Classi astratte Interfacce

(

¢ Una classe astratta € parzialmente implementata

¢ Alcuni metodi sono implementati orientati ad oggetti

e Altri metodi non sono implementati (sono dichiarati abstract) + Non fornisce una implementazione per i metodi
¢ E’ utile avere la definizione del metodo anche non avendone e Permette di definire un tipo
’implementazione Elenca le signature dei metodi public (senza corpo dei metodi)

« | client si aspettano di poterlo invocare ¢ Posso solo dichiarare i metodi
* Forza le sottoclassi (concrete) ad implementare quel metodo ¢ Niente attributi non inizializzati, niente costruttori

e La classe non puo essere istanziata

* Le sottoclassi ereditano implementazioni e attributi public interface IAccount {

Es public boolean deposito(int amount);

public void setInitial();

public abstract class Libro { public boolean check();

¢ In Java una interfaccia riprende il concetto di interfaccia di sistemi

public class Account implements IAccount { .. }
public class AccountV2 implements IAccount {

public abstract void insert(); 1
} pUb-Ll ¢ Stl"'l. ng ge.tAL‘Itor‘eICw E.{Framor%ana - Object-Orientation - 14 dic 07] 1 (__E. Tramontana - Object-Orientation - 14 dic 07 2
Classi e Interfacce Compatibilita tra classi
) (
Una classe pud implementare una interfaccia * L’ereditarieta permette una classificazione di tipi

¢ Ovvero, la classe fornisce una implementazione per i metodi definiti

h i ¢ Una sottoclasse € un sottotipo della superclasse, ovvero
dall’interfaccia

Non & possibile istanziare interfacce ¢ Una sottoclasse € anche cio che é la superclasse

Tramite I'interfaccia i client sanno cosa possono invocare » Es. il tipo Studente & compatibile con il tipo Persona
Posso usare (per istanziazioni e invocazioni di metodo) una qualsiasi delle o La classe Studente fa tutto cid che fa Persona
implementazioni disponibili per I'interfaccia

Un client che usa una interfaccia rimane immutato quando N .
Pimplementazione dellinterfaccia cambia * Una sottoclasse pud prendere il posto della superclasse

e La classe Studente fa altre cose oltre quelle che fa Persona

e Es. posso usare una istanza di Studente quando ne usavo una di

} Persona

* Dove compare ad es. p.setName() con p di tipo Persona posso

sostituire s.setName() con s di tipo Studente

TAccount a = new AccountV2();

a.setBalance(); (C_E.Tramontana - Object-Orientation - 14 dic 07__) 3 » Attenzione: non vale il Contra”p E. Tramontana - Object-Orientation - 14 dic 07

4

public class Persona {
protected String nome, cognome;
public void setName(String nom,
String cog) {
nome = nom;
cognome = cog;
}
public void printAl1Q) {
System.out.println("Nome: "+
nome+" "+cognome);
}
}

public class Test {
static void main(String[] args) {

Studente s = new Studente();
s.setName("Jeff","Riddle");
s.nuovoEsame("Italiano", 8);
s.nuovoEsame("Fisica", 7);
s.printAl1Q);

Persona p = s;

p.printAl1Q;

public class Studente extends Persona {
private int numEsami = 0;
private String[] esami = new String[10];
private int[] voti = new int[10];
public void nuovoEsame(String e, int v) {
esami[numEsami] = e;
voti[numEsami] = v;

numEsami++;
}
public float media() {
if (numEsami == @) return 0;

float sum = 0;
for (int i=0; i<numEsami; i++)
sum = sum + voti[i];
return sum/numEsami ;
}
public void printAllQ) {
super.printAllQ);
for (int i=0; i<numEsami; i++)
System.out.println(esami[i]+" "+
voti[il);
System.out.println("media = "+media(Q));
}
1

Late binding e polimorfismo

public class Test {

Persona p = new Persona();
Studente s = new Studente();
Persona px;

if ...) px =p;
else px = s;
px.printAllQ);

}

public static void main(String[] args) {

e printAll invocato su px puo assumere il comportamento definito in
Persona o quello definito in Studente
|l compilatore riconosce che printAll e definito per px (qualunque sia

I’istanza puntata)

e A runtime si decide quale printAl1l eseguire, ovvero si ha late binding
¢ |l comportamento di printAll & polimorfo

(C_E. Tramontana - Object-Orientation - T4 dic 07] 7

Considerazioni sul codice

(

La classe Studente
¢ Eredita tutto cid che fornisce Persona
¢ Ridefinisce il metodo printAll (ovvero fa override), quindi modifica
il comportamento del metodo printAll ereditato
e super.printAll serve per invocare printAll di Persona da Studente
e super permette di accedere metodi della superclasse
Per la classe Test
e La variabile p € di tipo Persona, ma punta una istanza di Studente
* Posso invocare su p il metodo printAll
¢ Quale sara il risultato? Viene invocato printAll di Studente
¢ Non posso invocare su p il metodo nuovoEsame
e |l tipo di p (ovvero Persona) non fornisce il metodo nuovoEsame, quindi
il compilatore non puo far invocare nuovoEsame su p (nonostante p

punteré a runtime ad una ista = Try%néﬁg? ¥ ggsjecthrientann - 14 dic 07)] 6

Polimorfismo

)

¢ Nei sistemi ad oggetti possono esistere metodi con lo stesso nome
e la stessa signature (in classi diverse)
¢ Quando si usa I’ereditarieta e sono stati definiti metodi con lo
stesso nome, la chiamata ad un metodo puo avere effetti diversi,
ovvero si ha un comportamento polimorfo
e Es. ciascun elemento di s puod indicare una qualsiasi istanza la cui
classe ha come superclasse Shape

public class TestShape {
public static void main(String[] args) {
Shape[] s = new Shape[3];
s[@] = new Box(2,3);
s[1] = new Circle(4);
s[2] = new TriangleRect(3,4);
for (int i=0; i<3; i++) s[i].show();

} montana - Object-Orientation - 14 dic 07] 8

