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4.A Appendix to Chapter 4 
 
 
4.A.1 Isotropic Functions 
 
The scalar-, vector- and tensor-valued functions a,φ  and T of the scalar variable φ , 
vector variable v and second-order tensor variable B are isotropic functions if 
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Isotropic Functions  (4.A.1) 
 
for all orthogonal tensors Q. 
 
Isotropic functions are also called isotropic invariants.  Here follow some examples. 
 
Examples (of Isotropic Functions) 
 
1. The scalar-valued function of a second order tensor TT det)( =φ  is an isotropic 

function since 
 

( ) ( ) TQTQQTQ detdet TT ==φ  
 
2. The scalar-valued function of two second order tensors ( )ABBA tr),( =φ  is an 

isotropic function of its two tensor variables since 
 

( ) ( ) ( ) ( )ABQABQQBQQAQQBQQAQ trtrtr, TTTTT ===φ  
 

More generally, the function ( )mmBAtr , m an integer, is isotropic 
 
3. The vector-valued function a of a vector v and a second order tensor T, AvTva =),(  

is an isotropic function since 
 

( ) ( )TvQaQTvQvQQTQQTQva ,, TT === mm  
 

Indeed the function vTTva m=),( , m an integer is an isotropic function. 
 
4. The tensor-valued function of a second order tensor: 2)( TTA =  is an isotropic 

function since 
 

( ) ( ) ( )( ) ( ) TT2TT2TT QTQAQQTQTQQTQQTQQTQA ====  
 

Indeed the function mTTA =)( , m an integer is an isotropic function. 
■ 
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Restrictions on the form that isotropic functions can take is next examined. 
 
 
Isotropic Scalar-valued Functions 
 
Consider first an isotropic scalar-valued function of a vector u, ( )uφ , so that 
( ) ( )Quu φφ = .  Since only the magnitude of u is invariant under an orthogonal tensor 

transformation, it follows that φ  depends on u only through uuu ⋅= , so ( )uu ⋅≡ φφ .  
Here, uu ⋅  is called the integrity basis of φ . 
 
Similarly, an isotropic scalar-valued function of two arguments is defined through 
 

( ) ( )QvQuvu ,, φφ =                                              (4.A.2) 
 
for every orthogonal Q, and its integrity basis consists of the three scalar invariants 
 

vvvuuu ⋅⋅⋅ ,,                                               (4.A.3) 
 
since only the lengths of the two vectors and the angle between them are preserved under 
a rotation. 
 
Consider next a scalar-valued isotropic function φ  of a symmetric second-order tensor S. 
Since S is symnmeytric, it has the spectral decomposition representation ∑ ⊗= iii ssS λ , 
where { }321 ,, λλλ  are the eigenvalues and { }321 ˆ,ˆ,ˆ nnn  are the eigenvectors of S.  Since S 
is isotropic,  
 

( ) ( ) ( )( ) ( )∑∑ ⊗=⊗== iiiiii nQnQQnnQQSQS ˆˆˆˆ TT λφλφφφ           (4.A.4) 
 
Thus φ  is independent of the orientation of the principal directions of S and so must 
depend only on the three principal values, 
 

( )321 ,,)( λλλφ f=S                                              (4.A.5) 
  
Note also that f must be a symmetric function of the eigenvalues.  For example, take Q to 
be a positive rotation about 3n̂ .  Then 21 ˆˆ nnQ = , 12 ˆˆ nnQ −=  and 33 ˆˆ nnQ = , so 
 

( ) ( )312333221112
T ,,)ˆˆˆˆˆˆ()( λλλλλλφφφ f=⊗+⊗+⊗== nnnnnnQSQS      (4.A.6) 

 
and, similarly, the subscripts on any pair of eigenvalues in 4.A.5 can be interchanged. 
 
Since the set{ }32 tr,tr,tr SSS , the set of three principal scalar invariants { }SSS III,II,I  and 
the set of eigenvalues { }321 ,, λλλ  uniquely determine one another, any of these sets can 
be regarded as the integrity basis of )(Sφ . 
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Some important isotropic scalar-valued functions and their integrity bases are listed in 
Table 4.A.1 below.  The integrity basis consists of that entry together with appropriate 
entries from higher up in the Table, for example the integrity basis for a tensor A and two 
vectors u and v is 
 

vuAuAvvvAvAvuuAuAu
AAAvuvvuu

222

32

,,,,,
tr,tr,tr,,, ⋅⋅⋅

 

 
 Isotropic Function Integrity Basis 

( )uφ  ( )Quφ=  uu ⋅  
( )vu,φ  ( )QvQu,φ=  vu ⋅  
( )Aφ  ( )TQAQφ=  32 tr,tr,tr AAA  
( )Au,φ  ( )T,QAQQuφ=  uuAuAu 2,  
( )BA,φ  ( )TT ,QBQQAQφ=  2222 tr,tr,tr,tr BAABBAAB
( )vAu ,,φ  ( )QvQAQQu ,, Tφ=  vuAuAv 2,  
( )CBA ,,φ   ABCtr  

Scalar-
valued 
functions 
 

CBA ,,  are 
symmetric 
tensors 

Four or more tensors redundant 
Table 4.A.1: Isotropic Scalar Functions and Integrity Bases 

 
 
Isotropic Vector-valued Functions 
 
Next, consider a vector-valued isotropic function a of a vector v, so ( ) ( )QvavQa = .  To 
find the dependence of a on v, consider the scalar-valued function φ  given by (note that 
φ  here is linear in its first argument, u): 
 

( ) ( )vauvu ⋅=,φ       (4.A.7) 
 
It follows that 
 

( ) ( ) ( ) ( ) ( )vuvauvQaQuQvaQuQvQu ,, φφ =⋅=⋅=⋅=               (4.A.8) 
 
and so φ  is an isotropic function of its two vector arguments and must depend only on the 
three invariants 4.A.3, and so takes the general form 
 

( ) ( )vvvuvvvuuu ⋅⋅=⋅⋅⋅ αφ ,,                                     (4.A.9) 
 
Finally, a must take the form 
 

( ) vva α=                                                  (4.A.10) 
 
where the coefficient α  is a function of the scalar invariant of v, i.e. vv ⋅ . 
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Note that the only isotropic vector function a of a tensor B is the null vector oa = . 
 
Another important isotropic vector-valued functions is that of a vector and symmetric 
tensor.  This and their integrity bases are listed in Table 4.A.2 below. 
 
 Isotropic Function Integrity Basis 

( )va  ( ) ( )vQaQva =  v  
( )Ta  ( ) ( )TQaQTQa =T  o  

Vector-valued 
functions 
 
S  is a symmetric 
tensor 

( )Sva ,  ( ) ( )SvQaQSQQva ,, T =  vSSv 2,  

Table 4.A.2: Isotropic Vector Functions and Integrity Bases 
 
 
Isotropic Tensor-valued Functions 
 
Consider next a second-order tensor-valued function T of a tensor B.  To find how T 
depends on B, this time consider the scalar-valued function φ  given by (again, note that 
by definition φ  is linear in its first argument, A) 
 

( ) ( )[ ]BATBA tr, =φ          (4.A.11) 
 
It follows that  
 

( ) ( )[ ]
( )[ ]

( )[ ]
( )[ ]

( )BA
BAT

QBQAT
QBQTQAQ

QBQTQAQQBQQAQ

,
tr
tr
tr
tr,

T

TT

TTTT

φ

φ

=
=
=

=

=

                                (4.A.12) 

 
Thus φ  is an isotropic function of its two tensor arguments and so, if A and B are 
symmetric, is a function of the ten invariants listed in Table 4.A.1.  Since φ  is linear in A, 
it can only depend on six of these ten invariants, namely 32 tr,tr,tr,tr BBBA , 

2tr,tr ABAB , and so takes the form 
 

( )[ ] ( )[ ]2
210trtr BBIABAT αααφ ++==                           (4.A.13) 

 
and so T takes the form 
 

( ) 2
210 BBIBT ααα ++=       Form for a symmetric isotropic tensor 

function of a symmetric tensor  (4.A.14) 
 
where 210 ,, ααα  are scalar functions of the invariants of B.  Equation 4.A.13 can be 
rewritten in various alternative forms using the Cayley-Hamilton theorem, 1.9.45. 
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Some important symmetric isotropic tensor-valued functions are listed in Table 4.A.3 
below. 
 
 Isotropic Function Integrity Basis 

( )vT  ( ) ( ) TQvQTQvT =  vvI ⊗,  
( )AT  ( ) ( ) TT QAQTQAQT =  2,, AAI  
( )vuT ,  ( ) ( ) T,, QvuQTQvQuT =  uvvu ⊗+⊗  
( )AuT ,  ( ) ( ) TT ,, QAuQTQAQQuT = AuAuuAuAuu ⊗⊗+⊗ ,  
( )vSuT ,,  ( )

( ) T

T

,,
,,

QvAuQT
QvQAQQuT

=
 vAuAuv

uAvAvu
⊗+⊗
⊗+⊗

 

Tensor-
valued 
functions 
 

BAT ,,  are 
symmetric 
tensors 

( )BAT ,   BABABABAAB ,,+  
Table 4.A.3: Isotropic (Symmetric) Tensor Functions and Integrity Bases 

 
 
Some Results for Isotropic Functions 
 
Here follow some other important results regarding isotropic functions. 
 
1. The principal values of an isotropic tensor function T of a tensor B are scalar 

invariants of B. 
 

To show this, let ( )Bit  be the principal values of )(BT  and let ( )TQBQit  be the 
principal values of )( TQBQT .  Then 
 

( )( ) 0)(det =− IBBT it ,    ( ) 0)()(det TT =− IQBQQBQT it    
 

Because of the isotropy, and using the relation 1.9.13a, BAAB detdet)det( = , the 
second of these can be written as 
 

( ) ( )
( )IQBQBT

QIQQBQQBQTIQBQQBQT

)()(det

)()(det)()(det
T

TTTTT

i

ii

t

tt

−=

−=−
   

 
This holds for all orthogonal Q and hence 
 

)()( TQBQB ii tt =                                       (4.A.15) 
 
which is the definition of an isotropic scalar invariant of B. 

 
 
2. An isotropic tensor function T of a tensor B is coaxial with B. 
 

This follows directly from 4.A.14, since nB  has the same principal directions as B. 
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3. Let T be a symmetric isotropic tensor function of the symmetric tensor B; if in 
addition the function T is a linear function of B, then it has the representation 

 
( ) ( ) BIBBT βα += tr                                             (4.A.16) 

 
where βα ,  are arbitrary constants (independent of B). 
 
This follows directly from 4.A.14, noting that only the first invariant, Btr , is linear 
in B.  It will be noted that this is the form of the (isotropic) linear elastic material 
model, 4.1.15. 

 
 
4. Let C  be a fourth-order isotropic function, that is 
 

mnpqlqkpjnimijkl CQQQQC =                                     (4.A.17) 
 

with the minor symmetries 1.9.65, ijlkjiklijkl CCC == .  Then it has the representation 
 

( )jkiljlikklijijklC δδδδμδλδ ++=                              (4.A.18) 
 

In terms of the identity tensors of §1.9.16 (compare with Eqn. 1.10.7), 
 

( )IIC ++⊗= μλ II                                       (4.A.19) 
 
To show this, consider a symmetric second-order tensor S and define SA :C= .  
Then the index notation for )(SA  is klijkl SC , and A is clearly symmetric.  Then 
 

( )

jnklmnklim

mnpqmnjqip

mnpqrssnrmjqip

nlmnkmpqrslskrjqipnlmnkmijkl

QSCQ

SCQQ
SCQQ

QSQCQQQQQSQC

:)(

:)(

T

T

QSQA

QSQA

=

=

=

δδ
       (4.A.20) 

 
from which it can be seen that A is a symmetric isotropic tensor function of the 
tensor variable S.  Further, A is linear in S, and for S symmetric, it follows that A 
takes the representation 4.A.16, 
 

( ) ( ) SISSA μλ 2tr +=                                     (4.A.21) 
 

In component form, this is 
 

( )
( ) kljkiljlikkliklij

jiijkkij

ijkkijij

SS

SSS

SSA

δδδδμδλδ

μλδ

μλδ

++=

++=

+= 2

                         (4.A.22) 
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from which 4.A.18 follows. 
 
 
4.A.2 The Symmetry Group 
 
 
The nonempty set G with a binary operation, that is, to each pair of elements Gba ∈,  
there is assigned an element Gab∈ , is called a group if the following axioms hold: 
1. associative law: )()( bcacab =  for any Gcba ∈,,  
2. identity element: there exists an element Ge∈ , called the identity element, such 

that aeaae ==  
3. inverse: for each Ga∈ , there exists an element Ga ∈−1 , called the inverse of a, 

such that eaaaa == −− 11  
 
Consider the set of  tensors G of 4.3.2.  Since for two tensors 1G  and 2G  in G,   
 

)()()( 121 FσFGσGFGσ ==                                   (4.A.23) 
 

G∈21GG .  The associative law clearly holds, the identity element is I and the inverse of 
G is 1−G .  Thus the set of tensors G forms a group. 
 
 
4.A.3 Shear of an Isotropic Square Block 
 
Consider a combined stretch and simple shear of an isotropic hyperelastic material, Fig. 
4.A.1.  Relative to the Cartesian coordinate system 
 

33322222111 ,, XxXxXkXx λλλλ ==+=                              (4.A.24) 
 
Then 
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and so can be considered to be a homogeneous stretch followed by a simple shear.  The 
left Cauchy-Green strain and inverse are 
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The compressible and incompressible isotropic relations are (4.4.8 and 4.4.22 
respectively) 
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                                             (4.A.27) 

 
Substituting in the Cauchy-Green strains, one finds that 02313 == σσ  and 
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Using this relation, it can then be seen that 
 

122
2

2
2

22
2

2
1

2211 σ
λ

λλλ
σσ

k
k+−

=−                               (4.A.29) 

 
which holds for both compressible and incompressible materials, and is the universal 
relation analogous to 4.4.40.  Here, however, the stretches can be chosen so as to make 
the normal stress-difference zero. 
 

 
 

Figure 4.A.1: block under stretch and simple shear 
 
Introduce now base vectors 21 , gg  along the edges of the deformed block, with 
corresponding contravariant base vectors 1g  and 2g , Fig. 4.A.1, so that 
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The metric coefficients are 
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From 3.9.2, the unit normals to the block surfaces are (see 4.4.44) 
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The stress components with respect to the curvilinear system can be obtained from the 
transformation rule in §1.13.1: 
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leading to 
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The normal and shear stresses acting on the surfaces of the block are (see Fig. 4.A.1) are  
 

12
1

11
1122222 ,,, σσσσσσσσ ==== SNSN                      (4.A.35) 

 
In order that the normal stresses acting on the block are zero, then, one requires 
 

02,0 121122 =−= σσσ k                                     (4.A.36) 
 
From 4.A.29, this means that 
 

( ) 2
2

22
1 1 λλ k+=                                         (4.A.37) 

 
A physical interpretation of this results is that the lengths of the sides of the deformed 
block are equal, oBoA =  in Fig. 4.A.1.  In this case, 4.A.34 reduces to, using 4.A.28, 
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Thus a state of pure shear is achieved, with only shear stresses acting on the faces, and a 
square block deforms into a rhombic block. 
 
Consider now the (incompressible) Neo-Hookean model, Eqn. 4.4.54, for which  
 

bIσ 12cp +−=                                                 (4.A.39) 
 
The stress components are then 
 

ijijij bcpg 12+−=σ                                             (4.A.39) 
 
The metric components ijg  are given by 4.A.31.  The contravariant components of the 
left Cauchy-Green strain can be obtained from coordinate transformation equations 
similar to 4.A.33 (with ij

ij bb =  in the Cartesian system), leading to 
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with 1321 =λλλ .  Then, with the stress taking the representation 4.A.38, with 11 2c=α , 

01 =−α , 
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(4.A.41)  
 
Solving leads to 
 

( )
( ) ( ) 6/12
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1
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1
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                            (4.A.42) 

 
The solution shows that 11 >λ  and 12 <λ  and so the block deforms as in Fig. 4.A.2. 
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Figure 4.A.2: simple shear of a Neo-Hookean block 
 
Note that, in contrast to the decomposition  
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