









# YOLO-BASED RECOGNITION OF SOME CROP CATEGORIES FROM REAL-WORLD AERIAL IMAGES

Salvatore Calcagno, Erika Scaletta, Emiliano Tramontana, Gabriella Verga

33rd IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2025)

July 23rd-25th, 2025 - Catania, Italy

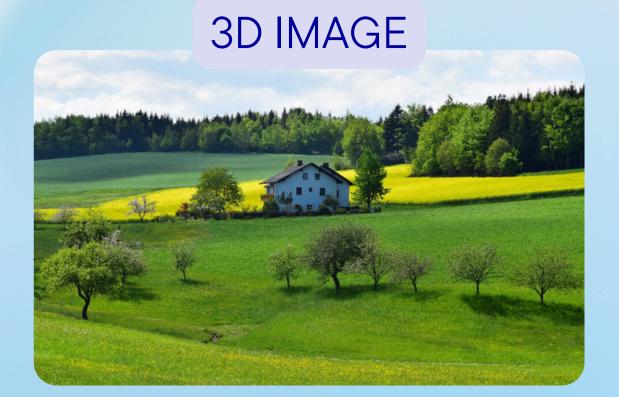
## WHY DETECT CROPS AND OBJECTS FROM ABOVE?

- Crop planning and monitoring
   Useful for estimating gains, planning harvests, and managing costs
- Crop health and yield forecasting
   Detects plant stress, predicts productivity, and optimizes irrigation
- Environmental impact
   Enables mapping of deforestation and land use changes



# CHALLENGES IN AERIAL IMAGE ANALYSIS







#### **OUR OBJECTIVE**

# Propose a solution to automatically detect crop categories and man-made objects in such images.

**YOLO** (You Only Look Once) is a family of **real-time object detection models** that process images in a single pass, making them extremely fast and efficient. YOLO models predict **bounding boxes** and **class probabilities** directly from full images, enabling quick and accurate object localization.

#### The model

- YOLOv11 → Latest version of the YOLO family
- YOLOv11-seg → Enhanced for image segmentation

Detects complex shapes with pixel-level precision

#### **OUR CONTRIBUTIONS**

- Creating and labeling a real dataset based on aerial images extracted from Google Maps
- 2 Applying YOLOv11-seg model for the first time for real-world aerial image object detection, which represents a significant innovation, and allowing the identification of objects having polygonal shapes (whereas previous work only identified rectangular shapes)
- 3 The complete recognition of objects within an image

#### **IMAGE FEATURES**

- Image source: Google Maps
- Geographical area: Sicily, in particular the provinces of Catania and Agrigento
- Resolution: 10240 x 7680 pixel split into several parts
- Format: **PNG** with **RGB** color channels
- Source rationale: Google imagery offers high resolution, useful for visual analysis, and is easily accessible for covering large areas



#### **IMAGE LABELING**

The dataset consisting of aerial images was labeled according to the YOLO standard and used to train the model

- Tool used: Roboflow (for polygon labeling)
- Labeled categories:
  - Orange/lemon groves
  - Olive Groves
  - Houses
  - Roads
  - Trees
  - Lawn
  - Soil
  - Wells





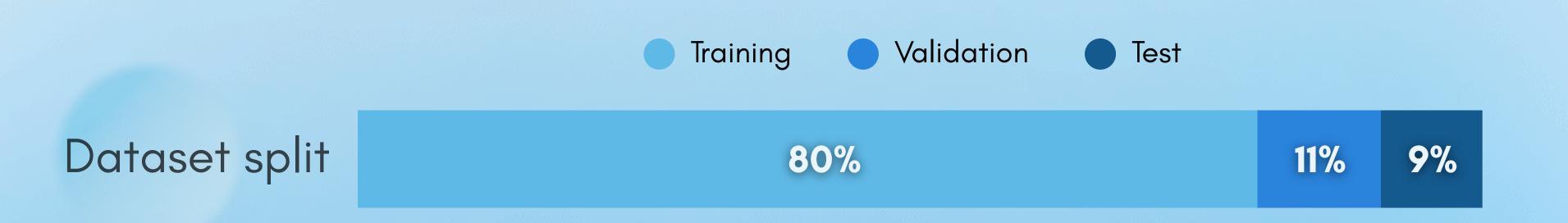






### DATA SET DOWNLOAD

The images were downloaded using the RoboFlow interface.



```
dataset/
       dataset.yaml
       train/
           images/
            labels/
       val/
           images/
            labels/
        test/
          images/
          labels/
```

#### The Dataset Files:

- YAML file
  - Includes paths for training, validation, and test
  - Contains list of category names
- Each folder (train, val, test) contains:
  - images → image files
  - labels → .txt files with polygon coordinates + class ID

#### DATASET CLEANING

- Model requirements → YOLOv11x-seg requires polygons with ≥ 5 points
- Custom **script** for validation:
  - Checks all labeled polygons
  - Removes non-compliant annotations/images



#### **MODEL TRAINING**

- Tools & Framework → Python + Ultralytics library
  Training Workflow:
  - 1 Model selection → YOLOv11x-seg
  - <sup>2</sup> Training on our dataset
  - 3 Object detection on new images

```
# Load a model
model = Y0L0("yolov11x-seg.pt")
# Train the model
trainingResults = model.train(data="data.yaml", epochs=100,
    imgsz=640, device="mps")
# Perform object detection on an image
results = model("image1.jpg")
```

### **COMPUTATIONAL RESOURCES**

#### **Training Setup**

• RAM: 32 GB

• CPU: Intel i7 12700H

• GPU: NVIDIA RTX 3050 Ti

#### **Model Parameters**

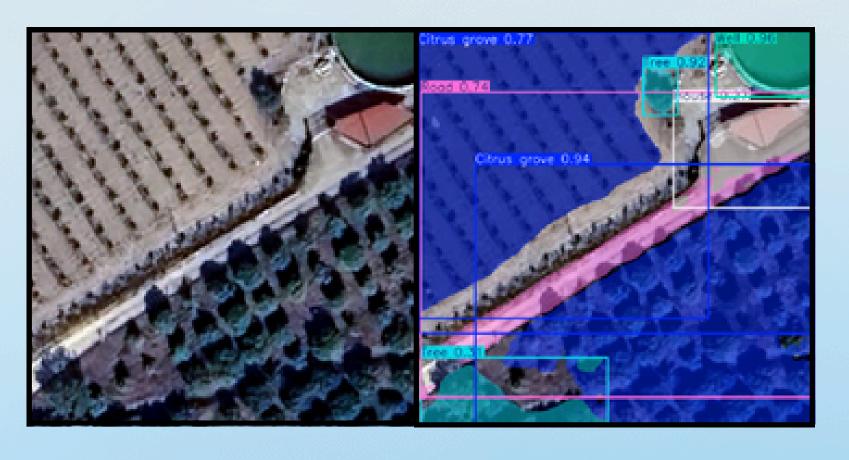
- device=cuda → GPU acceleration
- batch=5 → Prevents memory overload

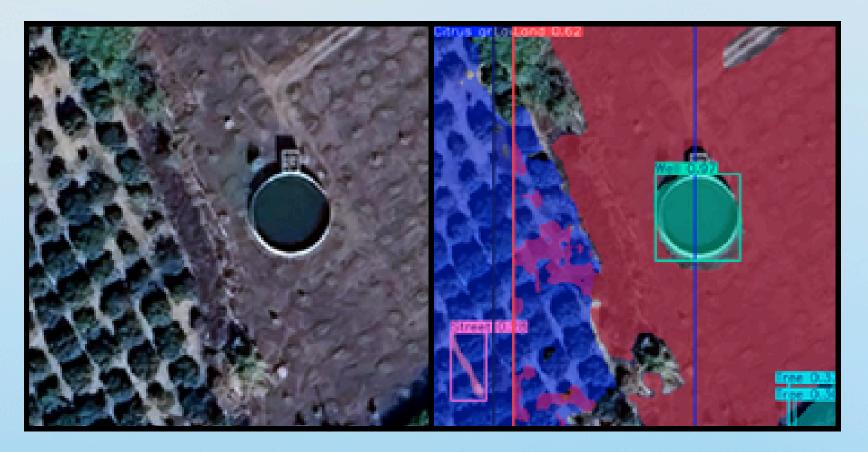
yolo detect train data=data.yaml model=yolo11x-seg.pt epochs=200
imgsz=640 batch=5 device=cuda

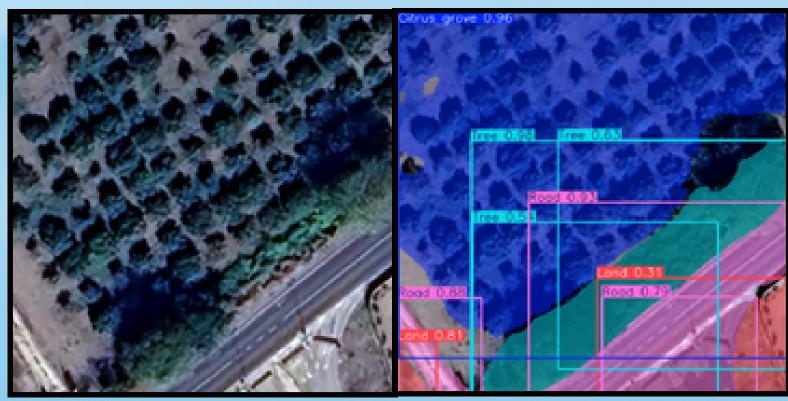
#### **Performance**

- Training Time: 20 hours on 150 images
- Inference Time: a few milliseconds per image

# **RESULTS**







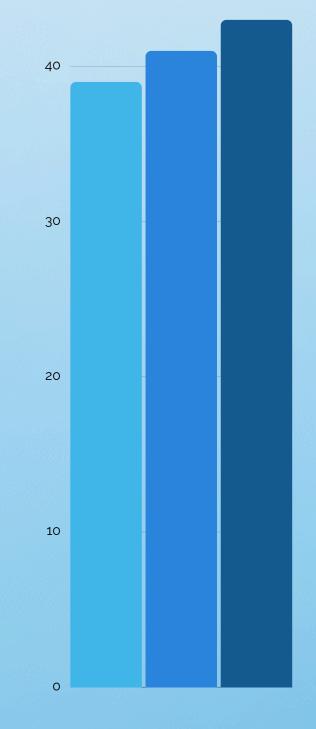


## **METRICS**

Mean Average Precision values for each category given by several YOLO models trained on the prepared dataset of images

| Category     | mAP v11 | mAP v8-seg | mAP v11x-seg |
|--------------|---------|------------|--------------|
| citrus grove | 0.824   | 0.778      | 0.749        |
| tree         | 0.291   | 0.286      | 0.275        |
| house        | 0.242   | 0.319      | 0.269        |
| well         | 0.446   | 0.584      | 0.68         |
| lawn         | 0.374   | 0.42       | 0.319        |
| road         | 0.304   | 0.258      | 0.365        |
| land         | 0.243   | 0.233      | 0.283        |
| olive grove  | 0.453   | 0.472      | 0.487        |
| all classes  | 0.397   | 0.419      | 0.428        |





- **accuracy** = 0.823
- precision = 0.867recall = 0.942

### CONCLUSIONS

- -- Aerial imagery + Deep Learning
- Custom dataset of labeled images
- Polygon-based object detection with YOLOv11x-seg
- High performance on real-world data
- Successful detection of crops and man-made objects



# Thank You!

#### **Erika Scaletta**

University of Catania erika.scaletta@phd.unict.it

