Computing in Electrical Engineering SCEE 2014”, A. Bartel et al editors, Springer (2016).
  2. M. Coco, A. Majorana, G. Mascali, V. Romano, Comparing kinetic and hydrodynamical models for electron transport in monolayer graphene, VI International Conference on Computational Methods for Coupled Problems in Science and Engineering, (2015).
  3. G. Mascali, V. Romano, A comprehensive hydrodynamical model for charge transport in graphene, IWCE 2014, Paris (2014), IEEE proceedings.
  4. G. Mascali and V. Romano, A macroscopic model for electron transport in silicon using analytical description for both the electron bands and phonon dispersion relations, AIP Conference proceedings, Vol. 1558, pag. 1200-1203 (2013).
  5. V. D. Camiola and V. Romano, Simulation of charge transport in graphene nano-ribbons with a model based on MEP, AIP Conference proceedings, Vol. 1558, pag. 1204-1207 (2013).
  6. V. D. Camiola and V. Romano, Mathematical Structure of the transport equations for coupled “2D-3D electron gasses in a MOSFET, V International Conference on Computational Methods for Coupled Problems in Science and Engineering, S. Idelsohn et al editors (2013).
  7. V. Romano and C. Scordia, Simulations of an electron-phonon hydrodynamical model based on the maximum entropy principle, pag. 289-296, in “Scientific Computing in Electrical Engineering SCEE 2008”, J. Roos et al editors, Springer (2010).
  8. S. La Rosa, G. Mascali and V. Romano, Nonlinear models for silicon semiconductors, pag. 429-436, in “Scientific Computing in Electrical Engineering SCEE 2008”, J. Roos et al editors (2010).
  9. V. D. Camiola and V. Romano, Quantum BGK model for electron transport in semiconductors, in “Proceedings WASCOM 2009” pag. 52-56, A. M. Greco et al editors, World Scientific (2010).
  10. G. Stracquadanio, C. Drago, G. Nicosia, V. Romano, Doping profile optimization in semiconductor design, in “The 16th IEEE Int. Conf. on Electronics, Circuits and Systems”(ICECS 2009), 13-16 December 2009, Hammamet, Tunisie. IEEE Press.
  11. A. Majorana and V. Romano, Comparing kinetic and MEP model of charge transport in semiconductors, in “Progress in Industrial Mathematics at ECMI 2006” pag. 525-530, L. Bonilla et al editors, Springer (2008).
  12. S. La Rosa, V. Romano and G. Mascali, Nonlinear Closure Relations: A Case from Semiconductors, in “Proceedings WASCOM 2007” pag. 366-371, N. Manganaro et al. editors, World Scientific (2008).
  13. V. Romano and M. Ruggieri, Nonlinear wave propagation in an elastic soil, in “Proceedings WASCOM 2007” pag. 502-507, N. Manganaro et al. editors, World Scientific (2008).
  14. V. Romano and M. Zwierz, Modeling the Heating of Semiconductor Crystal Lattice Based on the Maximum Entropy Principle, in “Proceedings WASCOM 2007” pag. 508-513, N. Manganaro et al. editors, World Scientific (2008).
  15. G. Mascali and V. Romano, Nonlinear Exact Closure for the Hydrodynamical Model of Semiconductors based on the Maximum Entropy Principle, in “APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY II” pag. 444-455, V. Cutello et al editors, World Scientific (2007).
  16. R. Beneduci, G. Mascali and V. Romano, Extended Hydrodynamical Models of Charge Transport in Si, pag. 357-363, in “Scientific Computing in Electrical Engineering, SCEE 2006”, G. Ciuprina and D. Ioan editors, Springer (2007).
  17. V. Romano, J. M. Sellier and M. Torrisi, Exact solutions for the drift-diffusion model of semiconductors via Lie symmetry analysis, in “MATHEMATICS IN INDUSTRY: Scientific Computing in Electrical Engineering” pag. 383-388, A.M. Anile et al editors, Springer (2006).
  18. G. Mascali, V. Romano and J. M. Sellier, Hole mobility in Silicon semiconductor, in “MATHEMATICS IN INDUSTRY: Scientific Computing in Electrical Engineering” pag. 363-368, A.M. Anile et al editors, Springer (2006).
  19. A.M. Anile, A. Marrocco, V. Romano, J.M. Sellier, Mixed finite element numerical simulation of a 2D Silicon MOSFET with the non-parabolic MEP energy-transport model, in “MATHEMATICS IN INDUSTRY: Scientific Computing in Electrical Engineering” pag. 277-282, A.M. Anile et al editors, Springer (2006).
  20. G. Mascali, V. Romano and J.M. Sellier, Gunn Oscillations described by the MEP Hydrodynamical Model of Semiconductors, in “Device applications of nonlinear dynamics” pag. 223-228, S. Baglio and Adi Busara editors, Springer(2006).
  21. V. Romano, M. Torrisi, R. Tracinà, Symmetry analysis for the quantum drift-diffusion model of semiconductors, in “Proceedings WASCOM 2005” pag. 475-480, R. Monaco et al editors, Word Scientific (2006).
  22. S.La Rosa, V. Romano, An Euler-Poisson model based on MEP for holes in semiconductors, in “Proceedings WASCOM 2005” pag. 316-321, R. Monaco et al. editors, World Scientific (2006).
  23. A.M. Blokhin, R.S. Bushmanov and V. Romano, Asymptotic stability of the solutions of the hydrodynamical model of semiconductors based on the maximum entropy principle: the case of bulk silicon, in “APPLIED AND INDUSTRIAL MATHEMATICS IN ITALY” pag. 155-166, M. Primicerio et al editors, World Scientific (2005).
  24. M. Junk and V. Romano, Exact closure relations for the maximum entropy moment system in semiconductors using Kane’s dispersion relation, in “Progress in Industrial Mathematics at ECMI 2004” pag. 184-188, A. Di Bucchianico, R. M. M. Mattheij, M. A. Peletier editors, Springer 2005.
  25. V. Romano and A. Valenti, On group analysis of a class of energy-transport models of semiconductors in the two dimensional case, in “Proceedings WASCOM 2003”, pag. 434-440, R. Monaco, S. Pennisi, S. Rionero, T. Ruggeri editors, World Scientific 2004.
  26. V. Romano, Mobility for silicon semiconductor derived from the hydrodynamical model based on the maximum entropy principle, pag. 153-157 in “Progress in Industrial Mathematics at ECMI 2002”, A. Buikis R. Ciegis , A. D. Fitt editors, Springer 2004.
  27. A. M. Anile, G. Mascali and V. Romano, Hydrodynamical model for GaAs semiconductors based on the maximum entropy principle with application to electronic devices, pagg. 315 in “Modeling, Simulation and Optimization of integrated Circuits”, Int. Series of Numerical Mathematics vol. 146, K. Antreich, R. Bulirsch, A. Gilg and P. Rentrop editors (2003).
  28. V. Romano and A. Valenti, Symmetry classification for a class of energy-transport models, in “Proceedings WASCOM 2001”, pag. 477-483 , R. Monaco. M. P. Bianchi, S. Rionero editors, World Scientific 2002.
  29. A.M. Blokhin, A.S. Bushmanova and V. Romano, Electron flow stability in bulk silicon in the limit of small electric field, in “Proceedings WASCOM 2001”, pag. 55- 61, R. Monaco. M. P. Bianchi, S. Rionero editors, World Scientific 2002.
  30. V. Romano, Energy transport model for silicon semiconductors derived from the non parabolic band hydrodynamical model based on the maximum entropy principle, in “Progress in Industrial Mathematics at ECMI 2000” pag. 246-251, A.N. Anile, V. Capasso, A. Greco editors, Springer 2002.
  31. A.M. Anile and V. Romano, Numerical investigation of shock wave in a radiating gas described by a variable Eddington factor, in “Continuum Mechanics and Applications in Geophysics and the Enviroment”, B. Straughan, R. Greve, H. Ehrentraut, Y. Wang editors, Springer (2001).
  32. V. Romano, Maximum entropy principle for electron transport in semiconductors, in “Proceedings WASCOM 1999”, V. Cianco et al editors, World Scientific (2001).
  33. V. Romano and M. Torrisi, Symmetries for a drift-diffusion system via weak equivalence transformations in "Modern Group Analysis VII", page 275, MARS Publishers, N.Ibragimov et al editors, Trondheim (Norway), 1999.
  34. Romano and G. Russo, Hyperbolicity condition for the hydrodynamical model of charge transport in semiconductors based on Extended Thermodynamics, Supplemento ai Rendiconti del Circolo Matematico di Palermo serie II, 57 433-438 (1998).
  35. A.M. Anile, V. Romano and G. Russo, Hyperbolic Hydrodynamical Model of Carrier Transport in Semiconductors, proceedings IWCE-97, Notre-Dame (USA), in VLSI Design, 8 Nos.(1-4) 521-525 (1998).
  36. A.M. Anile, G. Alì and V. Romano, Relativistic dissipative fluids, contributo a Physics on Manifolds, edited by M.Flato, R.Kerner and A.Lichnerowicz, page 1, Kluwer Academic Publisher, 1994.
  37. V. Romano and G. Alì, Shock Structure for a radiating gas, "7-th Conference on Wave and Stability in Continuous Media", S.Rionero and T.Ruggeri editors, World Scientific, 1994.
  38. V. Romano, Covariant flux-limited diffusion theory, Le Matematiche, Vol. XLVI fasc. 1, 361 (1991).