FACOLTA' DI INGEGNERIA

Classe dell'Informazione - Corso D–F

COMPITO B

Prova d'Esonero di Algebra Lineare assegnata il 18/11/2002

- Durata della prova: due ore
- Non si può uscire dall'aula prima di aver consegnato definitivamente il compito.
- Non si possono consultare i libri di testo.
- Usare solo la carta fornita dai Docenti.

Ι

1) In \mathbb{R}^4 , sia dato il seguente sottospazio vettoriale $V = \mathcal{L}(v_1, v_2, v_3)$ dove v_1, v_2 e v_3 sono i vettori $v_1 = (1, 1, 0, 0), v_2 = (0, 1, 1, 1)$ e $v_3 = (0, 0, 2, 1)$. Verificare che l'applicazione lineare $f: V \to \mathbb{R}^4$ definita dalle seguenti relazioni

$$f(v_1) = (0, 2, 4, 1)$$

$$f(v_2) = (0, 2h, 2h + 4, 2h + 2)$$

$$f(v_3) = (h, h - 1, 2h + 5, h + 2)$$

induce un endomorfismo g su V per ogni valore di $h \in \mathbb{R}$.

- 2) Studiare g al variare del parametro h trovando una base per Imf e Kerf.
- 3) Studiare la semplicità di g al variare di $h \in \mathbb{R}$.
- 4) Sia h = 0. Trovare una base di autovettori.

II

In \mathbb{R}^4 , sia W il sottospazio generato dai vettori $w_1=(1,0,0,1), w_2=(0,1,1,0), w_3=(0,0,1,0)$ e $w_4=(1,2,1,1).$ Determinare il valore reale h per cui le relazioni

$$f(w_1) = (h, 2h, 3, 1) \quad f(w_2) = (h+1, 1, 0, 0)$$

$$f(w_3) = (0, h+1, h+2, 1) \quad f(w_4) = (3h+2, 0, 2, 0)$$

definiscono un'applicazione lineare $f: W \to \mathbb{R}^4$.

- 1. Studiare f trovando una base per Imf e Kerf.
- 2. Trovare $f^{-1}(\mathcal{L}(a, a+1, 0, 1))$ al variare di $a \in \mathbb{R}$.

III

Sia V un k-spazio vettoriale.

- 1. Dire che $V = V_1 \bigoplus V_2$ vuol dire che...
- 2. I vettori v_1, v_2, \dots, v_n si dicono linearmente indipendenti se...

Soluzione

T

Sia $\mathcal{B} = \{v_1, v_2, v_2\}$ una base di V. Si ha

$$|\mathcal{A}| = |\mathcal{M}^{\mathcal{B}}(f)| = \begin{vmatrix} 0 & 0 & h \\ 2 & 2h & -1 \\ -1 & 2 & h+3 \end{vmatrix} = 2h(h+2)$$

Quindi:

 $|\mathcal{A}| \neq 0 \Leftrightarrow h \neq 0, -2$ ed in tali casi f è un isomorfismo.

Sia h = 0. In tal caso si ha:

$$\mathcal{A} = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & -1 \\ -1 & 2 & 3 \end{pmatrix}$$

e rkA = 2. Pertanto $\dim Imf = 2$ ed una base è data da $\mathcal{L}(u_1, u_2)$ con $u_1 = (0, 2, -1)_{\mathcal{B}} = (0, 2, 0, 1)$ ed $u_2 = (0, 0, 2)_{\mathcal{B}} = (0, 0, 4, 2)$; $\dim Kerf = 1$ e $Kerf = \{(x, y, z) \in V \mid y = -\frac{5x}{2}, z = 2x\}$, pertanto una base è generata da $u_3 = (2, -5, 4)_{\mathcal{B}} = (2, -3, 3, -1)$.

Sia h = -2. In tal caso si ha:

$$\mathcal{A} = \begin{pmatrix} 0 & 0 & -2 \\ 2 & -4 & -1 \\ -1 & 2 & 1 \end{pmatrix}$$

e rkA = 2. Pertanto dim Imf = 2 ed una base è data da $\mathcal{L}(u_1, u_2)$ con $u_1 = (0, 2, -1)_{\mathcal{B}} = (0, 2, 0, 1)$ ed $u_2 = (2, 1, -1)_{\mathcal{B}} = (2, 3, -1, 0)$; dim Kerf = 1 e $Kerf = \{(x, y, z) \in V \mid x = 2y, z = 0\}$, pertanto una base è data da $\{u_3 = (2, 1, 0)_{\mathcal{B}} = (2, 3, 1, 1)\}$.

Studiamo la semplicità di f al variare di $h \in \mathbb{R}$. Calcoliamo

$$|\mathcal{A} - IT| = \begin{vmatrix} -T & 0 & h \\ 2 & 2h - T & -1 \\ -1 & 2 & h + 3 - T \end{vmatrix} = (2h - T) \left[T^2 - (h+3)T + h + 2 \right] =$$

$$= (2h - T)(T - h - 2)(T - 1)$$

Si hanno quindi i seguenti autovalori:

$$T_1 = 2h$$
, $T_2 = h + 2$, $T_3 = 1$.

Se $h \neq -1, \frac{1}{2}, 2$, allora $T_1 \neq T_2 \neq T_3$ e si hanno tre autovalori distinti. Dunque, f è semplice.

Sia h = -1; si ha $T_1 = -2$ semplice e $T_2 = 1$ doppio. Calcoliamo dim V_1 ; essendo il rango della seguente matrice

$$\begin{pmatrix} -1 & 0 & -1 \\ 2 & -3 & -1 \\ -1 & 2 & 1 \end{pmatrix}$$

uguale ad due si ha dim $V_1 = 1$ e pertanto per h = -1 f non è semplice. Sia $h = \frac{1}{2}$; si ha $T_1 = \frac{3}{2}$ semplice e $T_2 = 1$ doppio. Calcoliamo dim V_1 ; essendo il rango della seguente matrice

$$\begin{pmatrix} -1 & 0 & \frac{1}{2} \\ 2 & 0 & -1 \\ -1 & 2 & 1 \end{pmatrix}$$

uguale ad due si ha dim $V_1 = 1$ e quindi per $h = \frac{1}{2}$, f non è semplice. Sia h = 2; si ha $T_1 = 1$ semplice e $T_2 = 4$ doppio. Calcoliamo dim V_4 ; essendo il rango della seguente matrice

$$\begin{pmatrix} -4 & 0 & 2 \\ 2 & 0 & -1 \\ -1 & 2 & 1 \end{pmatrix}$$

uguale ad due si ha dim $V_4 = 1$ e pertanto per h = 2 f non è semplice. Sia h = 0; allora f ha i tre autovalori distinti $T_1 = 0, T_2 = 2$ e $T_3 = 1$. Calcoliamo V_0 ; essendo il rango della seguente matrice

$$\begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & -1 \\ -1 & 2 & 3 \end{pmatrix}$$

uguale ad due si ha:

$$V_0 = \{(x, y, z) \in V \mid y = \frac{-5x}{2}, z = 2x\} = \{(2x, -5x, 4x)_{\mathcal{B}}.\}$$

ed una base è data dal vettore $w_1 = (2, -5, 4)_{\mathcal{B}} = (2, -3, 3, -1)$. Analogamente,

$$V_2 = \{(x,y,z) \in V \mid x = 0, z = -2y\} = \{(0,y,-2y)_{\mathcal{B}}\}$$

ed una base è data dal vettore $w_2 = (0, 1, -2)_{\mathcal{B}} = (0, 1, -3, -1)$.

$$V_1 = \{(x, y, z) \in V \mid x = 0, y = -z\} = \{(0, -z, z)_{\mathcal{B}}\}$$

ed una base è data dal vettore $w_3 = (0, -1, 1)_{\mathcal{B}} = (0, 1, -1, 0)$. Quindi una base di autovettori è data da w_1, w_2, w_3 .

TT

I vettori $w_1 = (1,0,0,1)$, $w_2 = (0,1,1,0)$, $w_3 = (0,0,1,0)$ e $w_4 = (1,2,1,1)$ linearmente dipendenti. In particolare, si ha $w_4 = w_1 + 2w_2 - w_3$ e pertanto le relazioni assegnate definiscono un'applicazione lineare se

$$f(w_4) = f(w_1) + 2f(w_2) - f(w_3)$$

e questo è vero se e solo se

$$(3h+2, h+1, 1-h, 0) = (3h+2, 0, 2, 0)$$

ovvero se e solo se h = -1. Sia $\mathcal{B} = \{w_1, w_2, w_2\}$ una base di V. Allora, se con \mathcal{E} indichiamo la base canonica di \mathbb{R}^4 , si ha

$$\mathcal{A} = \mathcal{M}^{\mathcal{B},\mathcal{E}}(f) = \begin{pmatrix} -1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

Quindi, riducendo la matrice, si ottiene che $\rho(A)=3=\dim Imf$, pertanto $\dim Kerf=0$ e la f è iniettiva.

Per calcolare $f^{-1}(\mathcal{L}(a, a+1, 0, 1))$ al variare di $a \in \mathbb{R}$, basta risolvere il seguente sistema lineare non omogeneo la cui colonna di termini noti è data da (a, a+1, 0, 1), ovvero:

$$\begin{pmatrix} -1 & 0 & 0 & | & a \\ -2 & 1 & 0 & | & a+1 \\ 3 & 0 & 1 & | & 0 \\ 1 & 0 & 1 & | & 1 \end{pmatrix}$$

e riducendo si ottiene:

$$\begin{pmatrix} -1 & 0 & 0 & | & a \\ 0 & 1 & 0 & | & 1-a \\ 0 & 0 & 1 & | & 3a \\ 0 & 0 & 0 & | & 1-2a \end{pmatrix}$$

ed applicando il teorema il Rouchè-Capelli si ha:

- 1. Se $a=\frac{1}{2}$ allora $f^{-1}(\mathcal{L}(\frac{1}{1},\frac{3}{2},0,1))$ è generato dal vettore $(-\frac{1}{2},\frac{1}{2},\frac{3}{2})_{\mathcal{B}}$
- 2. Se $a \neq \frac{1}{2}$ allora il sistema è impossibile ed $f^{-1}(\mathcal{L}(a,a+1,0,1)) = \emptyset$