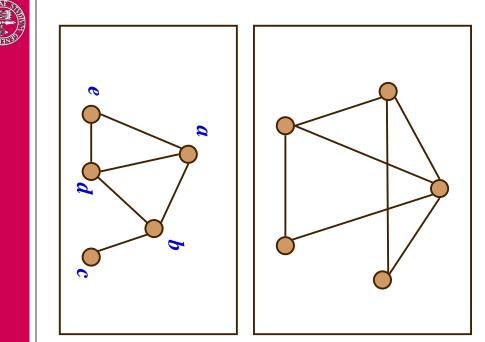


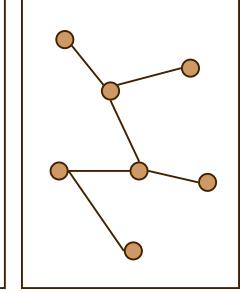
Grafi

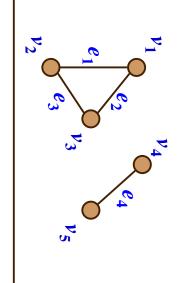
Prof. Sebastiano Battiato Prof.ssa Rosalba Giugno

Cos'è un grafo

Corsi Studenti Esempio: **Marco** IA Studenti Andrea Carla Laura ASD Corsi ASD, ARCH OS, ARCH, LP ASD, ARCH IA, ASD, OS, LP S ARCH







Definizione <u>Q</u>. grafo

Un grafo G è una coppia di elementi (V, E) dove:

V è un insieme detto insieme dei vertici

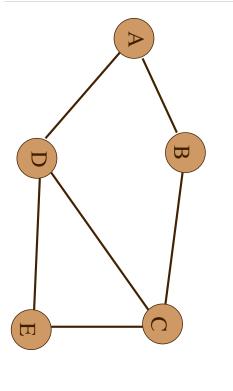
E è un isieme detto insieme degli archi

Definizione di grafo

Un $\operatorname{\mathbf{grafo}} G$ è una coppia di elementi (V,E) dove:

V è un insieme detto insieme dei vertici

E è un isieme detto insieme degli archi

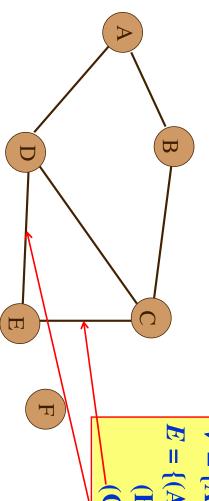


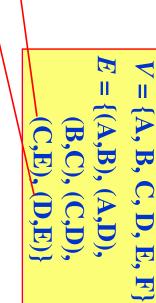
H



Definizione di grafo

Un arco è una coppia di vertici (v, w), cioè



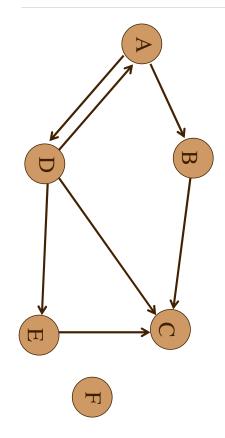


Tipi di grafi: grafi orientati

Un $\operatorname{\mathbf{grafo}}$ orientato G è una coppia (V,E) dove:

V è un insieme detto insieme dei vertici

degli archi Ę. è una relazione binaria tra vertici detta insieme

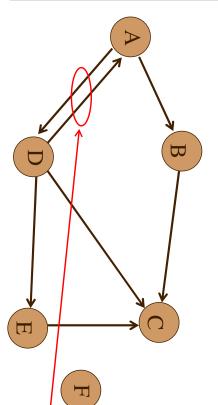


Tipi di grafi: grafi orientati

Un grafo orientato G è una coppia (V, E) dove:

V è un insieme detto insieme dei vertici

degli archi E è una relazione binaria tra vertici detta insieme



(A,D) e (D,A) denotano due archi diversi

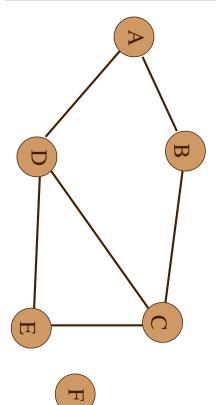
Tipi di grafi: grafi non orientati

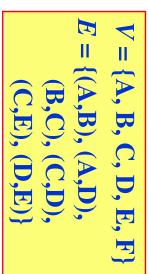
Un grafo non orientato G è una coppia (V,E) dove:

V è un insieme detto insieme dei vertici

H **0**′ un isieme non ordinato di coppie di vertici

detto insieme degli archi





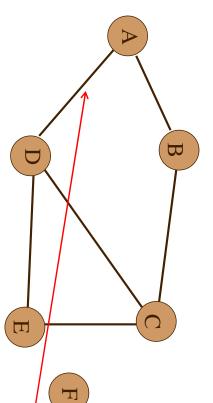
Tipi di grafi: grafi non orientati

Un grafo non orientato G è una coppia (V, E) dove:

V è un insieme detto insieme dei vertici

[4] un isieme non ordinato di coppie di vertici

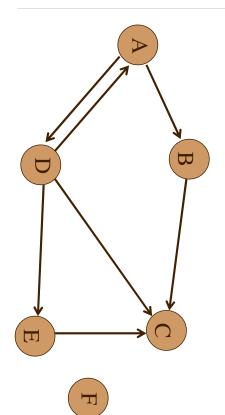
detto insieme degli archi



 $E = \{(A,B), (A,D),$ $V = \{A, B, C, D, E, F\}$ (C,E),(D,E)(B,C),(C,D),

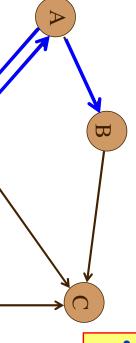
lo stesso arco (A,D) e (D,A) denotano

incidente da w in v In un grafo orientato, un arco (w, v) si dice



Definizioni sui grafi

ln incidente da w in v nn grafo orientato, un arco (w,v)Si. dice



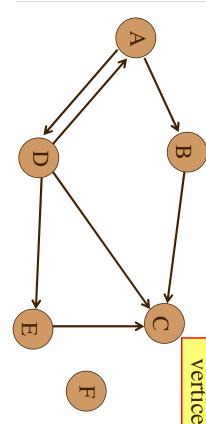
H

T

- $\bullet(A,B)$ è incidente da A a B
- $\bullet(A,D)$ è incidente da A a D
- \bullet (*D,A*) è incidente da *D* a *A*

Un vertice w si dice *adiacente* a v se e solo se

- (ν, w) appartiene a
- B è adiacente ad A
- C è adiacente a B e a D
- A è adiacente a D e vice versa
- B NON è adiacente a D NÉ a C
- F NON è adiacente ad alcun



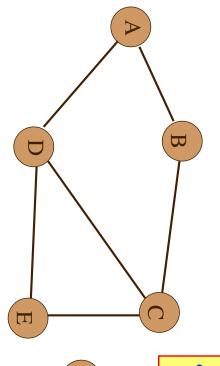
<u>Definizioni</u> SUI grafi

tra vertici è simmetrica In un grafo non orientato la relazione di adiacenza

H

- A è adiacente a D e vice versa
- B è adiacente a A e vice versa
- F NON è adiacente ad alcun vertice

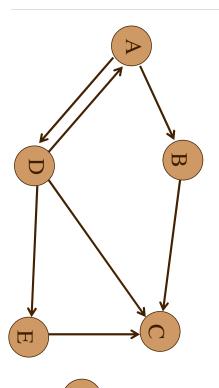
numero di archi che da esso si dipartono In un *grafo non orientato* il *grado* di un *vertice* è il



- $\bullet A$, B ed E hanno grado 2
- C e D hanno grado 3
- F ha grado 0

Definizioni sui grafi

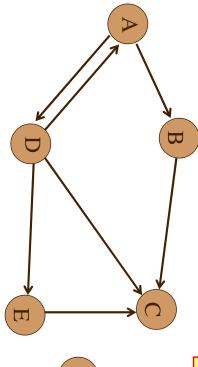
esso un vertice è il numero di archi incidenti in (da) In un grafo orientato il grado entrante (uscente) di



- B ha grado uscente • C ha grado uscente 0 • A ha grado uscente e grado entrante e grado entrante e grado entrante
- D ha grado uscente e grado entrante

uscente somma del suo grado entrante In un grafo orientato il grado di un vertice è la 0 del suo grado

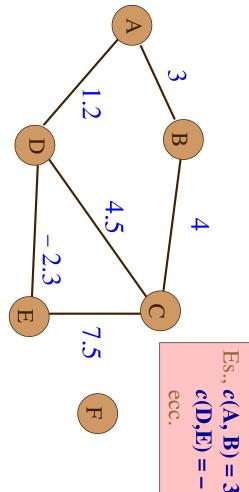
- e C hanno grado 3
- B ha grado 2
- D ha grado 4



<u>Definizioni</u> SUİ grafi

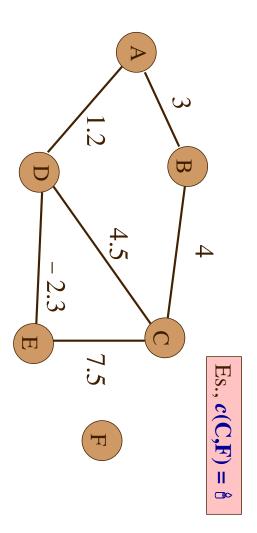
In alcuni casi ogni arco ha un *peso* (o *costo*) associato.

ınteri). costo, $c: E \to \mathbb{R}$, dove \mathbb{R} è l'insieme dei numeri reali (o Il costo può essere determinato tramite una funzione



In alcuni casi ogni arco ha un peso (o costo) associato.

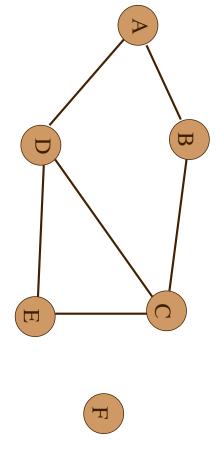
costo è infinito. Quando tra due vertici *non esiste* un arco, si dice che il



Definizioni sui grafi

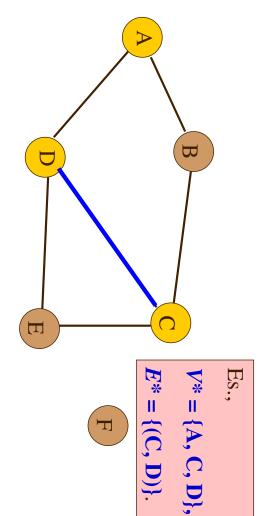
Sia G = (V, E) un grafo.

valere che $E^* \subseteq V^* \times V^*$.) $V^* \subseteq V$ e Un sottografo di G è un grafo $H = (V^*, E^*)$ tale che H* $\subseteq E$. (e poiché H è un grafo, deve



Sia G = (V, E) un grafo.

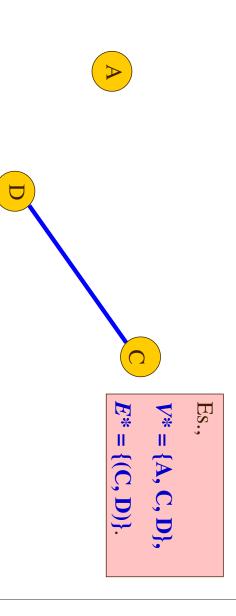
valere che $E^* \subseteq V^* \times V^*$.) $V^* \subseteq V$ e Un sottografo di G è un grafo $H = (V^*, E^*)$ tale che $E^* \subseteq E$. (e poiché H è un grafo, deve



Definizioni sui grafi

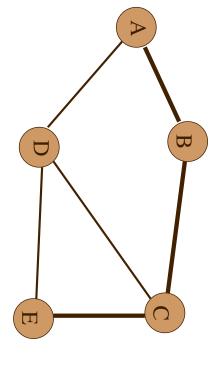
Sia G = (V, E) un grafo.

valere che $E^* \subseteq V^* \times V^*$.) $V^* \subseteq V$ e Un sottografo di G è un grafo $H=(V^*,E^*)$ tale che $E^* \subseteq E$. (e poiché H è un grafo, deve



Sia G = (V, E) un grafo.

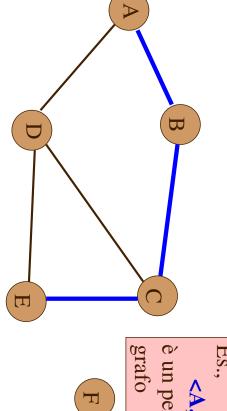
 $\langle w_1, w_2, ..., w_n \rangle$ tale che $(w_i, w_{i+1}) \in E$ per $1 \le i \le n-1$. Un percorso nel grafo è una sequenza di vertici



Definizioni SUİ grafi

Sia G = (V, E) un grafo.

 $\langle w_1, w_2, ..., w_n \rangle$ tale che $(w_i, w_{i+1}) \in E$ per $1 \le i \le n-1$ Un *percorso* nel grafo 0′ una sequenza di vertici

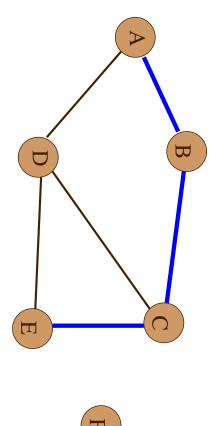


è un percorso nel <A, B, C, E>

Sia G = (V, E) un grafo.

 $\langle w_1, w_2, ..., w_n \rangle$ tale che $(w_i, w_{i+1}) \in$ Un percorso nel grafo è una sequenza di vertici E per $1 \le i \le n-1$.

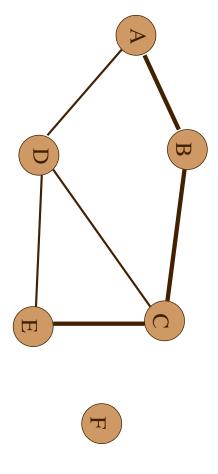
 $w_1, w_2, ..., w_n$ e gli archi (w_1, w_2) (w_2, w_3) $...(w_{n-1}, w_n)$ Il percorso $< w_1, w_2, ..., w_n >$ si dice che contiene i vertici



Definizioni sui grafi

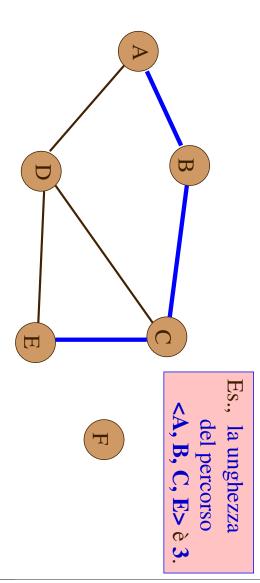
Sia $\langle w_1, w_2, \dots, w_n \rangle$ un percorso.

uno in meno del numero di vertici nella sequenza). che connettono i vertici nell'ordine della sequenza (n-1), La lunghezza del percorso è il numero totale di archi



Sia $\langle w_1, w_2, \ldots, w_n \rangle$ un percorso.

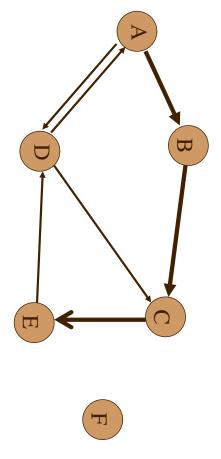
uno in meno del numero di vertici nella sequenza). che connettono i vertici nell'ordine della sequenza (n-1,La *lunghezza* del percorso è il *numero totale di archi*



Definizioni sui grafi

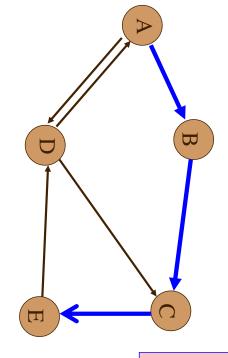
Sia $\langle w_1, w_2, \ldots, w_n \rangle$ un percorso in un grafo orientato.

percorso. gli *archi* del percorso sono sempre *orientati lungo il* Poiché ogni arco (w_i, w_{i+1}) nel percorso è ordinato,



Sia $\langle w_1, w_2, \ldots, w_n \rangle$ un percorso in un grafo orientato.

percorso. gli *archi* del percorso sono sempre *orientati lungo il* Poiché ogni arco (w_i, w_{i+1}) nel percorso è ordinato,



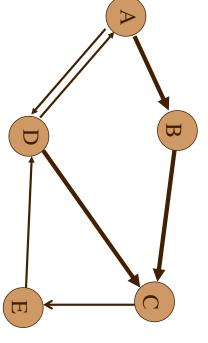
Es., <A, B, C, E è un percorso in questo grafo orientato

T

Definizioni sui grafi

Sia $\langle w_1, w_2, \ldots, w_n \rangle$ un percorso in un grafo orientato.

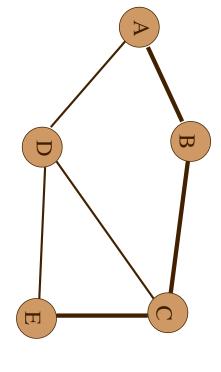
percorso. gli *archi* del percorso sono sempre *orientati lungo il* Poiché ogni arco (w_i, w_{i+1}) nel percorso è ordinato,



... ma <A, B, C, D>
non è un percorso,
poiché (C, D) non è
un arco.

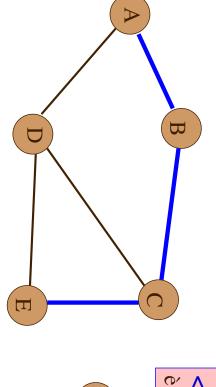
Ħ

sono distinti (compaiono una sola sequenza), eccetto al più il primo e l'ultimo che possono essere lo stesso. Un percorso si dice semplice se tutti i suoi vertici volta nella



Definizioni sui grafi

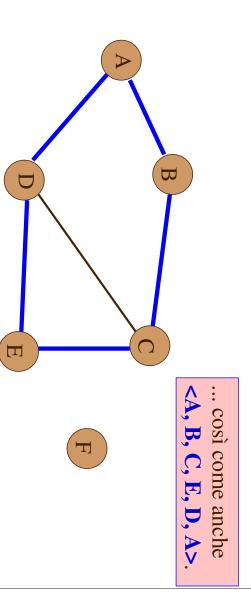
sono distinti (compaiono una sola sequenza), eccetto al più il primo e l'ultimo che possono esser lo stesso. Un percorso si dice semplice se tutti i suoi vertici volta nella



Es., il percorso <A, B, C, E> è semplice ...

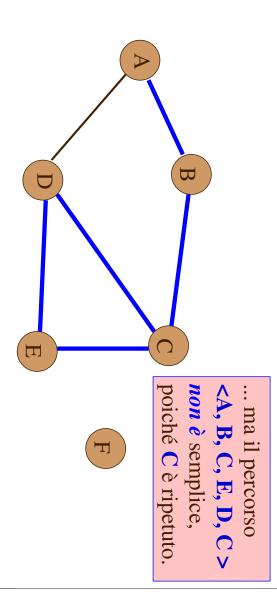
Ħ

sono distinti (compaiono una sola sequenza), eccetto al più il primo e l'ultimo che possono esser lo stesso. Un percorso si dice semplice se tutti i suoi vertici volta nella



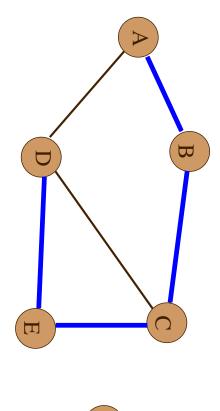
Definizioni sui grafi

sono distinti (compaiono una sola sequenza), eccetto al più il primo e l'ultimo che possono esser lo stesso. Un percorso si dice semplice se tutti i suoi vertici volta nella



che w è raggiungibile da v tramite p Se esiste un percorso p tra i vertici v e **w**, \boldsymbol{q} si dice

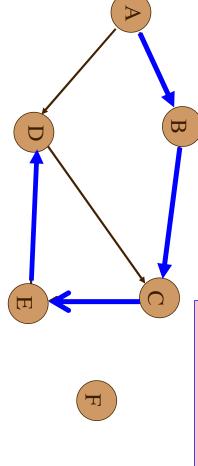
Es.: A è raggiungibile da D e vice versa



Definizioni sui grafi

Se esiste un percorso p tra i vertici v che w è raggiungibile da v tramite p 0 **₹** si dice

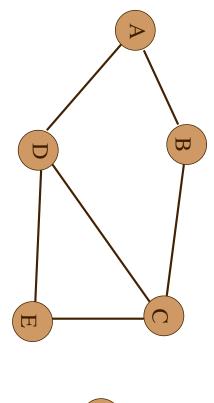
Es.: *D* è raggiungibile da *A* ma non vice versa



ogni altro vertice. connesso se esiste un percorso da ogni vertice ad Se G è un grafo non orientato, diciamo che G è

Un grafo non orientato non connesso si dice sconnesso.

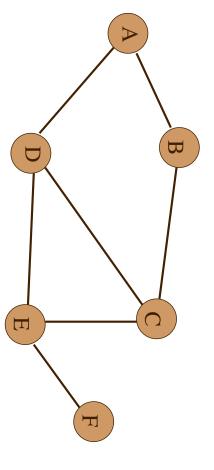
Questo grafo non orientato non è connesso.



Definizioni sui grafi

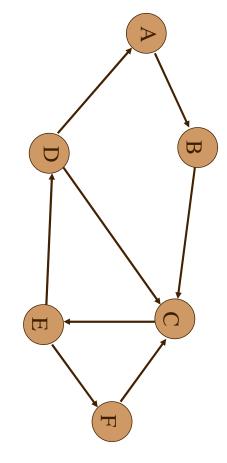
ogni altro vertice. connesso se esiste un percorso da ogni vertice ad Se G è un grafo non orientato, diciamo che G è

Questo è connesso.



fortemente connesso se esiste un *percorso* da *ogni* Se G è un grafo orientato, vertice ad ogni altro vertice. diciamo che G è

Questo grafo orientato *è fortemente connesso.*

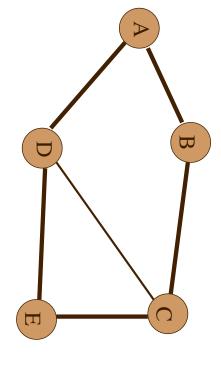


Definizioni sui grafi

fortemente connesso se esiste un percorso da ogni Se vertice ad ogni altro vertice. 9 0/ un grafo orientato, diciamo che

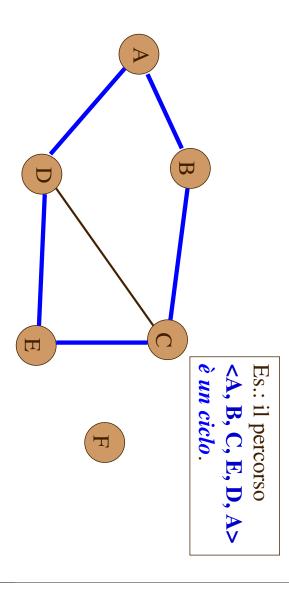
B fortemente connesso; ad es., non esiste percorso da D a A Questo grafo orientato non è H

di lunghezza almeno 1, tale che $w_I = w_n$. Un *ciclo* in un grafo è un percorso $\langle w_1, w_2, ..., w_n \rangle$

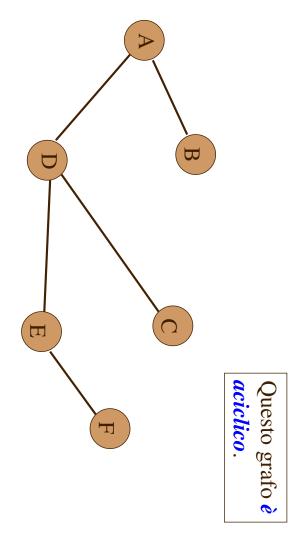


Definizioni sui grafi

di lunghezza almeno 1, tale che $w_1 = w_n$. Un *ciclo* in un grafo è un percorso $\langle w_1, w_2, ..., w_n \rangle$



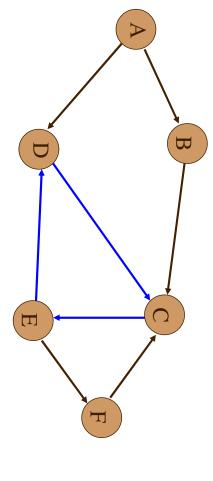
Un grafo senza cicli è detto aciclico.



Definizioni sui grafi

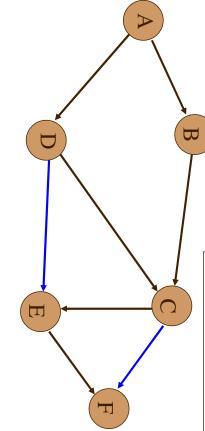
Un grafo senza cicli è detto aciclico.

Questo grafo orientato *non è aciclico*, ...



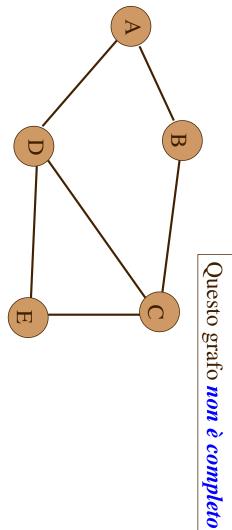
Un grafo senza cicli è detto aciclico.

... ma questo lo è.
Un grafo orientato aciclico
è spesso chiamato DAG
(<u>Directed Acyclic Graph</u>).

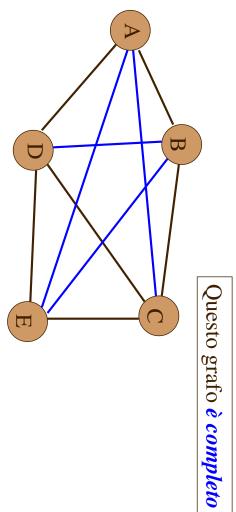


Definizioni sui grafi

ogni coppia di vertici. Un grafo completo è un grafo che ha un arco tra



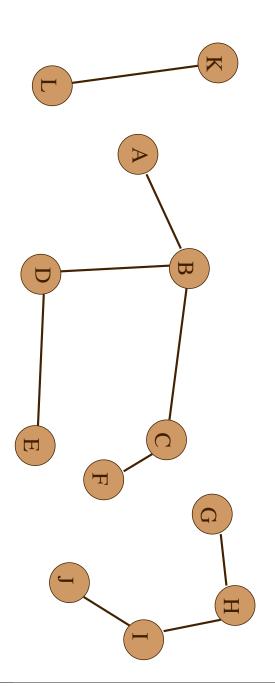
ogni coppia di vertici. Un *grafo completo* è un grafo che ha un *arco tra*



Definizioni sui grafi

Se un grafo non orientato è aciclico ma sconnesso, prende il nome di *foresta*.

Questa è una *foresta*. Contiene tre alberi liberi.



grafi in un computer: Ci sono due tipi *standard* di rappresentazioni di

- Rappresentazione con *matrice di adiacenza*
- Rappresentazione con *liste di adiacenza*

Rappresentazone di grafi

Rappresentazione con *matrice di adiacenza*:

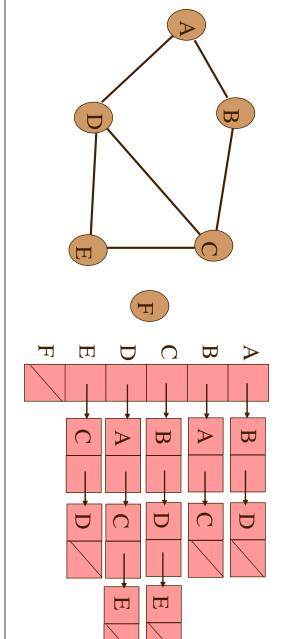
$$M(v, w) = \begin{cases} 1 & \text{se } (v, w) \in E \\ 0 & \text{altrimenti} \end{cases}$$

$$A & B & C & D & E & F \\ A & B & C & D & E & F \end{cases}$$

$$A & B & C & D & E & F \\ C & B & 1 & 0 & 1 & 0 & 0 & 0 \\ C & B & 1 & 0 & 1 & 0 & 0 & 0 \\ C & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ C & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ C & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ C & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{cases}$$

Rappresentazione con liste di adiacenza:

 $L(\nu) = \text{lista di } w, \text{ tale che } (\nu, w) \in E,$ per $\nu \in V$

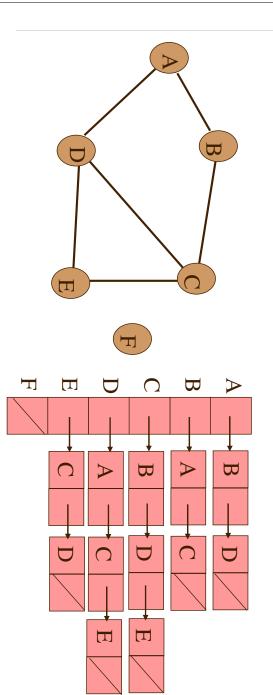


Rappresentazone di grafi

Rappresentazione con liste di adiacenza:

 $L(v) = \text{lista di } w, \text{ tale che } (v, w) \in E,$ per $v \in V$

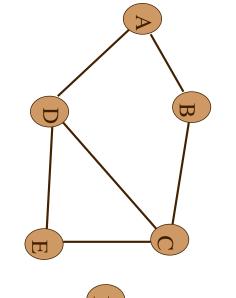
Quanto spazio?

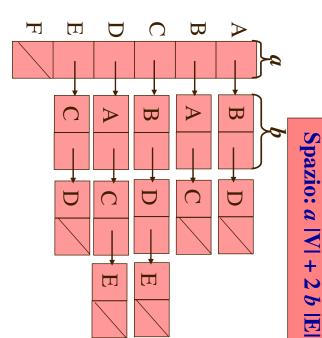


Rappresentazione con liste di adiacenza:

 $L(v) = \text{lista di } w, \text{ tale che } (v, w) \in E$

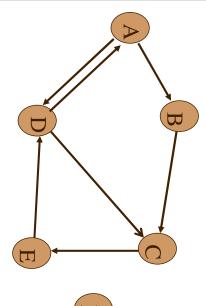
per $\nu \in V$





Rappresentazone <u>Q</u>. grafi

volta per rappresentare un grafo orientato. Rappresentazione con *matrice di adiacenza* questa



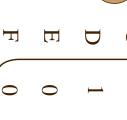
 \square

W

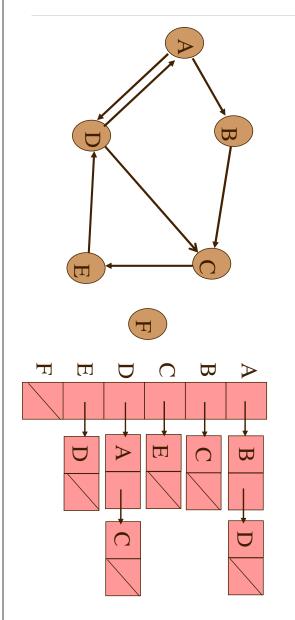
 \Box

T





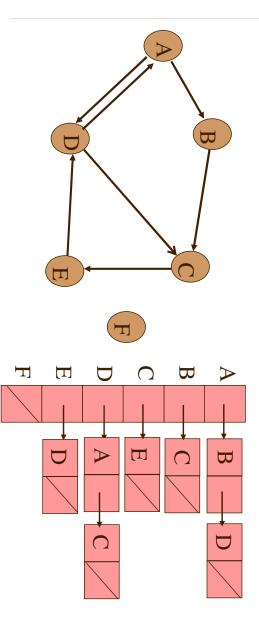
volta per rappresentare un grafo orientato. Rappresentazione con liste di adiacenza questa



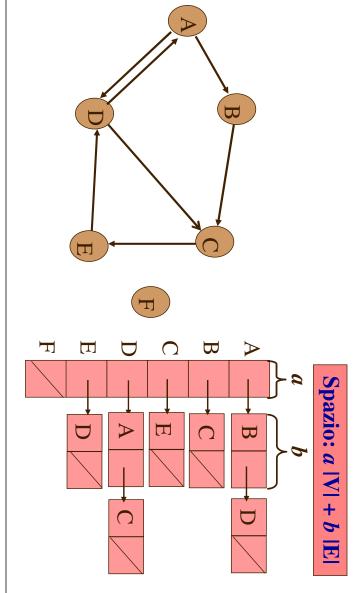
Rappresentazone di grafi

Rappresentazione con liste di adiacenza questa volta per rappresentare un grafo orientato.

Quanto spazio?



volta per rappresentare un grafo orientato. Rappresentazione con *liste di adiacenza* questa



Rappresentazone di grafi

Matrice di adiacenza

Spazio richiesto O(IVI²)

Verificare se i vertici u e v sono adiacenti richiede tempo

Molti 0 nel caso di grafi sparsi

Liste di adiacenza

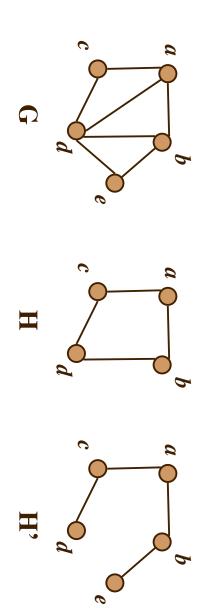
Spazio richiesto O(IEI+IVI)

Verificare se i vertici u e v sono adiacenti richiede tempo O(|V|).

Sottografo di copertura

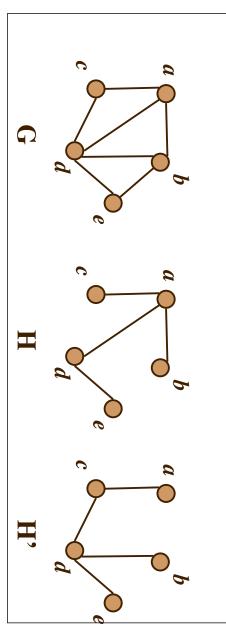
Un sottografo di G=(V,E) è un grafo $H=(V^*,E^*)$ tale che V^* $\subseteq V \in E^* \subseteq E$.

- grafo "spanning") di G se H' è un sottografo di copertura (o di supporto o sotto-
- $V^* = V$ e $E^* \subseteq E$



Albero di copertura

"spanning") del grafo G=(V,E) se grafo $H=(V^*, E^*)$ è un albero di copertura (o albero Hè un albero H è un grafo di copertura di G



Visita in Profondità (DFS)

Tecnica di visita di un grafo

È una variazione della visita in preordine per alberi binari

Si parte da un veritice s

Viene processato il vertice s

Ricorsivamente si processano tutti i vertici adiacenti ad s

Bisogna evitare di riprocessare vertici già visitati

Bisogna evitare i cicli

Nuovamente, quando un vertice è stato visitato e (poi) processato viene marcato opportunamente (colorandolo)

DFS: intuizioni

I passi dell'algoritmo DFS

si sceglie un vertice non visitato s

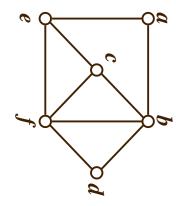
si sceglie un vertice non visitato adiacente ad s

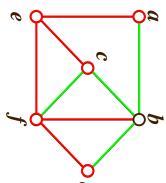
da s si attraversa quindi un percorso di vertici adiacenti (visitandoli) finché possibile:

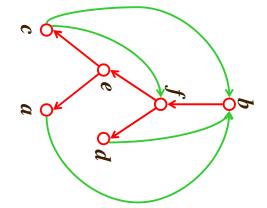
cioè finché non si incontra un vertice già visitato

appena si resta "bloccati" (tutti gli archi da un vertice sono stati percorso visitato (aggiornando il vertice s al vertice corrente) visitati), si torna indietro (<u>backtracking</u>) di un passo (vertice) nel

si ripete il processo ripartendo dal passo







b f e c a d

Albero di copertura Depth-first Archi dell'albero —> Archi di ritoro —>

Algoritmo DFS

Manterremo traccia del momento (tempo) in cui ogni vertice processato (terminato) v viene visitato (scoperto) e del momento in cui viene

Useremo due array $d[\nu]$ e $f[\nu]$ che registreranno il momento in cui ν verrà visitato e quello in cui verrà processato.

La variabile globale *tempo* serve a registrare il passaggio del tempo.

Algoritmo DFS

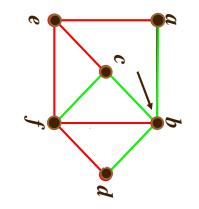
```
DSF (G:grafo)
                                                                                                DSF-Visita(u:vertice)
             colore[u] =
  f[11]
                                                                      d[u]
                                                                                    colore[u] = Grigio
                                                                                                                                        for
                                                                                                                                                                                                 for each vertice
                                                                                                                                                             tempo
= tempo = tempo +
                                                            each vertice
                                               do if colore[v] =
                                                                                                                            do
                                                                                                                                         each vertice
                                                                                                                                                                                       do
                                                                                                                                                                il
                                                                       tempo =
                                                                                                                            ΞĒ
                                    then pred[v]
                                                                                                                                                                                     colore[u]
                                                                                                                                                               0
                                                                                                               then
                                                                                                                                                                         pred[u] =
             Nero
                        DFS-Visit (v)
                                                                                                                          colore[u]
                                                                      tempo
                                                                                                              DFS-Visita(u)
                                                                                                                                                                                                  И
                                                                                                                                                                           NIL
                                                                                                                                                                                        \parallel
                                                                                                                                         u
                                                                                                                                                                                      Binaco
                                                            Adiac
                                                 Binaco
                                                                                                                              II
                                                                                                                                          4
                                                                                                                            Binaco
```

Inizializzazione del grafo e della variabile tempo

Abbreviazione per: tempo=tempo+1 d[u]=tempo

Abbreviazione per: tempo=tempo+1 f[u]=tempo

DFS: simulazone



DSF-Visita(u:vertice)

colore[u] = Grigio

tempo + 1

 $V \in Adiac[u]$

d[u] = tempo = tfor each vertice

do if colore[v] = Binaco

then pred[v] = u

DFS-Visit (v)

f[u]

II

tempo

= tempo

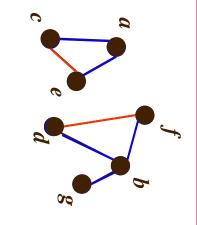
+

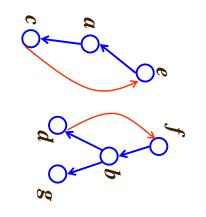
colore[u] = Nero

Alberi di copertura multipli

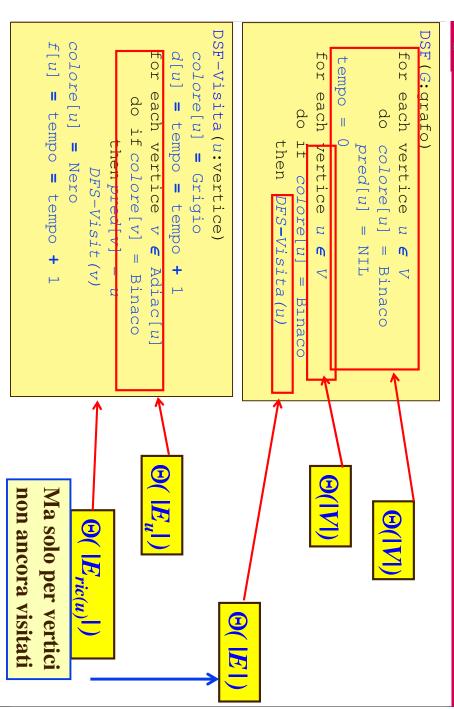
```
DSF(G:grafo)
  for each vertice u \( \mathbf{e} \) \
       do \( \colore[u] = \text{Binaco} \)
       pred[u] = NIL
  tempo = 0
  for each vertice u \( \mathbf{e} \) V
       do if \( \colore[u] = \text{Binaco} \)
       then \( DFS-Visita(u) \)
```

```
DSF-Visita(u:vertice)
  colore[u] = Grigio
  d[u] = tempo = tempo + 1
  for each vertice v ∈ Adiac[u]
    do if colore[v] = Binaco
        then pred[v] = u
        DFS-Visit(v)
  colore[u] = Nero
  f[u] = tempo = tempo + 1
```





Tempo <u>C</u>. esecuzione di DFS



Tempo di esecuzione di DFS

```
DSF (G: grafo)
                          for
                                                                                 for each vertice
                                         tempo =
                          each vertice
                                                                  ach vertice u \in V
do colore[u] = Binaco
            do if colore[u] = Binaco
then DFS-Visita(u)
                                                     pred[u] = NIL
                           И
                         W
```