Generalita’ sui Thread

Un thread (o processo leggero) € una attivita, descritta da una
sequenza di istruzioni, che esegue all'interno del contesto di
esecuzione di un programma. Un thread procede nella sua
esecuzione per portare a termine un certo obiettivo
parallelamente agli altri thread presenti.

| thread interagiscono tra loro poiché possono scambiarsi dei
messaggi e poiché condividono risorse di sistema (come i file) e gli
oggetti dello stesso programma. | thread competono nell'uso della
CPU e di altre risorse condivise (file 0 oggetti).

| thread di uno stesso processo condividono dati e codice del
processo, ma lo stack di esecuzione ed il program counter sono
privati.

Stack del thread T1 | thread T2

. ocesso P1 (Multithreaded
Vantaggi :-) ()

* |l context-switch fra thread, e quindi I'attivazione di un thread,
€ meno oneroso rispetto all’equivalente per i processi.

* Lo scambio di dati fra thread di un processo € molto semplice,
poiché condividono lo stesso spazio di indirizzamento.

| problemi di sincronizzazione sono piu frequenti e rilevanti :-(

Thread Java - E. Tramontana - 25-11-05 1/18

Ciclo di vita dei Thread

* un thread viene creato, riceve un identificatore (tid), ed entra
nello stato created;

* dopo l'avvio (tramite start ()) il suo stato € ready;

* il thread sara schedulato per I'esecuzione dal SO (o dal
sistema di supporto run-time), quando arriva il suo turno, inizia
I’esecuzione passando allo stato di running;

* il thread puo trovarsi in stato di blocked, quando:
o hainvocato sleep(m)
o hainvocato wait ()
o e in attesa che una operazione di i/o si completi

o ha chiamato un metodo synchronized su un oggetto il
cui lock non € disponibile

* il thread termina la sua esecuzione e passa nello stato di
stopped.

| thread possono essere realizzati da librerie che eseguono in
modalita user

* il SO e lo scheduler non conoscono I'esistenza dei thread e
gestiscono solo il processo

* lo scheduling viene effettuato dal supporto a run-time della
libreria

Oppure, i thread possono essere realizzati allinterno del kernel

Thread Java - E. Tramontana - 25-11-05 3/18

Modello a Thread

Per un processo con piu thread di controllo, lo stato di
avanzamento della computazione di ogni thread e dato da:

« valore del PC (prossima istruzione da eseguire)
* valore di SP/PSW e dei registri generali

» contenuto dello Stack privato di quel thread (ovvero le variabili
locali ad un metodo)

» stato del thread: pronto, in esecuzione, bloccato

Sono invece comuni a tutti i thread:
« stato dell’area testo e dati globali (gli attributi di una classe)
« stato dei file aperti e delle strutture di IPC utilizzate

Esempio: un word processor multi-thread

Legge i caratteri ormatta
da tastiera e li o
visualizza

disco

tastiera

periodicamente
su disco

Thread Java - E. Tramontana - 25-11-05 2/18

Thread in Java

Ogni esecuzione di una JVM da origine ad un processo. Ogni
programma in Java consiste di almeno un thread, quello che
esegue il metodo main () della classe fornita alla JVM in fase di
start up.

La JVM ha liberta sulla mappatura dei thread Java su quelli del SO.
Puo sfruttare il supporto multi-threading del SO sottostante
(Windows) o prendersi carico della gestione dei thread
interamente. In questo ultimo caso il SO vede la JVM come un
processo con un unico thread (Unix).

In Java i thread sono nativi, cioé supportati a livello di linguaggio.
| thread si possono implementare in due modi:

- creando una sottoclasse della classe Thread

- creando una classe che implementa l'interfaccia Runnable

La classe Thread € una classe non astratta che fornisce vari
metodi (es. start (), isAlive(), interrupt()) che
consentono di controllare I'esecuzione del thread.

Procedimento per creare un thread tramite sottoclasse di Thread:
1. La sottoclasse di Thread deve implementare il metodo run ()
2. Bisogna creare una istanza della sottoclasse tramite new

3. Siesegue il thread chiamando il metodo start () che a sua
volta richiama il metodo run ()

Thread Java - E. Tramontana - 25-11-05 4/18

Classe Thread

Esempio:

Creiamo una classe che eredita dalla classe Thread e che
implementa il metodo run()

class MioThread extends Thread {
int id;
MioThread(int n) {
System.out.println(“Creato miothread”);
id = n;

public void run() {
// esegue istruzioni
System.out.println(“MioThread running”);
for (int i = 0; i < 1000; i++)
if ((i%30)== @) System.out.print(id);

Creazione di istanze della classe MioThread ed esecuzione:

// creazione primo thread

MioThread t1 = new MioThread(1l);

// creazione secondo thread

MioThread t2 = new MioThread(2);

// esecuzione parallela del primo thread
tl.startQ);

// esecuzione parallela del secondo thread
t2.start(Q);

Interfaccia Runnable

Un modo per creare un thread che non e sottoclasse di Thread:

1. Implementare in una classe R l'interfaccia Runnable (che
implementa il metodo run())

2. Creare una istanza della classe R

3. Creare unaistanza t della classe Thread passando come
parametro al costruttore l'istanza della classe R

4. Invocare il metodo start () sul thread t, questo eseguira il
metodo run () della classe R

class MioRun implements Runnable {
MioRun() {
System.out.println(“Creato oggetto”);

public void run(Q) {
// esegue istruzioni
}
3

Per creare il thread ed eseguirlo:

Thread t = new Thread(new MioRun());
t.startQ);

Quest’ultima € una modalita di creazione dei thread leggermente
piu complessa, rispetto a quella che eredita da Thread, ma libera
dal vincolo di avere una superclasse fissata. Si rivela utile, non
disponendo dell'ereditarieta multipla in Java, quando vogliamo
realizzare un thread per una classe che ha bisogno di ereditare da
una classe dell’applicazione.

Thread Java - E. Tramontana - 25-11-05 5/18

Thread Java - E. Tramontana - 25-11-05 6/18

Metodi della classe Thread -1

start()

chiama il metodo run () sull'oggetto/thread t della classe
MioThread che abbiamo implementato. Il thread t termina
quando il metodo run () ha finito I'esecuzione.

Un thread non puo essere fatto ri-partire, cioe il metodo

start () deve essere chiamato solo una volta, altrimenti viene

generata una InvalidThreadStateException.
boolean isAlive()

permette di testare se il thread € stato avviato e non € ancora
finito.

setPriority(int p)
permette di cambiare la priorita di esecuzione del thread.

p puo variare tra Thread .MIN PRIORITY e

Thread.MAX PRIORITY (1 e 10). La priorita di default di un
thread é pari alla priorita del thread che lo ha creato. Per
default, il main () ha priorita 5.

int getPriority()
ritorna la priorita del thread.
yield()

metodo statico della classe Thread che ferma
momentaneamente I’esecuzione del thread corrente per
permettere ad un altro thread di eseguire.

Metodi della classe Thread -2

join()
permette di bloccare il chiamante fino a che il thread sul quale

si chiama join () non termina la propria esecuzione.

I metodo join(long millis) fa aspettare il chiamante per
la terminazione del thread al massimo millis milli-secondi.

Lancia InterruptedException se interrupt() é
chiamato sul thread.

sleep(long millis)

metodo statico, fa aspettare il thread chiamante permillis
milli-secondi. Nessun lock viene rilasciato. Lancia
InterruptedException se interrupt () € chiamato sul
thread.

stop()

forza la terminazione del thread sul quale si invoca. Tutte le
risorse usate dal thread vengono liberate (inclusi lock). E'
deprecato, poiché non garantisce la consistenza dell'oggetto.

suspend ()

blocca I'esecuzione del thread sul quale si invoca. Il thread
rimane in attesa di una operazione resume (). Non libera le
risorse impegnate. E' deprecato, poiché pud determinare
situazioni di blocco critico (deadlock).

Thread Java - E. Tramontana - 25-11-05 7/18

Thread Java - E. Tramontana - 25-11-05 8/18

Metodi della classe Thread -3

interrupt()

permette di interrompere I'esecuzione del thread sul quale si
invoca, solo quando lo stato dell'oggetto lo consente, cioe
quando non € in esecuzione, ma in attesa di un evento. Cio
consente (a differenza del metodo stop ()) di mantenere lo
stato dell'oggetto consistente.

Thread currentThread()

€ un metodo statico della classe Thread che restituisce un
identificativo del thread che sta correntemente eseguendo.

toString()

restituisce una rappresentazione del thread, che include nome,
priorita e gruppo.

L'uso di stop() e suspend() € sconsigliata poiché bloccano
bruscamente I'esecuzione di un thread. Possono quindi generare
problemi allo stato dell'oggetto, poiché una azione atomica
(indivisibile) viene interrotta. Inoltre, con suspend (), tutte le
risorse acquisite non sono rilasciate quando il thread € bloccato e
possono rimanere inutilizzabili indefinitamente.

E' meglio usare dei metodi per la sincronizzazione fra thread:
wait (), notify() e notifyAll()

Thread Java - E. Tramontana - 25-11-05 9/18

Costrutto synchronized -1

Tale “interferenza” e eliminata con una progettazione che usa
meccanismi di sincronizzazione, tipo semafori.

Il lock su un semaforo permette di evitare l'ingresso di piu thread in
una regione critica (parte di un programma che accede a
memoria o file condivisi 0 svolge azioni che possono portare a
corse critiche) e di ottenere mutua esclusione.

Usando i costrutti primitivi di Java (parola chiave synchronized)
possiamo realizzare un lock su una sezione di codice o possiamo
realizzare un semaforo.

synchronized pud delimitare un frammento di codice o agire
da modificatore di un metodo di una classe.

Usato su un frammento di codice, per consentire I'esecuzione del
codice ad un solo thread alla volta, necessita di una variabile su cui
sara acquisito il lock (per es. sull'oggetto this).

1 synchronized(this) {

2 num = 0;

3 generate();

4 num++;

5 if (num > 0) notifica();
6

}

Il'lock su this € acquisito automaticamente all'ingresso del codice
(linea 1), e rilasciato automaticamente alla sua uscita (linea 6).

Thread Java - E. Tramontana - 25-11-05 11/18

Sincronizzazione

Differenti thread della stessa applicazione condividono lo stesso
spazio di memoria. E' quindi possibile che piu thread accedano alla
stessa sezione di codice o allo stesso dato.

La durata e I'ordine di esecuzione dei thread non é predicibile. Non
possiamo stabilire quando lo scheduler del SO interrompera
I'esecuzione di un thread per eseguirne un altro.

Quando piu di una attivitd esegue, I'esecuzione é necessariamente
non-deterministica e la comprensione del programma non € data
dalla semplice lettura sequenziale del codice.

Per esempio, una variabile che & assegnata con un valore in una
istruzione di programma, puo avere un differente valore nel
momento in cui la linea successiva € eseguita (a causa
dell'esecuzione di attivita concorrenti).

Esempio:
thread 1 thread 2 num

num=0; 0

genera(); 0

num++; 1
consuma(); 1
num--; 0

if (num > 0) notifica(); 0

Thread Java - E. Tramontana - 25-11-05 10/18

Costrutto synchronized -2

Quando synchronized & usato come modificatore di un metodo,
la sua esecuzione e subordinata all’acquisizione di un lock
sull’'oggetto su cui si invoca tale metodo.

In una classe dove tutti i metodi sono dichiarati synchronized un
solo thread puo eseguire al suo interno in un determinato
momento. Si ha quindi I'associazione automatica di un lock ad un
oggetto di questo tipo e I'accesso esclusivo al codice della classe.

Il costrutto synchronized permette di aggiornare una variabile in
modo atomico e di creare una classe che fa attendere i thread la
cui richiesta non puo essere soddisfatta.

La seguente classe puo essere utile per abilitare 10 esecuzioni
esclusive su un oggetto.

public class EsecSingola {
private int value;
public EsecSingola() {
value = 10;
}

synchronized public void reset() {
if (value == 0) value = 10;
}

synchronized public void elabora() {
if (getValue() > 0) {
--value;
// fai qualcosa di utile

synchronized public int getValue() { return value; }
Thread Java - E. Tramontana - 25-11-05 12/18

Costrutto synchronized -3

Quando un thread tenta di accedere ad un oggetto istanza di
questa classe, acquisisce implicitamente il lock (se nessun thread
sta eseguendo all'interno dello stesso oggetto).

Il thread che detiene il lock per un oggetto di questo tipo pud
eseguire liberamente (senza alcun test) tutti i metodi dell'oggetto.

| thread che dopo tentano di accedere allo stesso oggetto verranno
sospesi, e risvegliati quando il thread che é all'interno finisce
I'esecuzione del metodo. In pratica, il thread che era all'interno
rilascia automaticamente il lock.

Un metodo synchronized non € interrotto, cioe viene eseguito in
modo atomico (ok, il thread che lo esegue puo essere interrotto).

Se sono presenti dei metodi non synchronized all'interno della
classe, su questi non viene acquisito il lock all'ingresso.

L'uso di synchronized introduce un overhead: il tempo
necessario per cominciare ad eseguire il metodo & maggiore di
quello di un metodo non synchronized (per alcune
implementazioni costa 4 volte in piu).

Ogni volta che usiamo metodi synchronized riduciamo il
parallelismo possibile all'interno del programma e potenzialmente
costringiamo alcuni thread ad attendere.

L'uso di synchronized ci protegge da eventuali “interferenze”
durante I'esecuzione del codice ed é quindi utile per garantire la
correttezza, ma richiede una certa attenzione per prevenire ritardi e
deadlock.

Thread Java - E. Tramontana - 25-11-05 13/18

Metodi di sincronizzazione-2

notify()

risveglia un solo thread tra quelli che aspettano sull'oggetto in
questione. Se piu thread sono in attesa, la scelta di quale
svegliare viene fatta dalla JVM. Una volta risvegliato, il thread
compete con ogni altro (non in wait) che vuole accedere ad una
risorsa protetta.

notifyAll()
risveglia tutti i thread che aspettano sull'oggetto in questione.

In pratica i thread nella coda di wait vengono trasferiti nella
coda di lock ed aspettano il loro turno per entrare.

notifyAll() € piu sicura, poiché il thread scelto da
notify () potrebbe non essere in grado di procedere e venire
sospeso immediatamente, bloccando l'intero programma.

Esempio con classi Produttore - Consumatore

Una classe Produttore produce un item e lo inserisce in una classe
Contenitore. Il Consumatore estrae l'item presente nel Contenitore,
se esiste.

Produttore e Consumatore sono 2 thread.
Contenitore € la risorsa condivisa.

Produttore non deve sovrascrivere l'item gia presente su
Contenitore, ma deve aspettare che qualcuno lo rimuova.
Consumatore, una volta rimosso l'item di Contenitore, deve
notificare i thread in attesa della risorsa.

Metodi di sincronizzazione-1

In Java ogni oggetto & potenzialmente un monitor. La classe
Object mette quindi a disposizione i metodi di sincronizzazione:
wait(), notify() e notifyAll(). Esse possono essere
invocate solo dopo che € stato acquisito un lock, cioé all'interno di
un blocco o metodo synchronized.

wait()

blocca I'esecuzione del thread invocante fino a che un altro
thread invoca una notify () sull'oggetto. Si fa sempre dopo
aver testato una condizione (ed in un ciclo, per essere sicuri
che al risveglio la condizione é verificata).

while (! condition) // se non pud procedere
this.wait(); // aspetta una notifica

- Il thread invocante viene bloccato, il lock sull'oggetto &
rilasciato automaticamente.

- I'lock su altri oggetti sono mantenuti (bisogna quindi fare
attenzione a possibili deadlock).

Un oggetto con metodi synchronized gestisce di per sé 2
code:

- una coda di lock, per i thread a cui I'accesso é escluso,
- una coda di wait per le condizioni di attesa.
Un thread pud essere in una sola delle due code.

La variante wait (long timeout) blocca il thread per al
massimo timeout millisecondi (se timeout > 0)

Thread Java - E. Tramontana - 25-11-05 14/18

Thread Java - E. Tramontana - 25-11-05 15/18

Progettazione di sistemi
paralleli - 1

Per proteggere I'accesso a risorse (oggetti) condivise possiamo
usare:

* Oggetti completamente sincronizzati: tutti i metodi sono
dichiarati synchronized e le variabili sono private.

action() { . }

Client

Contenimento: uso di tecniche di incapsulamento per garantire
che al massimo una attivita avra accesso ad un oggetto. Sono
simili alle misure per garantire la sicurezza.

Evito che il riferimento ad alcuni oggetti sia conosciuto al di
fuori di un certo numero di oggettithread, imponendo un unico
percorso per accedere a certe risorse.

Posso realizzare il contenimento tramite incapsulamento di
oggetti all'interno di altri.

===z
= T

Client

Thread Java - E. Tramontana - 25-11-05 16/18

Progettazione di sistemi
paralleli - 2

Per aumentare il parallelismo (eliminando qualche collo di bottiglia)
possiamo realizzare:

- Divisione dei lock: anziché associare un lock ad un insieme di
funzionalita di un oggetto, dispongo di diversi lock, ciascuno per
una distinta funzionalita.

In questo caso posso sempre avere un singola classe con tutte le
funzionalita, ma piu lock che regolano I'accesso dei thread.
L'implementazione puo essere ottenuta, per esempio, con l'uso di
synchronized su un blocco di codice e non sui metodi della
classe.

- Coppie di lock, per lettura e per scrittura: posso identificare quali
operazioni sono in lettura (non modificano lo stato) e quali in
scrittura e consentire piu lettori contemporaneamente, ma un solo
scrittore alla volta.

reader \
reader
S —a

Thread Java - E. Tramontana - 25-11-05 17/18

Gruppi di thread

Si possono raccogliere tanti thread all'interno di un gruppo e cosi
facilitare le operazioni di sospensione o di ripartenza dell'insieme di
thread con una sola invocazione.

La JVM associa un thread ad un gruppo al momento della
creazione del thread. Tale associazione non puo essere modificata
a run-time.

ThreadGroup mytg = new ThreadGroup(“mio gruppo”);
Thread myt = new Thread(mytg, “mio t”);

Thread Java - E. Tramontana - 25-11-05 18/18

