
1 E. Tramontana - Object-Orientation - 14 dic 07

Classi astratte

• Una classe astratta è parzialmente implementata

• Alcuni metodi sono implementati

• Altri metodi non sono implementati (sono dichiarati abstract)

• E’ utile avere la definizione del metodo anche non avendone

l’implementazione

• I client si aspettano di poterlo invocare

• Forza le sottoclassi (concrete) ad implementare quel metodo

• La classe non può essere istanziata

• Le sottoclassi ereditano implementazioni e attributi

• Es.

public abstract class Libro {

 public abstract void insert();

 public String getAutore() { … }

}
2 E. Tramontana - Object-Orientation - 14 dic 07

Interfacce

• In Java una interfaccia riprende il concetto di interfaccia di sistemi

orientati ad oggetti

• Non fornisce una implementazione per i metodi

• Permette di definire un tipo

• Elenca le signature dei metodi public (senza corpo dei metodi)
• Posso solo dichiarare i metodi

• Niente attributi non inizializzati, niente costruttori

public interface IAccount {

 public boolean deposito(int amount);

 public void setInitial();

 public boolean check();

}

3 E. Tramontana - Object-Orientation - 14 dic 07

Classi e Interfacce

• Una classe può implementare una interfaccia

• Ovvero, la classe fornisce una implementazione per i metodi definiti

dall’interfaccia

• Non è possibile istanziare interfacce

• Tramite l’interfaccia i client sanno cosa possono invocare

• Posso usare (per istanziazioni e invocazioni di metodo) una qualsiasi delle

implementazioni disponibili per l’interfaccia

• Un client che usa una interfaccia rimane immutato quando

l’implementazione dell’interfaccia cambia

public class Account implements IAccount { … }

public class AccountV2 implements IAccount { … }

…

IAccount a = new AccountV2();
a.setBalance(); 4 E. Tramontana - Object-Orientation - 14 dic 07

Compatibilità tra classi

• L’ereditarietà permette una classificazione di tipi

• Una sottoclasse è un sottotipo della superclasse, ovvero

• Una sottoclasse è anche ciò che è la superclasse

• Es. il tipo Studente è compatibile con il tipo Persona

• La classe Studente fa tutto ciò che fa Persona

• La classe Studente fa altre cose oltre quelle che fa Persona

• Una sottoclasse può prendere il posto della superclasse

• Es. posso usare una istanza di Studente quando ne usavo una di

Persona

• Dove compare ad es. p.setName() con p di tipo Persona posso

sostituire s.setName() con s di tipo Studente

• Attenzione: non vale il contrario

5 E. Tramontana - Object-Orientation - 14 dic 07

public class Persona {

 protected String nome, cognome;

 public void setName(String nom,

 String cog) {

 nome = nom;

 cognome = cog;

 }

 public void printAll() {

 System.out.println("Nome: "+

 nome+" "+cognome);

 }

}

public class Studente extends Persona {

 private int numEsami = 0;

 private String[] esami = new String[10];

 private int[] voti = new int[10];

 public void nuovoEsame(String e, int v) {

 esami[numEsami] = e;

 voti[numEsami] = v;

 numEsami++;

 }

 public float media() {

 if (numEsami == 0) return 0;

 float sum = 0;

 for (int i=0; i<numEsami; i++)

 sum = sum + voti[i];

 return sum/numEsami;

 }

 public void printAll() {

 super.printAll();

 for (int i=0; i<numEsami; i++)

 System.out.println(esami[i]+" "+

 voti[i]);

 System.out.println("media = "+media());

 }

}

public class Test {

 static void main(String[] args) {

 Studente s = new Studente();

 s.setName("Jeff","Riddle");

 s.nuovoEsame("Italiano", 8);

 s.nuovoEsame("Fisica", 7);

 s.printAll();

 Persona p = s;

 p.printAll();

 }

}
6 E. Tramontana - Object-Orientation - 14 dic 07

Considerazioni sul codice

• La classe Studente

• Eredita tutto ciò che fornisce Persona

• Ridefinisce il metodo printAll (ovvero fa override), quindi modifica

il comportamento del metodo printAll ereditato

• super.printAll serve per invocare printAll di Persona da Studente

• super permette di accedere metodi della superclasse

• Per la classe Test

• La variabile p è di tipo Persona, ma punta una istanza di Studente

• Posso invocare su p il metodo printAll

• Quale sarà il risultato? Viene invocato printAll di Studente

• Non posso invocare su p il metodo nuovoEsame

• Il tipo di p (ovvero Persona) non fornisce il metodo nuovoEsame, quindi

il compilatore non può far invocare nuovoEsame su p (nonostante p

punterà a runtime ad una istanza di Studente)

7 E. Tramontana - Object-Orientation - 14 dic 07

Late binding e polimorfismo

• printAll invocato su px può assumere il comportamento definito in

Persona o quello definito in Studente

• Il compilatore riconosce che printAll è definito per px (qualunque sia

l’istanza puntata)

• A runtime si decide quale printAll eseguire, ovvero si ha late binding

• Il comportamento di printAll è polimorfo

public class Test {

 public static void main(String[] args) {

 Persona p = new Persona();

 Studente s = new Studente();

 Persona px;

 ...

 if (...) px = p;

 else px = s;

 px.printAll();

 }

}

8 E. Tramontana - Object-Orientation - 14 dic 07

Polimorfismo

• Nei sistemi ad oggetti possono esistere metodi con lo stesso nome

e la stessa signature (in classi diverse)

• Quando si usa l’ereditarietà e sono stati definiti metodi con lo

stesso nome, la chiamata ad un metodo può avere effetti diversi,

ovvero si ha un comportamento polimorfo

• Es. ciascun elemento di s può indicare una qualsiasi istanza la cui

classe ha come superclasse Shape
public class TestShape {

 public static void main(String[] args) {

 Shape[] s = new Shape[3];

 s[0] = new Box(2,3);

 s[1] = new Circle(4);

 s[2] = new TriangleRect(3,4);

 for (int i=0; i<3; i++) s[i].show();

 }

}

