1/26

Red Eye Removal

Tony Meccio

17/04/2008

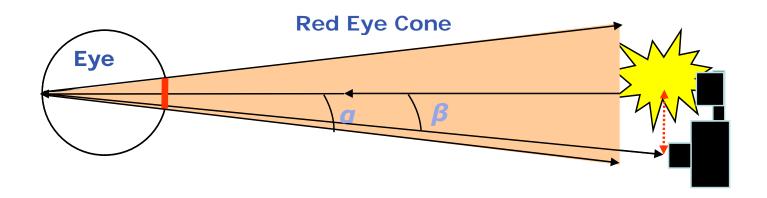
Overview

- Introduction to the Red Eye problem
- Red Eye prevention
- Red Eye detection
 - Semi-automatic methods
 - Automatic methods
- Red Eye correction
 - Desaturation
 - Inpainting techniques
- False positives and unnatural corrections
- Red Eye removal examples

Red eye removal

The Red Eye problem

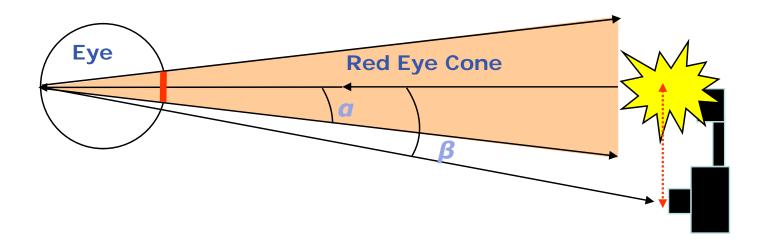
The Red Eye phenomenon is a wellknown problem which happens when taking flash-lighted pictures of people.


The pupils in the picture appear red instead of black.

This happens more often when using compact, consumer-oriented cameras.

Red eye removal

• The red eye cone shines from the flashed eye back at the flash with an angle **a**;


• Its red color is caused by the reflection of the flash off the blood vessels of the retina;

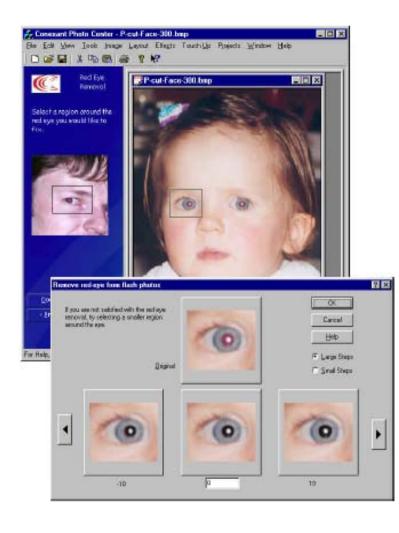
The camera will record this red hue if the angle β between the flash and the camera is not greater than a.

- If the equipment allows it, the flash can be spaced further away from the sensor in order to increase
 β (not possible on compact devices);
- One or more additional flashes before picture acquisition make the iris tighten and decrease a;
- This methods reduce the probability of the Red Eye phenomenon but **don't remove it entirely**.

6/26

17/04/2008

Most of the times, red eyes must be removed during post-processing.


For red eyes to be successfully removed, they must be first **detected** then **corrected**.

Methods are classified according to the detection phase:

- Semi-automatic methods ask the user to manually localize the red eyes;
- Automatic methods detect the red eyes themselves.

Semi-automatic methods

The eyes are manually selected using a visual interface (Adobe **Photoshop** ®, Corel **Paint Shop Pro** ®, **ACD See** ®, etc.)

Pros:

• Eyes are easy to localize for men.

Cons:

- It may be difficult to have such an interface on a mobile device;
- Automatic methods are easier to use and more appealing.

Red eye removal

17/04/2008

Automatic methods attempt to find red eyes on their own. The task is harder than it may seem:

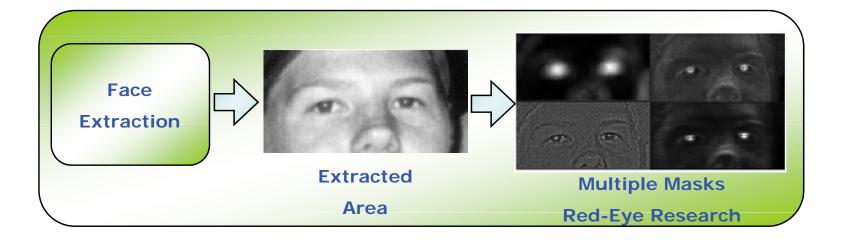
No "perfect" Red Eye detection method has been developed yet.

Automatic methods extract features from images in order to identify red eyes. Different methods work on different features:

- Face detection
- Eye detection

- Skin detection
- Flash-noFlash comparison

Red eye removal

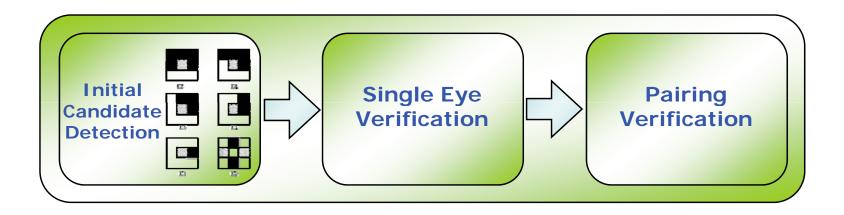


9/26

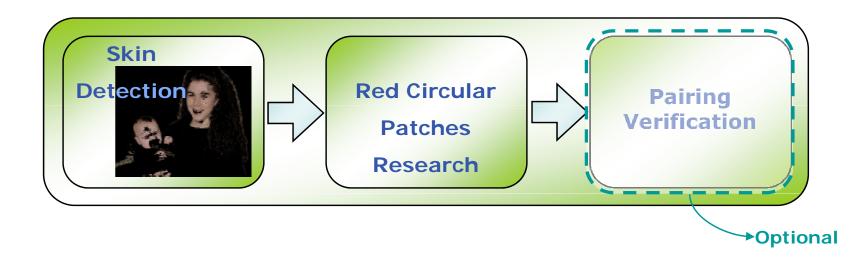
17/04/2008

• Faces are looked for using a **multiple feature object based** approach;

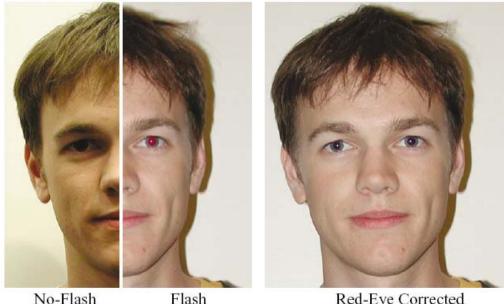
• Once the face features have been found then the research is **restricted to red pixels**.



17/04/2008


Similar to face detection, but **more complex** because the features are less evident:

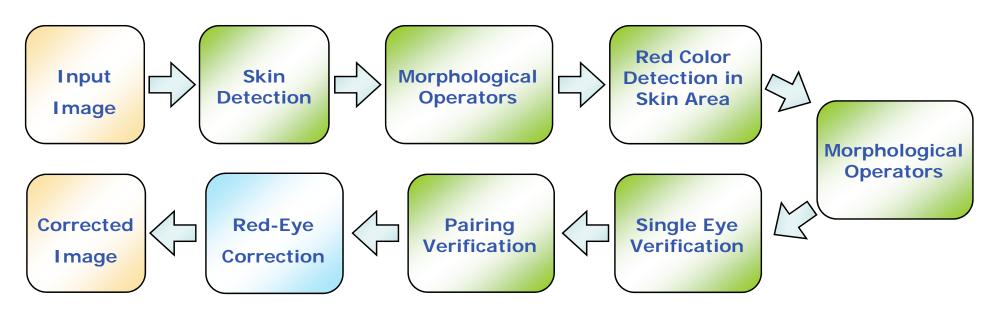
• Eyes are seeked, matching **fixed templates at different resolutions** with regular eyes present into the images, or looking for red pixels using **computed color LUTs**.


- Skin is detected first by pixel colors;
- **Red circular patches** near the skin are then looked for.
- This approach is simpler and does not take into account the presence of more complex features.

Flash-noFlash methods

- Two different pictures, one with flash and one without, are acquired one after the other;
- Red eyes are detected as patches whose color is red in the "flash" image and **black in the** "nonflash" image.

No-Flash


Red-Eye Corrected

This approach has several drawbacks:

- The dimension of the buffer must double;
- The two images may be mis-aligned;
- The subject(s) may move between acquisitions.

Red eye removal

An algorithm in detail

The Algorithm is **Skin Feature Extraction** based.

- First the skin is extracted and morphologically modified to blob the enhanced areas;
- Then a successive red color detection is performed to find red eyes in the skin areas;
- The red regions are then **dilated**, **eroded and analyzed** to identify the Red-Eyes pairs.

Red eye removal

Skin Detection

Morphological Operators

Red Color Detection in Skin Area

Morphological Operators

Pairing Verification

Corrected Image

Input/Output comparison

Red eye removal

17/04/2008

• Unable to perform single red eye detection;

• The skin detection is performed over the whole image (slow);

• Big (slow) morphological operators permit to get good results only on small images (less than 1 Mpixels): it would require even bigger (and slower) operators to operate on larger images.

Once red eyes have been detected, they must be corrected.

Red eye correction is **quite simpler** than detection, but there are more difficult cases than others.

Correction may vary from simple **desaturation** to **complete reconstruction** of iris and pupil.

Desaturation

17/04/2008

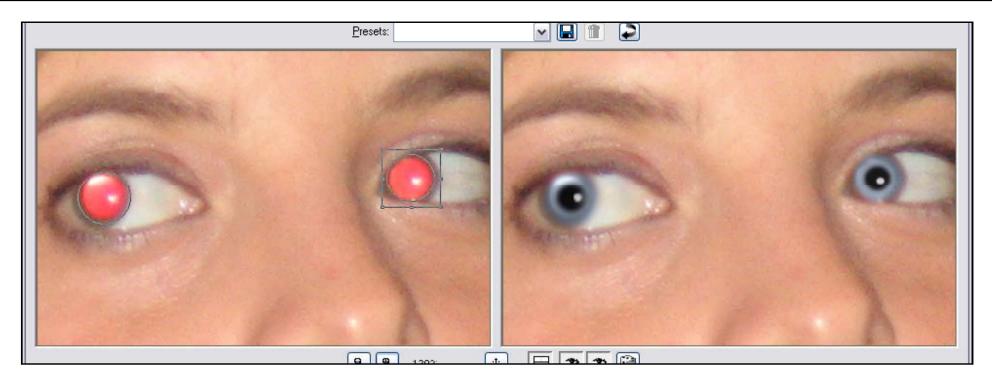
Desaturation means **lowering/zeroing the chrominance** components while mantaining the luminance component.

It is the best way to correct "easy" red eyes.

Washed-out irises

Washed-out irises

Wrong correction


Sometimes irises are **totally washed out** by reflected light. In these cases a simple desaturation or color correction is not enough.

It is necessary to use a more complex method to reconstruct a realistic image of the eye.

Inpainting techniques

Some tools **completely reconstruct** the irises and the pupils to replace the red eye (Jasc Paint Shop Pro ®).

The results, however, are often unrealistic and look like glass eyes.

False positives

One of the biggest issue in red eye removal are **false positives** in the detection phase.

Unwanted corrections are much less desirable than missing ones.

Unnatural corrections

- Unnatural corrections are another important issue.
- The most common ones are:
 - Partial correction: only a portion of the red pupil has been corrected;
 - **Noisy correction:** the presence of heavy noise or jpeg compression can introduce false red pixels around the pupil and thus a strange correction is made over the iris;
 - Wrong luminance correction: in this case the disk has been correctly found but the correction is unnatural due to wrong luminance distribution.

Partial correction

Noisy correction

Wrong luminance correction

Red eye removal

Red Eye removal examples

StopRedeyes®

AutoRemover®

Red eye removal

17/04/2008

Red Eye removal examples

StopRedeyes®

AutoRemover®

Red eye removal

17/04/2008

Red Eye removal examples

StopRedeyes®

AutoRemover®

Red eye removal 17/04/2008

References

17/04/2008

• J.Y. Hardeberg, "Red Eye Removal using Digital Color Image Processing", Conexant Systems, Inc., Redmond, Washington, USA

• M. Gaubatz, R. Ulichney, "Automatic Red-Eye Detection and Correction", HP Lab, Cornell University, ICIP 2002

• S. Ioffe, "Red Eye Detection With Machine Learning", Fujifilm Software, California, ICIP 2003.

• F. Gasparini, R. Schettini, "Automatic Redeye Removal for Smart Enhancement of Photos of Unknown Origin", DISCO University of Milano-Bicocca, VIS 2005.

• H. Luo, J. Yen, D. Tretter, "An Efficient Redeye Detection and Correction Algorithm", HP labs, Palo Alto, California, ICPR 2004.

• A. Patti, K. Konstantinides, D. Tretter, Q. Lin, "Automatic Digital Redeye Reduction", HP Labs, Palo Alto California, ICIP 1998.

• L. Zhang, Y. Sun, M. Li, H. Zhang, "Automated Red-Eye Detection and Correction in Digital Photographs", Microsoft Research Asia, China, ICIP 2004

• B. Smolka, K. Czubin, J.Y. Hardeberg, K.N. Palataniotis, M. Szczepanski, K. Wojciechowski, "Towars Automatic Redeye Effect Removal", Pattern Recognition Letter 2003.

• J.S. Schildkraut, R. T. Gray, "A Fully Automatic Redeye Detection and Correction Algorithm", Kodak Company, NY, ICIP 2002.

• R. Schettini, F. Gasparini, F. Chazli, "A Modular Procedure for Automatic Redeye Correction in Digital Photos", DISCO University of Milano-Bicocca, SPIE 2004

• PETSCHNIGG, G., AGRAWALA, M., HOPPE, H., SZELISKI, R., COHEN, M., and TOYAMA, K. 2004. Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics 23, 3 (Aug.), 664–672.

