
!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 3536!

=$.$#% 8 ; / % > !?@ ; !!" #$%&=$.$#% 8 ; / % > !?@ ; !!" #$%& !!

Un thread (o processo leggero) è una attività, descritta da una

sequenza di istruzioni, che esegue all'interno del contesto di

esecuzione di un programma. Un thread procede nella sua

esecuzione per portare a termine un certo obiettivo

parallelamente agli altri thread presenti.

I thread interagiscono tra loro poiché possono scambiarsi dei

messaggi e poiché condividono risorse di sistema (come i file) e gli

oggetti dello stesso programma. I thread competono nell'uso della

CPU e di altre risorse condivise (file o oggetti).

I thread di uno stesso processo condividono dati e codice del

processo, ma lo stack di esecuzione ed il program counter sono

privati.

Vantaggi :-)

• Il context-switch fra thread, e quindi l!attivazione di un thread,

è meno oneroso rispetto all!equivalente per i processi.

• Lo scambio di dati fra thread di un processo è molto semplice,

poiché condividono lo stesso spazio di indirizzamento.

I problemi di sincronizzazione sono più frequenti e rilevanti :-(

Processo P1 (Multithreaded)
testo

dati

Stack del thread T1 Stack del thread T2

Stack del thread T3

T

1 T

3

T

2

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 1536!

7-&$ 8 8 - !% !!" #$7-&$ 8 8 - !% !!" #$ %&%& !!

Per un processo con più thread di controllo, lo stato di

avanzamento della computazione di ogni thread è dato da:

• valore del PC (prossima istruzione da eseguire)

• valore di SP/PSW e dei registri generali

• contenuto dello Stack privato di quel thread (ovvero le variabili

locali ad un metodo)

• stato del thread: pronto, in esecuzione, bloccato

Sono invece comuni a tutti i thread:

• stato dell!area testo e dati globali (gli attributi di una classe)

• stato dei file aperti e delle strutture di IPC utilizzate

Esempio: un word processor multi-thread

testo

dati

T1

T3

T2

Formatta

il testo

Salva

periodicamente
su disco

tastiera

disco

Legge i caratteri

da tastiera e li
visualizza

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 9536!

: ;< 8: ; < 8 - !- !& ; !(; /& ; !(; / % !% ! &$; !&$; !!" #$%&!" #$%& !!

• un thread viene creato, riceve un identificatore (tid), ed entra

nello stato created;

• dopo l!avvio (tramite start()) il suo stato è ready;

• il thread sarà schedulato per l'esecuzione dal SO (o dal

sistema di supporto run-time), quando arriva il suo turno, inizia

l!esecuzione passando allo stato di running;

• il thread può trovarsi in stato di blocked, quando:

o ha invocato sleep(m)

o ha invocato wait()

o è in attesa che una operazione di i/o si completi

o ha chiamato un metodo synchronized su un oggetto il

cui lock non è disponibile

• il thread termina la sua esecuzione e passa nello stato di

stopped.

I thread possono essere realizzati da librerie che eseguono in

modalità user

• il SO e lo scheduler non conoscono l!esistenza dei thread e

gestiscono solo il processo

• lo scheduling viene effettuato dal supporto a run-time della

libreria

Oppure, i thread possono essere realizzati all!interno del kernel

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! A536!

!"#$%& ! ; . !'%(%!"#$%& ! ; . !'%(% !!

Ogni esecuzione di una JVM dà origine ad un processo. Ogni

programma in Java consiste di almeno un thread, quello che

esegue il metodo main() della classe fornita alla JVM in fase di

start up.

La JVM ha libertà sulla mappatura dei thread Java su quelli del SO.

Può sfruttare il supporto multi-threading del SO sottostante

(Windows) o prendersi carico della gestione dei thread

interamente. In questo ultimo caso il SO vede la JVM come un

processo con un unico thread (Unix).

In Java i thread sono nativi, cioè supportati a livello di linguaggio.

I thread si possono implementare in due modi:

‒ creando una sottoclasse della classe Thread

‒ creando una classe che implementa l'interfaccia Runnable

La classe Thread è una classe non astratta che fornisce vari

metodi (es. start(), isAlive(), interrupt()) che

consentono di controllare l'esecuzione del thread.

Procedimento per creare un thread tramite sottoclasse di Thread:

1. La sottoclasse di Thread deve implementare il metodo run()

2. Bisogna creare una istanza della sottoclasse tramite new

3. Si esegue il thread chiamando il metodo start() che a sua

volta richiama il metodo run()

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 2536!

: 8%??$!: 8%??$!ThreadThread !!

Esempio:

Creiamo una classe che eredita dalla classe Thread e che

implementa il metodo run()

class MioThread extends Thread {
 int id;
 MioThread(int n) {
 System.out.println(“Creato miothread”);
 id = n;
 }
 public void run() {
 // esegue istruzioni
 System.out.println(“MioThread running”);
 for (int i = 0; i < 1000; i++)
 if ((i%30)== 0) System.out.print(id);
 }
}

Creazione di istanze della classe MioThread ed esecuzione:

// creazione primo thread
MioThread t1 = new MioThread(1);
// creazione secondo thread
MioThread t2 = new MioThread(2);
// esecuzione parallela del primo thread
t1.start();
// esecuzione parallela del secondo thread
t2.start();

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! C536!

D . / $ # E%< < ; % !D . / $ # E%< < ; % !RunnableRunnable !!

Un modo per creare un thread che non è sottoclasse di Thread:

1. Implementare in una classe R l'interfaccia Runnable (che

implementa il metodo run())

2. Creare una istanza della classe R

3. Creare una istanza t della classe Thread passando come

parametro al costruttore l'istanza della classe R

4. Invocare il metodo start() sul thread t, questo eseguirà il

metodo run() della classe R

class MioRun implements Runnable {
 MioRun() {
 System.out.println(“Creato oggetto”);
 }
 public void run() {
 // esegue istruzioni
 }
}

Per creare il thread ed eseguirlo:

Thread t = new Thread(new MioRun());
t.start();

Quest!ultima è una modalità di creazione dei thread leggermente

più complessa, rispetto a quella che eredita da Thread, ma libera

dal vincolo di avere una superclasse fissata. Si rivela utile, non

disponendo dell'ereditarietà multipla in Java, quando vogliamo

realizzare un thread per una classe che ha bisogno di ereditare da

una classe dell!applicazione.

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! B536!

7$/-& ; !&$ 8 8 % !< 8 % ??$!7$/-& ; !&$ 8 8 % !< 8 % ??$! ThreadThread !! 00 33 !!

start()

chiama il metodo run() sull'oggetto/thread t della classe

MioThread che abbiamo implementato. Il thread t termina

quando il metodo run() ha finito l'esecuzione.

Un thread non può essere fatto ri-partire, cioè il metodo

start() deve essere chiamato solo una volta, altrimenti viene

generata una InvalidThreadStateException.

boolean isAlive()

permette di testare se il thread è stato avviato e non è ancora

finito.

setPriority(int p)

permette di cambiare la priorità di esecuzione del thread.

p può variare tra Thread.MIN_PRIORITY e

Thread.MAX_PRIORITY (1 e 10). La priorità di default di un

thread è pari alla priorità del thread che lo ha creato. Per

default, il main() ha priorità 5.

int getPriority()

ritorna la priorità del thread.

yield()

metodo statico della classe Thread che ferma

momentaneamente l!esecuzione del thread corrente per

permettere ad un altro thread di eseguire.

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 6536!

7$/-& ; !&$ 8 8 % !< 8 % ??$!7$/-& ; !&$ 8 8 % !< 8 % ??$! ThreadThread !! 00 11 !!

join()

permette di bloccare il chiamante fino a che il thread sul quale

si chiama join() non termina la propria esecuzione.

Il metodo join(long millis) fa aspettare il chiamante per

la terminazione del thread al massimo millis milli-secondi.

Lancia InterruptedException se interrupt() è

chiamato sul thread.

sleep(long millis)

metodo statico, fa aspettare il thread chiamante per millis

milli-secondi. Nessun lock viene rilasciato. Lancia

InterruptedException se interrupt() è chiamato sul

thread.

stop()

forza la terminazione del thread sul quale si invoca. Tutte le

risorse usate dal thread vengono liberate (inclusi lock). E'

deprecato, poiché non garantisce la consistenza dell'oggetto.

suspend()

blocca l'esecuzione del thread sul quale si invoca. Il thread

rimane in attesa di una operazione resume(). Non libera le

risorse impegnate. E' deprecato, poiché può determinare

situazioni di blocco critico (deadlock).

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! H536!

7$/-& ; !&$ 8 8 % !< 8 % ??$!7$/-& ; !&$ 8 8 % !< 8 % ??$! ThreadThread !! 00 99 !!

interrupt()

permette di interrompere l'esecuzione del thread sul quale si

invoca, solo quando lo stato dell'oggetto lo consente, cioè

quando non è in esecuzione, ma in attesa di un evento. Ciò

consente (a differenza del metodo stop()) di mantenere lo

stato dell'oggetto consistente.

Thread currentThread()

è un metodo statico della classe Thread che restituisce un

identificativo del thread che sta correntemente eseguendo.

toString()

restituisce una rappresentazione del thread, che include nome,

priorità e gruppo.

L'uso di stop() e suspend() è sconsigliata poiché bloccano

bruscamente l'esecuzione di un thread. Possono quindi generare

problemi allo stato dell'oggetto, poiché una azione atomica

(indivisibile) viene interrotta. Inoltre, con suspend(), tutte le

risorse acquisite non sono rilasciate quando il thread è bloccato e

possono rimanere inutilizzabili indefinitamente.

E' meglio usare dei metodi per la sincronizzazione fra thread:

wait(), notify() e notifyAll()

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 34536!

F ;.< #-. ; G G% G ; -.$F ;.< #-. ; G G% G ; -.$!!

Differenti thread della stessa applicazione condividono lo stesso

spazio di memoria. E' quindi possibile che più thread accedano alla

stessa sezione di codice o allo stesso dato.

La durata e l'ordine di esecuzione dei thread non è predicibile. Non

possiamo stabilire quando lo scheduler del SO interromperà

l'esecuzione di un thread per eseguirne un altro.

Quando più di una attività esegue, l'esecuzione è necessariamente

non-deterministica e la comprensione del programma non è data

dalla semplice lettura sequenziale del codice.

Per esempio, una variabile che è assegnata con un valore in una

istruzione di programma, può avere un differente valore nel

momento in cui la linea successiva è eseguita (a causa

dell'esecuzione di attività concorrenti).

Esempio:

thread_1 thread_2 num

num=0; 0

genera(); 0

num++; 1

 consuma(); 1

 num--; 0

if (num > 0) notifica(); 0

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 33536!

:-? / #@ / / - !:-? / #@ / / - !synchronizedsynchronized !! 00 33 !!

Tale “interferenza” è eliminata con una progettazione che usa

meccanismi di sincronizzazione, tipo semafori.

Il lock su un semaforo permette di evitare l'ingresso di più thread in

una regione critica (parte di un programma che accede a

memoria o file condivisi o svolge azioni che possono portare a

corse critiche) e di ottenere mutua esclusione.

Usando i costrutti primitivi di Java (parola chiave synchronized)

possiamo realizzare un lock su una sezione di codice o possiamo

realizzare un semaforo.

synchronized può delimitare un frammento di codice o agire

da modificatore di un metodo di una classe.

Usato su un frammento di codice, per consentire l!esecuzione del

codice ad un solo thread alla volta, necessita di una variabile su cui

sarà acquisito il lock (per es. sull'oggetto this).

1 synchronized(this) {
2 num = 0;
3 generate();
4 num++;
5 if (num > 0) notifica();
6 }

Il lock su this è acquisito automaticamente all'ingresso del codice

(linea 1), e rilasciato automaticamente alla sua uscita (linea 6).

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 31536!

:-? / #@ / / - !:-? / #@ / / - !synchronizedsynchronized !! 00 11 !!

Quando synchronized è usato come modificatore di un metodo,

la sua esecuzione è subordinata all!acquisizione di un lock

sull!oggetto su cui si invoca tale metodo.

In una classe dove tutti i metodi sono dichiarati synchronized un

solo thread può eseguire al suo interno in un determinato

momento. Si ha quindi l'associazione automatica di un lock ad un

oggetto di questo tipo e l'accesso esclusivo al codice della classe.

Il costrutto synchronized permette di aggiornare una variabile in

modo atomico e di creare una classe che fa attendere i thread la

cui richiesta non può essere soddisfatta.

La seguente classe può essere utile per abilitare 10 esecuzioni

esclusive su un oggetto.

public class EsecSingola {
 private int value;
 public EsecSingola() {
 value = 10;
 }
 synchronized public void reset() {
 if (value == 0) value = 10;
 }
 synchronized public void elabora() {
 if (getValue() > 0) {
 --value;
 // fai qualcosa di utile
 }
 }
 synchronized public int getValue() { return value; }
}

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 39536!

:-? / #@ / / - !:-? / #@ / / - !synchronizedsynchronized !! 00 99 !!

Quando un thread tenta di accedere ad un oggetto istanza di

questa classe, acquisisce implicitamente il lock (se nessun thread

sta eseguendo all'interno dello stesso oggetto).

Il thread che detiene il lock per un oggetto di questo tipo può

eseguire liberamente (senza alcun test) tutti i metodi dell'oggetto.

I thread che dopo tentano di accedere allo stesso oggetto verranno

sospesi, e risvegliati quando il thread che è all'interno finisce

l'esecuzione del metodo. In pratica, il thread che era all'interno

rilascia automaticamente il lock.

Un metodo synchronized non è interrotto, cioè viene eseguito in

modo atomico (ok, il thread che lo esegue può essere interrotto).

Se sono presenti dei metodi non synchronized all'interno della

classe, su questi non viene acquisito il lock all'ingresso.

L'uso di synchronized introduce un overhead: il tempo

necessario per cominciare ad eseguire il metodo è maggiore di

quello di un metodo non synchronized (per alcune

implementazioni costa 4 volte in più).

Ogni volta che usiamo metodi synchronized riduciamo il

parallelismo possibile all'interno del programma e potenzialmente

costringiamo alcuni thread ad attendere.

L'uso di synchronized ci protegge da eventuali “interferenze”

durante l'esecuzione del codice ed è quindi utile per garantire la

correttezza, ma richiede una certa attenzione per prevenire ritardi e

deadlock.

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 3A536!

7$/-& ; !& ; !? ;. < #-. ; G G% G ; -.7 /-& ; !& ; !? ;. < #-. ; G G% G ; -.$ 00 33 !!

In Java ogni oggetto è potenzialmente un monitor. La classe

Object mette quindi a disposizione i metodi di sincronizzazione:

wait(), notify() e notifyAll(). Esse possono essere

invocate solo dopo che è stato acquisito un lock, cioè all'interno di

un blocco o metodo synchronized.

wait()

blocca l'esecuzione del thread invocante fino a che un altro

thread invoca una notify() sull'oggetto. Si fa sempre dopo

aver testato una condizione (ed in un ciclo, per essere sicuri

che al risveglio la condizione è verificata).

while (! condition) // se non può procedere
 this.wait(); // aspetta una notifica

‒ Il thread invocante viene bloccato, il lock sull'oggetto è

rilasciato automaticamente.

‒ I lock su altri oggetti sono mantenuti (bisogna quindi fare

attenzione a possibili deadlock).

Un oggetto con metodi synchronized gestisce di per sè 2

code:

‒ una coda di lock, per i thread a cui l!accesso è escluso,

‒ una coda di wait per le condizioni di attesa.

Un thread può essere in una sola delle due code.

La variante wait(long timeout) blocca il thread per al

massimo timeout millisecondi (se timeout > 0)

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 32536!

7$/-& ; !& ; !? ;. < #-. ; G G% G ; -.7 /-& ; !& ; !? ;. < #-. ; G G% G ; -.$ 00 11 !!

notify()

risveglia un solo thread tra quelli che aspettano sull'oggetto in

questione. Se più thread sono in attesa, la scelta di quale

svegliare viene fatta dalla JVM. Una volta risvegliato, il thread

compete con ogni altro (non in wait) che vuole accedere ad una

risorsa protetta.

notifyAll()

risveglia tutti i thread che aspettano sull'oggetto in questione.

In pratica i thread nella coda di wait vengono trasferiti nella

coda di lock ed aspettano il loro turno per entrare.

notifyAll() è più sicura, poichè il thread scelto da

notify() potrebbe non essere in grado di procedere e venire

sospeso immediatamente, bloccando l'intero programma.

Esempio con classi Produttore - Consumatore

Una classe Produttore produce un item e lo inserisce in una classe

Contenitore. Il Consumatore estrae l'item presente nel Contenitore,

se esiste.

Produttore e Consumatore sono 2 thread.

Contenitore è la risorsa condivisa.

Produttore non deve sovrascrivere l'item già presente su

Contenitore, ma deve aspettare che qualcuno lo rimuova.

Consumatore, una volta rimosso l'item di Contenitore, deve

notificare i thread in attesa della risorsa.

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 3C536!

I#-J$ / / % G ; -.$!& ; !? ; ? / $,; !I#-J$ / / % G ; -.$!& ; !? ; ? / $,; !

K% #% 8 8 $ 8 ; !K% #% 8 8 $ 8 ; ! 00 !3!3 !!

Per proteggere l'accesso a risorse (oggetti) condivise possiamo

usare:

• Oggetti completamente sincronizzati: tutti i metodi sono

dichiarati synchronized e le variabili sono private.

• Contenimento: uso di tecniche di incapsulamento per garantire

che al massimo una attività avrà accesso ad un oggetto. Sono

simili alle misure per garantire la sicurezza.

Evito che il riferimento ad alcuni oggetti sia conosciuto al di

fuori di un certo numero di oggetti/thread, imponendo un unico

percorso per accedere a certe risorse.

Posso realizzare il contenimento tramite incapsulamento di

oggetti all'interno di altri.

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 3B536!

I#-J$ / / % G ; -.$!& ; !?I#-J$ / / % G ; -.$!& ; !? ; ? / $,; !; ? / $,; !

K% #% 8 8 $ 8 ; !K% #% 8 8 $ 8 ; ! 00 !1!1 !!

Per aumentare il parallelismo (eliminando qualche collo di bottiglia)

possiamo realizzare:

‒ Divisione dei lock: anziché associare un lock ad un insieme di

funzionalità di un oggetto, dispongo di diversi lock, ciascuno per

una distinta funzionalità.

In questo caso posso sempre avere un singola classe con tutte le

funzionalità, ma più lock che regolano l'accesso dei thread.

L'implementazione può essere ottenuta, per esempio, con l'uso di

synchronized su un blocco di codice e non sui metodi della

classe.

‒ Coppie di lock, per lettura e per scrittura: posso identificare quali

operazioni sono in lettura (non modificano lo stato) e quali in

scrittura e consentire più lettori contemporaneamente, ma un solo

scrittore alla volta.

!"#$%&!'%(%!)!*+!!#%,-./%.%!0!12033042! 36536!

=#@KK ; !& ; ! / " # $%&=#@KK ; !& ; ! / " # $%& !! !!

Si possono raccogliere tanti thread all'interno di un gruppo e così

facilitare le operazioni di sospensione o di ripartenza dell'insieme di

thread con una sola invocazione.

La JVM associa un thread ad un gruppo al momento della

creazione del thread. Tale associazione non può essere modificata

a run-time.

ThreadGroup mytg = new ThreadGroup(“mio gruppo”);
Thread myt = new Thread(mytg, “mio t”);

