Metodi static Classe Math

¢ | metodi static possono usare gli attributi static e La classe di libreria Math ha solo attributi e
¢ | metodi static devono creare una istanza per poter usare attributi o ; .
metodi non-static metodi static
« Esempio e Attributi E e PI
public class Test { e Metodi abs, max, log, pow, sin, cos,

private static int contaSta = 0;
private int conta = 0;
public static void main(String[] args) {
incrementa();
Test t = new Test();
t.increm();
}
public static void incrementa() { contaSta++; }
public void increm() { conta++; }

¥ E. Tramontana - Eredita Object-Orientation - 7 dic 07] 1 E. Tramontana - Eredita Object-Orientation - 7 dic 07] 2

Costruttore Costruttore

¢ Un costruttore € un metodo “speciale” di una classe e Una classe con un costruttore
e Tipicamente € usato per fare delle inizializzazioni public class Account {
e E’ chiamato al momento della creazione di una nuova istanza (con private int balance;
r1ew) public Account(int openingBalance) { // un costruttore di Account

e Puo prendere dei parametri in ingresso setBalance(openingBalance);
* Non ha tipo e parametro di ritorno 3
e Ha un nome prefissato (uguale al nome della classe) public void setBalance(int amount) {
* Non viene chiamato esplicitamente if (check())
* Pud non essere unico balance = amount;

e Piu costruttori con lo stesso nome e con parametri diversi, ovvero ¥

faccio overloading public boolean check() { .. }

* Nota: anche per i metodi posso usare overloading

* Concetto di late blndlng E. Tramontana - Eredita Object-Orientation - 7 dic 07] 3 ¥ E. Tramontana - Eredita Object-Orientation - 7 dic 07] 4

Istanza corrente Passaggio parametri

e La parola chiave this riferisce I'istanza corrente | parametri passati nelle chiamate a metodi
e Puo essere utile e Sono passati per valore (ovvero viene effettuata una copia)
* Per indicare un attributo in caso di omonimia con parametri o * Non esiste il passaggio per riferimento
variabili locali « Le modifiche sui parametri vengono perse alla fine del
this.nome = nome; metodo chiamato
« Per chiamare un costruttore diverso (solo come prima * Nelle chiamate a metodi, il passaggio di un riferimento
istruzione del costruttore) ad un oggetto
this(1); // chiama costruttore con parametro int * Avviene tramite copia, ovvero passiamo una copia del riferim

e Le modifiche sull’oggetto rimangono (poiché I'oggetto € lo
stesso anche se abbiamo copiato il riferimento)

E. Tramontana - Eredita Object-Orientation - 7 dic 07] 5 E. Tramontana - Eredita Object-Orientation - 7 dic 07] 6
Confronto tra oggetti Array
* Le variabili contengono riferimenti ad oggetti * Gli array sono oggetti, tuttavia non esiste |l
* Se eseguo s1 == s2, con sl e s2 riferimenti ad oggetti nome della classe
* Verifico se s1 e s2 hanno lo stesso riferimento, cioé puntano e Un array va creato con new
allo Steslso OggetFO _ _ _ * La lunghezza dell’array é indicata dall’attributo
* Non verifico se gli oggetti puntati sono uguali public Tength

¢ |l metodo predefinito equals() (della classe Object)
permette di verificare se due oggetti contengono gl
stessi dati

sl.equals(s2) // ritorna un boolean

E. Tramontana - Eredita Object-Orientation - 7 dic 07] 7 E. Tramontana - Eredita Object-Orientation - 7 dic 07] 8§

Riuso di classi Ereditarieta

e Spesso si ha bisogno di classi simili * Attraverso I'ereditarieta € possibile

* Definire una nuova classe indicando solo cosa ha in piu rispetto ad
una classe esistente

¢ E’ possibile aggiungere attributi e metodi nuovi

* Riusare cioé classi esistenti per gestire attributi e metodi
leggermente diversi

» Copiare la classe originaria e modificarne attributi o « E’ possibile modificare metodi esistenti
metodi non € pratico + Esempio
e Proliferazione di classi e Una classe Persona ha nome e cognome (piu vari metodi)
« Il programmatore deve fare tante attivita e La classe Studente dovrebbe avere tutto cio che Persona

fornisce (attributi e metodi) ed inoltre nuovi attributi e metodi

* Il riuso delle classi esistenti deve avvenire « Studente aggiunge esami, voti, etc.

e Senza dover modificare codice esistente (e funzionante) * La classe Studente eredita da Persona
e In modo semplice per i programmatore public class Studente extends Persona { ... }
¢ Studente é sottoclasse di Persona
E. Tramontana - Eredita Object-Orientation - 7 dic 07] 9 e Persona é superclasse di St EI ﬁm| gntanaf Eredita Object-Orientation - 7 dic 07] 10
- - ~N - - N~
Ereditarieta Ereditarieta
C) C)
* La sottoclasse e Visibilita
. Eredl_ta tutti i metodi e gl a'gtr|but| della superclasse e puo « Cio che & private & visibile solo alla classe, non alla
usarli come se fossero definiti localmente sottoclasse

* Aggiunge altri metod » Cio che é public ¢ visibile a tutti, anche alla sottoclasse

T _ T » Se voglio far vedere qualche metodo o attributo alle
* Non puo eliminare metodi o attributi della superclasse sottoclassi ma non a tutti

e Esempio

e Puo ridefinire i metodi della superclasse

e Uso protected
* La classe Studente

¢ Puo usare tutti i metodi della classe Persona, es. setName

¢ Puo aggiungere metodi, es. media

E. Tramontana - Eredita Object-Orientation - 7 dic 07] 11 E. Tramontana - Eredita Object-Orientation - 7 dic 07] 12

