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Selecting the Optimal Focus Measure for
Autofocusing and Depth-From-Focus

Murali Subbarao and Jenn-Kwei Tyan

Abstract—A method is described for selecting the optimal focus
measure with respect to gray-level noise from a given set of focus
measures in passive autofocusing and depth-from-focus applications.
The method is based on two new metrics that have been defined for
estimating the noise-sensitivity of different focus measures. The first
metric—the Autofocusing Uncertainty Measure (AUM)—is useful in
understanding the relation between gray-level noise and the resulting
error in lens position for autofocusing. The second metric—
Autofocusing Root-Mean-Square Error (ARMS error)—is an improved
metric closely related to AUM. AUM and ARMS error metrics are based
on a theoretical noise sensitivity analysis of focus measures, and they
are related by a monotonic expression. The theoretical results are
validated by actual and simulation experiments. For a given camera,
the optimally accurate focus measure may change from one object to
the other depending on their focused images. Therefore, selecting the
optimal focus measure from a given set involves computing all focus
measures in the set.

Index Terms—Focus measure, focusing, autofocusing, depth-from-
focus, focus analysis.

————————   F   ————————

1 INTRODUCTION

ELECTRONIC cameras can be autofocused by searching for the lens
position that gives the best focused image [4], [5], [6]. In this ap-
proach, typically, a focus measure is computed for images acquired
at several different lens positions, and the lens is moved to that
position where the focus measure of the image is a maximum. The
focused lens position v (see Fig. 1) depends on the distance u of the
object to be focused and the focal length f of the lens. They are
related by the lens formula

1 1 1
f u v= +                                              (1)

This same relation is used in depth-from-focus (DFF) methods
to compute the object distance u from the focused lens position v
[4], [5], [6].

Experimental evaluations of different focus measures have been
reported in [1], [2], [3]. So far, there has not been any theoretical
treatment of the noise sensitivity of focus measures. In the existing
literature, all known work have been a combination of experi-
mental observations and subjective judgement. The noise sensitiv-
ity of a focus measure depends not only on the noise characteris-
tics but also on the image itself. The optimally accurate focus
measure for a given noise characteristics may change from one
object to the other depending on its image. This makes it difficult
to arrive at general conclusions from experiments alone.

For a given camera and object, the most accurate focus measure
can be selected from a given set through experiments as follows.
For each focus measure, the object is autofocused several times,
say 10, starting with an arbitrary default lens position. The mean
of the 10 focused positions and their standard deviation are an

estimate of the correct focused position and root-mean-square
(RMS) error, respectively. The focus measure with the minimum
estimate of RMS error is taken to be the optimal. In practical appli-
cations such as consumer video cameras or digital still cameras, it
is desirable to find the best focus measure from a given set by
autofocusing only once. It is quite undesirable to repeat 10 or sev-
eral trials.

If one has detailed and accurate information on the focused im-
age of the object to be focused and the camera characteristics such
as its OTF, noise behavior, and camera parameters, then it would
be possible to estimate the RMS error theoretically with only one
trial. However such information is rarely available in practical
applications.

In the absence of such detailed and accurate information, we
propose two new metrics named Autofocusing Uncertainty Measure
(AUM) and Autofocusing Root-Mean-Square Error (ARMS error)
both of which can be computed with only one trial of autofocus-
ing. In DFF applications, AUM and ARMS error can both be easily
translated into uncertainties in depth using (1). The key assump-
tion underlying the definition of AUM and ARMS error is that the
mean value of focus measures are locally smooth with respect to
lens position (e.g., quadratic near the peak). AUM and ARMS error
metrics are general and applicable to any focus measure satisfying
the local smoothness assumption. The analysis here deals with
focusing errors caused only by gray-level noise and not other fac-
tors such as nonfront parallel surfaces. The analysis here shows
that the autofocusing noise sensitivity of a focus measure depends
on the image of the object to be autofocused in addition to the
camera characteristics. For an object with unknown focused image,
finding the optimally accurate focus measure involves computing
all the candidate focus measures at a set of lens positions and
computing AUM/ARMS error for each of the lens positions.

2 MODEL OF FOCUS MEASURES

A detailed discussion of this topic can be found in several papers
including [3]. Here, we summarize some relevant results based on
geometric optics.

When a point object P is blurred on the image detector ID (see
Fig. 1), it is imaged as a blur circle P” of radius R. This image h(x, y)
is the point spread function (PSF) of the camera. In a small image
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Fig. 1. Image formation in a convex lens.
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region, if the imaged object surface is (approximately) a plane
normal to the optical axis, then the PSF is the same for all points on
the plane. Then the blurred image g(x, y) in the small image region
on the image detector ID is equal to the convolution of the focused
image f(x, y) and the PSF h(x, y). Therefore, if G, F, and H are the
Fourier transforms of g, f, and h, respectively, then G = HF. The
OTF H(w, n) has characteristics of a low-pass filter. As the blur
increases, the higher frequencies are attenuated even more.

A general focus measure is modeled as follows. First, the image
for which the focus measure needs to be computed is normalized
for brightness by dividing the image by its mean brightness. Then,
it is convolved with a focus measure filter (FMF). Then, the energy
(sum of squared values) of the filtered image is computed. This
energy is the focus measure (see Section 6 for more details). Most
FMFs correspond to filters that emphasize (or amplify) high fre-
quencies. This seems appropriate since blurring has the opposite
effect, i.e., high-frequency attenuation.

The focus measures modeled here cover most of the focus
measures that have been used by researchers so far [3], except
those based on sum of absolute values of image derivatives [1], [2].
Although AUM and ARMS error metrics are applicable to these
focus measures also (which are based on sum of absolute values of
image derivatives), we have not carried out a complete analysis of
them here since they have been proved to be unsound [4], [5], [6]
based on the effect of the OTF main lobe. These unsound focus
measures may be optimal for some scenes, but for some other
scenes they can give incorrect results even in the absence of all
noise.

3 AUTOFOCUSING ALGORITHM

Fig. 2 shows a typical plot of a focus measure as a function of lens
position. The problem is to find position sf where the focus meas-
ure is maximum. Due to limited depth of field of the camera, we
assume that the change in the best focused image is indistinguish-
able by the image detector when the lens is moved by an amount
of up to ±e/2 from sf .

We propose the following algorithm for autofocusing. First the
focus measure is computed at the current lens position and the
lens is moved by about 10e to another position. The focus measure
is again computed. The sign of the change in the two focus meas-

ures is used to determine the direction in which the lens should be
moved. Then, a coarse search is used to narrow the search interval
to about 10e. The coarse search may use a binary or Fibonacci or a
sequential search. See [4], [5], [6] for details. In this interval of size
10e containing sf, a focus measure is computed at three positions
which are about 5e apart. Then a quadratic or a Gaussian is fitted
to these three (or more if desired) points. The position where the
fitted curve has a maximum is taken to be the focused position sf .
Note that, according to geometric optics, the focus measure curve
will be symmetric about the focus position sf . Also, shifting the fo-
cus position sf will shift the curve by the same amount with only
small change in its shape.

4 AUTOFOCUSING UNCERTAINTY MEASURE (AUM)
First, we introduce AUM as a metric for focus measures to illus-
trate some underlying concepts. Later, we introduce the ARMS
error which is based on weaker assumptions than AUM. At any
lens position s0 (see Fig. 3), each focus measure g is associated
with a probability density function p(g (s0)), an expected value
(mean) E{g (s0)}, and a standard deviation std{g (s0)}. However, the
focus measure with the minimum standard deviation is not nec-
essarily the best because we are not interested in the accuracy of
the focus measure itself, but in the corresponding mean lens po-
sition and its standard deviation. Estimating the standard devia-
tion of the lens position requires a knowledge of the function
that relates the expected value of the focus measure to the lens
position (see Fig. 3). This function depends on the camera PSF as
a function of camera parameters and the focused image of the
object. In the absence of accurate information about the camera
PSF and the object, the function is estimated in a desired interval
through sampling and interpolation. For example, near the
maximum, the focus measure may be computed at three to five
nearby lens positions and a smooth function such as a quadratic
polynomial or a Gaussian is fitted. The assumption is that the
computed values of the focus measure are (nearly) the expected
values of the focus measure. This assumption will be removed
later in defining the ARMS error.

Referring to Fig. 3, the AUM at the maximum of the focus

measure g sf4 9 is defined as follows:

AUM s s= -2 1 ,                                        (2)

where s s s s s s sf f f1 2 1 2< < - = - =, g g g g s4 9 2 7 4 9 2 7 , where s is

the standard deviation of the focus measure. In order to compute

Fig. 2. Autofocusing algorithm.

Fig. 3. Definition of AUM at the focused position Sf .
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AUM, we need to know s. In Section 6, we derive a general for-
mula that can be used to estimate s as a function of the image
and its noise level. Further we need to know the shape of the
curve g s1 6  near the peak. As discussed earlier, the position of g f

and the function g s1 6  near g f  are estimated by fitting a curve

(quadratic or Gaussian) to a few points (at least three) near the
maximum. Intuitively, AUM is a measure similar to the RMS
error in lens position that can be determined through repeated
trials.

Fig. 4 shows a typical comparison of two focus measures. The
maximum values of the two focus measures have been normalized
to be the same. We see that although s2 > s1, AUM2 < AUM1, im-
plying that g2 is better than g1.

For a position far away from the focused lens position sf , see [4],
[5], [6] for a definition of AUM.

5 ARMS ERROR

Now we derive an explicit expression for the Autofocusing Root-
Mean Square Error (ARMS error). An exact expression for the
RMS error depends on the Optical Transfer Function (OTF) of the
camera and the Fourier spectrum of the focused image. Deriving
such an exact expression is complicated because of the nature of
the camera’s OTF and the variability of the Fourier spectrum of
the focused image for different objects. Further, usefulness of
such an expression in practical applications is limited since all
the information necessary to evaluate the expression (e.g., OTF
and camera parameters) may not be available. However, an ap-
proximate expression that is very useful in practical applications
can be derived under some weak assumptions. The assumption
we use is that the expected value of the focus measure is locally
smooth with respect to lens position. We model this local smooth-
ness by a quadratic polynomial, but the analysis here can be ex-
tended to other models (e.g., cubic or Gaussian). However, such
extensions do not appear to offer significant advantages com-
pared to the quadratic model in practical applications.

Referring to Fig. 5, focus measure g is modeled to be locally
quadratic in a small interval of size 2d with respect to lens position
near the focused position:

g (s) = as2 + bs + c.                                         (3)

Let the focus measure be given at three arbitrary positions which
are d apart. Without loss of generality, let the three positions be
s- = -d, s0 = 0, and s+ = +d. Let G- = g(s-), G0 = g(s0), and  G+ = g(s+).

Near the focused position, G0  > G-  and G0 > G+. Solving for the
coefficients of the quadratic expression, we obtain

a b c=
+ -

=
-

=+ - + -G G G G G
G

2

2 2
0

2 0d d, , .                    (4)

Let sf be the lens position where the focus measure becomes the
maximum and Gf = g(sf). At sf , the derivative of G vanishes. There-
fore, we obtain

s
b
af =

-
=

-
- -
+ -

+ -
2 2 2 0

d G G
G G G
2 7

2 7 .                           (5)

Substituting the above equation in (3), we obtain

Gf

b ac
a

= -
-2 4
4 .                                      (6)

We are interested in the RMS value of sf . For this reason, the fo-

cus measure Gi will be expressed as the summation of their ex-

pected value Gi  and their noise component nI :

G Gi i in i= + = - +for , ,0 .                          (7)

Therefore, (5) is expanded as

s
n n n n n

f =
-

- -
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�
�� +

-
-

�
��

�
�� +

- -
- -

�
��

�
��

+ -

+ -

+ -

+ -

+ -

+ -

-d
2 2

1 1
2

20

0

0

1G G
G G G G G G G G

.     (8)

Near the focused position, we have G G0 > +  and G G0 > - . There-
fore, if the signal to noise ratio is sufficiently large, we have

2 20 0G G G- - >> - -+ - + -n n n .                           (9)

We obtain s sf fª ¢  where

¢ = +
-
-

�
��

�
��

+ -

+ -
s s

n n
f f 1

G G
.                                   (10)

Note: We cannot assume that G G+ - + -- >> -n n  because, near

the focused position, G+  and G-  may be nearly equal. Simplifying
the expression for ¢sf , we obtain

¢ = +
-

- -
�
��

�
��

+ -

+ -
s s

n n
f f

d
2 2 0G G G

.                            (11)

Now the ARMS error is defined as the standard deviation of ¢sf ,

i.e.,

Fig. 4. Comparison of two focus measures g1 and g2 at the focused
position. Fig. 5. Quadratic polynomial interpolation.
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ARMS error =
+

- -
+ -

+ -

d s s
2 2

2 2

0G G G3 8 ,                       (12)

where s+ and s- are the standard deviations of the focus measures
G+ and G- , respectively.

For a lens position away from the maximum focused position,
we find that G-  < G-0 < G+. In this case, the local linear model for
the focus measure will be better than the local quadratic model.
The ARMS error for this case is defined based on focus measures
at only two lens positions (rather than three) that are d apart.
Without loss of generality, let the two positions be s- = -d/2 and s+
= +d/2 and the focus measures at these points be G- and G+ ,
respectively (similar to Fig. 6). The linear model yields the ex-
pression

s s
s s

-
- =

-
-

-

+ -

-

+ -

G G
G G .                                   (13)

The above equation can be rewritten as:

s =
-
-

�
��

�
�� --

+ -
d

dG G
G G 2 .                                  (14)

Once again, we express G+  and G- as G G+ = ++ +n  and

G G- - -= + n  where G+   and G-   are the expected values and n+ and

n- are the noise components.
Now, the ARMS error is defined as the standard deviation of s¢

where s¢ is the solution of G
G G

s1 6 =
++ -

2 . Solving this equation and

assuming G G+ - + -- >> -n n  and G G+ - -- >> 2n , we obtain:

¢ ª
+
-

�
��

�
��

+ -

- +
s

n nd
2 G G

.                                    (15)

Hence, the ARMS error would be

ARMS std s error = ¢ =
+

-
+ -

+ -

1 6 d s s2 2

2 G G
.                     (16)

It is shown in [4], [5] that for points near the focused position,
square of AUM is proportional to ARMS error

AUM ARMS2 8 2= d3 84 9, and for points away from the focused

position, AUM and ARMS error are proportional
AUM ARMS= 2 23 8 .

6 MEAN AND VARIANCE OF FOCUS MEASURES

In this section, we derive expressions for the expected value (mean)
and variance of the focus measures modeled in Section 2. These are
useful in computing the standard deviation s of the focus measure
and its AUM/ARMS error.

Let f(m, n) be the blurred noise free discrete image and h(m, n)
be the additive noise. The noisy blurred digital image recorded by
the camera is

fh (m, n) = f(m, n) + h(m, n).                              (17)

The noise h(m, n) at different pixels are assumed to be independ-
ent, identically distributed random variables with zero mean and
standard deviation sn. This sn can be easily estimated for a camera
by imaging a uniformly bright object and computing the standard
deviation of the gray level distribution. The images are assumed to
be of size (2N + 1) ¥ (2N + 1) and focus measure filter (FMF) a(i, j)
of size (2M + 1) ¥ (2M + 1). Without loss of generality, the filtering
operation will be represented by the moving weighted sum (MWS)
operator instead of the usual convolution operator. MWS is correla-
tion and is equivalent to convolution if, for example, the FMF is

rotated by 180 degrees about its center by assigning a(-i, -j) to
a(i, j). Denoting the MWS operator by * it is defined by

a i j f m n a i j f m i n j
i j

M

, , , ,
,

2 7 1 6 2 7 2 7* = + +Âh h ,                  (18)

where a double summation is abbreviated with a single summa-
tion to simplify notation.

Let g(m, n) be the image obtained by filtering the noisy blurred
image fh(m, n) with the FMF a(i, j):

g(m, n) = a(i, j) * fh(m, n) = F(m, n) + 1(m, n),              (19)

where

F(m, n) = a(i, j) * f(m, n), 1(m, n) = a(i, j) * h(m, n).           (20)

The focus measure g  is defined as

                   g =
+ Â
1

2 1 2
2

N
g m n

m n

N

1 6 1 6,
,

= + +
+ Âg gsignal noise

m n

N

N
F m n m n

2

2 1 21 6 1 6 1 6, ,
,

1 ,          (21)

where gsignal and gnoise are defined by:

g gsignal noise
m n

N

m n

N

N
F m n

N
m n=

+
=

+ ÂÂ
1

2 1

1

2 12
2

21 6 1 6 1 6 1 6, , ,
,,

1 � .  (22)

Now, the expected value of the focus measure E{g} is (note that the
expectation operator E is linear and commutes with summation):

E E
N

F m n E m nsignal noise
m n

N

g g g; @ < A 1 6 1 6 1 6< A= + +
+ Â
2

2 1 2 , ,
,

1

= +g ssignal n nA 2 ,                                                                  (23)

where

A a i jn
i j

M

= Â 2 ,
,

2 7 .                                       (24)

The above equation is a fundamental result. It shows that the
expected value of the focus measure is a sum of two components–
one due to signal alone and another due to noise alone. Therefore,
if a focus measure is computed on a set of images for autofocusing,
the effect of noise is to increase the computed focus measure by the
same value on average for all images. The reason for this is that
while the image signal changes in blur level with lens position, the
noise characteristics of the camera remains the same. Therefore,
the average increase in focus measure due to noise does not
change the location of the focus measure peak. It is the variance of

Fig. 6. Linear interpolation.
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the focus measure that changes the location of the focus measure
peak and therefore introduces error in autofocusing.

Now consider the variance of the focus measure:

Var{g} = E{g 2} - (E{g})2,                               (25)

we obtain:

Var
A E

N

A

N N

n n n ng
h s s; @ > C

1 6 1 6 1 6=
+

-
+

+
+

¥
2 4

2

2 4

2

4

22 1 2 1 2 1

i j

M

i j

M

i j

M

k k
ki j

M
n

signalQ a i j
N

1 1 2 2 3 3 4 4 1

4 2

2

4

2 1, , , ,

,Â Â Â ’Â ◊
�
��

�
�� +

+
¢

=
2 7 1 6

s
g ,        (26)

where

A(i, j) = a(i, j) * a(-i, -j),   F’(m, n) = A(i, j) * f(m, n),           (27)

¢ =
+

¢
+

Âg signal
m n

M N

N
F m n

1

2 1 2
2

1 6 1 6,
,

,                      (28)

and Q a Boolean variable with value 1 if the following condition is
true and zero otherwise:

Q  ::  (C5 OR C6) & NOT  C1 ,                            (29)

where

C1  :  (i1 = i2) & (j1 = j2) & (i3 = i4) & (j3 = j4),                (30)

C5  :  (i1 - i3 = i2 - i4) & (j1 - j3 = j2 - j4) ,                       (31)

                         C6  :  (i1 - i4 = i2 - i3) & (j1 - j4 = j2 - j3).                       (32)

The equation above shows that the variance of a focus measure
depends on the image signal in addition to noise level. The first
three terms do not depend on the image signal. They can be com-
puted and prestored. Among these three terms, the first two can be
computed manually, but the third term may need a small com-
puter program to evaluate. The last term in the above equation
depends on the image being processed. Exact computation of this
term requires knowledge of the noise-free image which is not pos-
sible. However the value of the term can be approximated using
the noisy image g(m, n) in place of f(m, n). The approximation is
valid for high signal to noise ratio [4], [5], [6].

The formula presented above can be applied directly in practi-
cal applications. Now we consider three examples to illustrate the
application of the formula. In these examples, the noise will be
modeled as Gaussian. For a zero mean Gaussian random variable

h with standard deviation sn we have E nh s4 43> C = . This result will

be used in the following examples.

6.1 Gray Level Variance
The image is normalized by subtracting the mean gray value from
the gray level of each pixel. The focus measure filter in this case is

a i j
i j

,2 7 = = =%&'
1 0
0

if 
otherwise .                               (33)

Using (26) for variance we obtain

Var
N N

f m nn n

m n

N

g
s s; @ 1 6 1 6 1 6=
+

+
+ Â

2

2 1

4

2 1

4

2

2

4
2 ,

,

.                (34)

6.2 Gradient Magnitude Squared
For gradient squared along x-axis and y-axis, respectively

ax(i, j) = [-1  1], ay(i, j) = [-1  1]T.                        (35)

Substituting ax(i, j) and ay(i, j) above in (26) for variance, we obtain:

Var g; @ =

24

2 1

4

2 1

4

2

2

4

2s sn n
x y

m n

M N

N N
A i j f m n A i j f m n

+
+

+
* + *

+

Â1 6 1 6 2 7 1 6 2 7 1 6, , , ,
,

, (36)

where

Ax(i, j)=  [-1   2   -1], Ay(i, j) = [-1   2   -1]T.                (37)

6.3 Laplacian
The discrete Laplacian is approximated by

a i j,2 7 = -
�
!
  

"
$
##

0 1 0
1 4 1
0 1 0

.                                   (38)

Substituting this a(i, j) into (26) for variance, we obtain

Var
N N

A i j f m nn n

m n

M N

g
s s; @ 1 6 1 6 2 7 1 6=

+
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+
*

+

Â
1 352

2 1
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,       (39)

where

A i j,2 7 =
-

- -
-

�

!

    

"

$

####

0 0 1 0 0
0 2 8 2 0
1 8 20 8 1
0 2 8 2 0
0 0 1 0 0

.                          (40)

7 EXPERIMENTS

In the first set of experiments, (26) for the variance of focus meas-
ures was verified as follows. The autofocusing algorithm described
earlier was implemented on a system named Stony Brook Passive
Autofocusing and Ranging Camera System (SPARCS) [3]. In
SPARCS, a 35 mm focal length lens is used. The lens is driven by a
stepper motor that can move the lens to 97 different step positions.
The standard deviation of the camera noise was estimated by im-
aging a flat and uniformly bright object and then computing the
gray level variance of the recorded image. Three objects labeled A,
B, and C (see Fig. 7) were used in the experiments.

An object was placed in front of the camera, and for some fixed
lens position, 10 images of size 32 ¥ 32 of the object were recorded.
These images slightly differed from each other due to electronic
noise. A given focus measure was computed for each of the 10
images. The standard deviation of the resulting 10 focus measures
was then computed. This was the experimentally determined
standard deviation of the focus measure. The theoretical estima-
tion of the standard deviation of the focus measure was computed
using (26). For this purpose, the standard deviation of the noise
was obtained as mentioned earlier using a flat uniformly bright
object. The noise-free image needed in (26) was obtained by aver-
aging four noisy images of the object. Table 1 shows the experi-
mentally computed and theoretically estimated standard devia-
tions of different focus measures. We see that the two values are
close thus verifying (26).

In the next experiment, the objects A, B, and C were autofo-
cused using the algorithm described in Section 3. In each case,
the experimental and theoretical ARMS error were computed
(the unit is lens steps). Near the focus position, images were re-
corded at three positions s-, s0, and s+ which were five steps
apart. At each position, 10 images were recorded, and using
these, the mean and the standard deviation of the focus measure
there were computed. Then the theoretically estimated ARMS
error was computed using (12). The same data was used to com-
pute 10 experimental focus positions using (5). The standard
deviation of these 10 positions was the experimental ARMS error.
The resulting values are shown in the last two columns of
Table 1. We see that they are very close. These values also indi-
cate the relative autofocusing accuracy of the three focus meas-
ure filters—gray-level variance, gradient magnitude squared,
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and Laplacian squared. The measured noise standard deviation
was 0.95 (gray-level units) for the camera, and the SNR for the
three objects were 35 dB, 28 dB, and 20 dB, respectively.

Three main conclusions can be drawn from the experimental
results. First, for a given object (i.e., fixed image content), ARMS
error decreases with increasing signal-to-noise ratio (SNR). This
implies that low contrast objects and noisy cameras have more
autofocusing error. Second, the focus measure with minimum
standard deviation is not necessarily the focus measure that
gives minimum error in autofocusing. Third, the best focus
measure could be different for different objects depending on
both image content and noise characteristics; SNR alone cannot
be used to determine the best focus measure. For example, the
best focus measure for the objects with SNR 35 dB and SNR 28
dB are the Laplacian squared, but for the object with SNR 20 dB,
the best focus measure is gradient magnitude squared. Autofo-
cusing of object C was not possible using gray-level variance due
to the absence of a well defined peak. Experiments similar to the
ones above were also carried out on simulated image data (see
[4], [5], [6]).

8 CONCLUSION

ARMS error has been defined as a metric for selecting the optimal
focus measure for autofocusing with respect to gray-level noise
from a given set of focus measures. It is based on the assumption

of local smoothness of focus measures with respect to lens posi-
tion. ARMS error can be applied to any focus measure whose vari-
ance can be expressed explicitly as a function of gray-level noise
variance. Such an expression has been derived for a large class of
focus measures that can be modeled as the energy of filtered im-
ages. Equations (23) and (26) for the mean and variance, respec-
tively, of a focus measure along with (12) and (16) for ARMS error
completely specify the dependence of autofocusing error on both
gray-level noise and image content. These equations can be used to
estimate the autofocusing accuracy of different focus measures,
and the one with minimum error can be selected for application. In
applications where computation needs to be minimized by com-
puting only one focus measure, we recommend the use of the
Laplacian as the focus measure filter. Laplacian has some desirable
properties such as simplicity, rotational symmetry, elimination of
unnecessary information, and retaining of necessary information
[4], [5], [6].

This work can be extended in several ways. First, explicit ex-
pressions for the variance of other focus measures such as sum of
absolute values of image derivatives could be derived so that
ARMS error can be used to estimate their autofocusing accuracy.
Second, in the definition of ARMS error, the local smoothness of
focus measures could be modeled differently than here. Third,
deriving an optimal focus measure filter for a given image and
noise level remains to be investigated.

                                                (a)                                                             (b)                                                               (c)

Fig. 7. Texture image. (a) Object A. (b) Object B. (c) Object C.

TABLE 1
EXPERIMENTALLY COMPUTED AND THEORETICALLY ESTIMATED STANDARD DEVIATIONS OF DIFFERENT FOCUS MEASURES

LAP: Laplacian, GRD: Gradient Magnitude Squared, VAR: Variance, OBJ: Object
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