Section 4.A

4.A Appendix to Chapter 4

4.A.1 Isotropic Functions

The scalar-, vector- and tensor-valued functions @, a and T of the scalar variable ¢,
vector variable v and second-order tensor variable B are isotropic functions if

HQv)=¢(v)  4QBQ")=¢(B)
a(p)=Qalg)  a(Qv)=Qa(v)  alQBQ')-Qa(B)
T(4)=QT(»)Q" T(Qv)=QT(v}Q" T(QBQ')=QT(B)Q’

Isotropic Functions (4.A.1)

for all orthogonal tensors Q.
Isotropic functions are also called isotropic invariants. Here follow some examples.
Examples (of Isotropic Functions)

1. The scalar-valued function of a second order tensor ¢(T) = detT is an isotropic
function since

HQTQ" )= det(QTQ" )= det T

2. The scalar-valued function of two second order tensors ¢(A,B) = tr(AB) is an
isotropic function of its two tensor variables since

#QAQ",QBQ" )= tr(QAQ"QBQ" )= tr(QABQ" )= tr(AB)
More generally, the function tr(AmBm ), m an integer, is isotropic

3. The vector-valued function a of a vector v and a second order tensor T, a(v,T) = Av
is an isotropic function since

a(Qv,QT"Q")=QT"Q'Qv = QTv = Qa(v,T)
Indeed the function a(v,T) =T"v, m an integer is an isotropic function.

4. The tensor-valued function of a second order tensor: A(T) =T? is an isotropic
function since

A(QTQ")=(QTQ") = (QTQ"JQTQ" )= QT*Q" = QA(T)Q"

Indeed the function A(T)=T", m an integer is an isotropic function.
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Restrictions on the form that isotropic functions can take is next examined.

Isotropic Scalar-valued Functions

Consider first an isotropic scalar-valued function of a vector u, @(u), so that
#(u)=#(Qu). Since only the magnitude of u is invariant under an orthogonal tensor
transformation, it follows that ¢ depends on u only through |u| =u-u,so ¢= ¢(u -u).

Here, u-u is called the integrity basis of ¢.
Similarly, an isotropic scalar-valued function of two arguments is defined through

#(u,v) = ¢(Qu,Qv) (4.A.2)
for every orthogonal Q, and its integrity basis consists of the three scalar invariants

u-u, u-v, v-v (4.A.3)

since only the lengths of the two vectors and the angle between them are preserved under
a rotation.

Consider next a scalar-valued isotropic function ¢ of a symmetric second-order tensor S.
Since S is symnmeytric, it has the spectral decomposition representation S = z As, ®s, ,

where {1,,1,,1,} are the eigenvalues and {fi,,n,,f,} are the eigenvectors of S. Since S

is isotropic,
#(8)=4(QsQ")=glQ(T 4, ®4, Q" )=¢(> 4Qh, ®Qh,)  (“4A4)

Thus ¢ is independent of the orientation of the principal directions of S and so must
depend only on the three principal values,

#(S) = f(4,,4,.4,) (4.A.5)

Note also that f must be a symmetric function of the eigenvalues. For example, take Q to
be a positive rotation about fi,. Then Qn, =n,, Qn, =-n, andQn; =n,, so

#(S) = JQSQ" )= g(A,h, ® A, + A, @b, + A, ®h,) = (4, 4,4) (4.A.6)
and, similarly, the subscripts on any pair of eigenvalues in 4.A.5 can be interchanged.

Since the set {trS, trS?, trS’ }, the set of three principal scalar invariants {IS g, HIS} and
the set of eigenvalues {4,,4,,4, } uniquely determine one another, any of these sets can
be regarded as the integrity basis of ¢(S).
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Some important isotropic scalar-valued functions and their integrity bases are listed in
Table 4.A.1 below. The integrity basis consists of that entry together with appropriate
entries from higher up in the Table, for example the integrity basis for a tensor A and two
vectors u and v is

u-u, v-v, u-v, trA, trA’, trA’

uAu, uA’u, VAv, VA’v, uAv, uA’v

Isotropic Function Integrity Basis

Scalar- #(u) = ¢(Qu) u-u
valued #u,v) = $(Qu,Qv) u-v
functions

#(A) - 4(QAQ") trA, trA?, trA’
A.B,C are | ¢(u,A) ¢(Qu QAQ' ) uAu, uA’u
symmetric | ¢(A,B) - 4(QAQ",QBQ") | rAB, trA’B, rAB’, trA’B’
tensors #(u,A,v) :¢(Qu QAQ’ Qv) uAv, uA’v

#(A,B,C) trABC

Four or more tensors redundant

Table 4.A.1: Isotropic Scalar Functions and Integrity Bases

Isotropic Vector-valued Functions

Next, consider a vector-valued isotropic function a of a vector v, so Qa(v)=a(Qv). To
find the dependence of a on v, consider the scalar-valued function ¢ given by (note that
¢ here is linear in its first argument, u):

$u,v)=u-a(v) (4.A.7)
It follows that

¢(Qu,QV) =Qu- a( V) =Qu- Qa(v) =u- a(v) = ¢(u, V) (4.A.8)

and so ¢ is an isotropic function of its two vector arguments and must depend only on the
three invariants 4.A.3, and so takes the general form

gu-wu-v,v-v)=u-a(v-v)v (4.A.9)
Finally, a must take the form
a(v)=av (4.A.10)

where the coefficient « is a function of the scalar invariant of v, i.e. v-v.
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Note that the only isotropic vector function a of a tensor B is the null vector a=o.

Another important isotropic vector-valued functions is that of a vector and symmetric
tensor. This and their integrity bases are listed in Table 4.A.2 below.

Isotropic Function Integrity Basis
Vectgr—valued a(v) a(QV) = Qa(v) v
functions a(T) a(QTQT ) = Qa(T) 0

S is a symmetric a(V>S) a(QVa QSQT)= Qa(V,S) Sv, S’v
tensor

Table 4.A.2: Isotropic Vector Functions and Integrity Bases

Isotropic Tensor-valued Functions

Consider next a second-order tensor-valued function T of a tensor B. To find how T
depends on B, this time consider the scalar-valued function ¢ given by (again, note that

by definition ¢ is linear in its first argument, A)
#(A,B)=tr[AT(B)] (4.A.11)
It follows that
#(QAQ".QBQ")=r|QAQ " T(QBQ" )
- 1/QAQ"QT(B)Q]

- r[QAT(B)Q" | (4.A.12)
= tr[AT(B)]

= ¢(A,B)

Thus ¢ is an isotropic function of its two tensor arguments and so, if A and B are
symmetric, is a function of the ten invariants listed in Table 4.A.1. Since ¢ is linear in A,

it can only depend on six of these ten invariants, namely trA, trB, trB*, trB’,
trAB, trAB?, and so takes the form

¢ = | AT(B)] = tr|A (I + 2,B + o, B | (4.A.13)

and so T takes the form

T(B)= a0 +a,B+a,B’| Form for a symmetric isotropic tensor

function of a symmetric tensor (4.A.14)

where «,, a,, o, are scalar functions of the invariants of B. Equation 4.A.13 can be
rewritten in various alternative forms using the Cayley-Hamilton theorem, 1.9.45.
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Some important symmetric isotropic tensor-valued functions are listed in Table 4.A.3
below.

Isotropic Function Integrity Basis

Tensor- T(v) T(Qv)= QT(v)Q" I, vRv
valued T 2
functions T(A) T(QAQ ) QT A)Q 1, A A

T(u, V) T(Qu Qv) QT(u’ V)(;)T uX®v+v_eu
T,A,B arc | T(u,A) T(Qu.QAQ" )=QT(u,A)Q" | u®Au+Au®u, Au® Au
symmetric | (y,S,v) T(Qu QAQ' QV) u®Av+Av®u
tensors

=QT(H,A,V)QT VO Au+Au®v
T(A,B) AB+BA, ABA, BAB

Table 4.A.3: Isotropic (Symmetric) Tensor Functions and Integrity Bases

Some Results for Isotropic Functions
Here follow some other important results regarding isotropic functions.

1. The principal values of an isotropic tensor function T of a tensor B are scalar
invariants of B.

To show this, let t; (B) be the principal values of T(B) and let t, (QBQT) be the
principal values of T(QBQ"). Then

det(T(B)—t,(B)I)=0, det(T(QBQ")~t,(QBQ")I)=

Because of the isotropy, and using the relation 1.9.13a, det(AB) = det AdetB, the
second of these can be written as

det(QT(B)Q" —t,(QBQ")I)= det(QT(B)Q" —t,(QBQ")QIQ")
= det(T(B) —t,(QBQ™)I)

This holds for all orthogonal Q and hence
t;(B)=t,(QBQ") (4.A.15)

which is the definition of an isotropic scalar invariant of B.

2. Anisotropic tensor function T of a tensor B is coaxial with B.

This follows directly from 4.A.14, since B" has the same principal directions as B.
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3. Let T be a symmetric isotropic tensor function of the symmetric tensor B; if in
addition the function T is a linear function of B, then it has the representation

T(B)= a(tr B)I + B (4.A.16)
where «, [ are arbitrary constants (independent of B).

This follows directly from 4.A.14, noting that only the first invariant, trB, is linear
in B. It will be noted that this is the form of the (isotropic) linear elastic material
model, 4.1.15.

4.  Let C be a fourth-order isotropic function, that is
Ci = QinQ;nQupQisCrnpg (4.A.17)
with the minor symmetries 1.9.65, Cy; =C,, = C;y . Then it has the representation
Cipa = A6, + 1645, +8,6,) (4.A.18)
In terms of the identity tensors of §1.9.16 (compare with Eqn. 1.10.7),
C=AM®L+pl+1) (4.A.19)

To show this, consider a symmetric second-order tensor S and define A =C:S.
Then the index notation for A(S) is C;,S,,, and A is clearly symmetric. Then

A(QSQT) : Cijkl (kasanln )= QinijerlsCpqrstmSanln
=Q,Q.,0.,0,C S
leQJq rm®'sn ™~ pgrs = mn (4A20)
= QinqupqmnSmn
QA(S)QT : QimCmnkISlejn

from which it can be seen that A is a symmetric isotropic tensor function of the
tensor variable S. Further, A is linear in S, and for S symmetric, it follows that A
takes the representation 4.A.16,

A(S)= A(trS)I+248 (4.A21)
In component form, this is

A = A8 Sy +245;;
= 26,Sy + (S, +5;) (4.A.22)
= ﬂ“é‘ijé‘iklskl +/u(5ik5jl + 5i|5jk )Skl
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from which 4.A.18 follows.

4.A.2 The Symmetry Group

The nonempty set G with a binary operation, that is, to each pair of elements a,b e G

there is assigned an element ab € G, is called a group if the following axioms hold:

1. associative law: (ab)c = a(bc) forany a,b,ceG

2. identity element: there exists an element e € G, called the identity element, such
that ae=ea=a

3. inverse: for each a € G, there exists an element a™' € G, called the inverse of a,
such that aa™ =a'a=¢e

Consider the set of tensors G of 4.3.2. Since for two tensors G, and G, in G,
o6(FG,G,)=06(FG,)=0o(F) (4.A.23)

G,G, €G. The associative law clearly holds, the identity element is I and the inverse of

G is G™'. Thus the set of tensors G forms a group.

4.A.3 Shear of an Isotropic Square Block

Consider a combined stretch and simple shear of an isotropic hyperelastic material, Fig.
4.A.1. Relative to the Cartesian coordinate system

X, =4, X, +k4,X,, X, =4,X,, X =4X, (4.A.24)
Then
A ki, 0 1 k 04 O O
F = A, 0]={0 1 00 4, O (4.A.25)
0 A 0 0 1|0 0 A

and so can be considered to be a homogeneous stretch followed by a simple shear. The
left Cauchy-Green strain and inverse are

R+kC2 K2 0 1/ 22 —k/ 2 0
b=| ki 2 0| bl=|-k/Z UZX+K*/Z 0 | (4A26)
0 0 A 0 0 1/ 2

The compressible and incompressible isotropic relations are (4.4.8 and 4.4.22
respectively)
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¢ =pI+Bb+pB b

. (4.A.27)
6" =—pl+ab+a_b’
Substituting in the Cauchy-Green strains, one finds that o, = 0,;, =0 and
© 2 1 (i > 1
on =K B4 -pi— | op =Klad—a,— (4.A.28)
ﬂ’l ﬂ’l
Using this relation, it can then be seen that
2= +kA
O —0y =——2 2o, (4.A.29)

e

which holds for both compressible and incompressible materials, and is the universal
relation analogous to 4.4.40. Here, however, the stretches can be chosen so as to make
the normal stress-difference zero.

y

Ona

k4,
<> B — 05>

Figure 4.A.1: block under stretch and simple shear

Introduce now base vectors g,, g, along the edges of the deformed block, with

corresponding contravariant base vectors g' and g*, Fig. 4.A.1, so that

g =e, g, =ke +e,, g,=¢,

4.A.30
glzel—kez, gzzeza g3:e3 ( :

The metric coefficients are
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1 k 0 1+k> -k 0
g; =k 1+k*> 0| g"=| -k 1 0| g=1 (4.A.31)
0 0 1 0 0 1

From 3.9.2, the unit normals to the block surfaces are (see 4.4.44)

R 1 k . . 2
nl=g' G oml=g'=-f _e (4.A.32)

e e o

The stress components with respect to the curvilinear system can be obtained from the
transformation rule in §1.13.1:

1 0 0
=] lemIal AT =e g =k 1 0 (4.A33)
0 0 1
leading to
o, —2ko, +k’c,, o,-ko, 0
[E” ]_ oy —Koy, O 0 (4.A.34)

0 0 O

The normal and shear stresses acting on the surfaces of the block are (see Fig. 4.A.1) are
Ony =0y, 05y =0, Oy =0, 0g=0" (4.A.35)
In order that the normal stresses acting on the block are zero, then, one requires
o,, =0, o, —2ko, =0 (4.A.36)
From 4.A.29, this means that
=(1+Kk*)2 (4.A.37)

A physical interpretation of this results is that the lengths of the sides of the deformed
= |OB| in Fig. 4.A.1. In this case, 4.A.34 reduces to, using 4.A.28,

—IJ (c) (c)
{%_” %m} {a(.)}(gl ®g, +g,®g,)
AN
_kHal}sz {a_l}/llz}(&@gﬁgz@gl)

(4.A.38)
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Thus a state of pure shear is achieved, with only shear stresses acting on the faces, and a
square block deforms into a rhombic block.

Consider now the (incompressible) Neo-Hookean model, Eqn. 4.4.54, for which
c=-pl+2chb (4.A.39)
The stress components are then
' =-pg" +2c,b’ (4.A.39)

The metric components g" are given by 4.A.31. The contravariant components of the
left Cauchy-Green strain can be obtained from coordinate transformation equations
similar to 4.A.33 (with b; = b’ in the Cartesian system), leading to

I~k ofA22+k222 k22 o1 o0 0] [2 0 o0
bil=fo 1 o| k2 2 of-k 1 0|=]0 £ 0| (4A40)
0 0 1] 0 0 2[o o1 |0 o 2

with 4, 4,4, =1. Then, with the stress taking the representation 4.A.38, with «, = 2¢,,
a,=0,

0 2ke, 22 /(1+Kk>) 0 1+k> -k 0 20 0

2ke, 22 /(1+k?) 0 Ol=-p| =k 1 0|+2c|]0 2 0

0 0 0 0 0 1 0 0 A
(4.A.41)

Solving leads to

p=2c,(1+k*)"

4.A.42
PRI R e R

—1/6

The solution shows that 4, >1 and 4, <1 and so the block deforms as in Fig. 4.A.2.
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/11

Figure 4.A.2: simple shear of a Neo-Hookean block

Note that, in contrast to the decomposition
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