
1 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Metodi static

• I metodi static possono usare gli attributi static

• I metodi static devono creare una istanza per poter usare attributi o
metodi non-static

• Esempio

public class Test {

 private static int contaSta = 0;

 private int conta = 0;

 public static void main(String[] args) {

 incrementa();

 Test t = new Test();

 t.increm();

 }

 public static void incrementa() { contaSta++; }

 public void increm() { conta++; }

}
2 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Classe Math

• La classe di libreria Math ha solo attributi e
metodi static

• Attributi E e PI

• Metodi abs, max, log, pow, sin, cos, …

3 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Costruttore

• Un costruttore è un metodo “speciale” di una classe

• Tipicamente è usato per fare delle inizializzazioni

• E’ chiamato al momento della creazione di una nuova istanza (con
new)

• Può prendere dei parametri in ingresso

• Non ha tipo e parametro di ritorno

• Ha un nome prefissato (uguale al nome della classe)

• Non viene chiamato esplicitamente

• Può non essere unico

• Più costruttori con lo stesso nome e con parametri diversi, ovvero
faccio overloading

• Nota: anche per i metodi posso usare overloading

• Concetto di late binding 4 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Costruttore

• Una classe con un costruttore
public class Account {

 private int balance;

 public Account(int openingBalance) { // un costruttore di Account

 setBalance(openingBalance);

 }

 public void setBalance(int amount) {

 if (check())

 balance = amount;

 }

 public boolean check() { … }

 …

}

5 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Istanza corrente

• La parola chiave this riferisce l’istanza corrente

• Può essere utile

• Per indicare un attributo in caso di omonimia con parametri o
variabili locali

 this.nome = nome;

• Per chiamare un costruttore diverso (solo come prima
istruzione del costruttore)

 this(1); // chiama costruttore con parametro int

6 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Passaggio parametri

• I parametri passati nelle chiamate a metodi

• Sono passati per valore (ovvero viene effettuata una copia)

• Non esiste il passaggio per riferimento

• Le modifiche sui parametri vengono perse alla fine del
metodo chiamato

• Nelle chiamate a metodi, il passaggio di un riferimento
ad un oggetto

• Avviene tramite copia, ovvero passiamo una copia del riferim

• Le modifiche sull’oggetto rimangono (poiché l’oggetto è lo
stesso anche se abbiamo copiato il riferimento)

7 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Confronto tra oggetti

• Le variabili contengono riferimenti ad oggetti

• Se eseguo s1 == s2, con s1 e s2 riferimenti ad oggetti

• Verifico se s1 e s2 hanno lo stesso riferimento, cioè puntano
allo stesso oggetto

• Non verifico se gli oggetti puntati sono uguali

• Il metodo predefinito equals() (della classe Object)
permette di verificare se due oggetti contengono gli
stessi dati

s1.equals(s2) // ritorna un boolean

8 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Array

• Gli array sono oggetti, tuttavia non esiste il
nome della classe

• Un array va creato con new

• La lunghezza dell’array è indicata dall’attributo
public length

9 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Riuso di classi

• Spesso si ha bisogno di classi simili

• Riusare cioè classi esistenti per gestire attributi e metodi
leggermente diversi

• Copiare la classe originaria e modificarne attributi o
metodi non è pratico

• Proliferazione di classi

• Il programmatore deve fare tante attività

• Il riuso delle classi esistenti deve avvenire

• Senza dover modificare codice esistente (e funzionante)

• In modo semplice per i programmatore

10 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Ereditarietà

• Attraverso l’ereditarietà è possibile

• Definire una nuova classe indicando solo cosa ha in più rispetto ad
una classe esistente

• E’ possibile aggiungere attributi e metodi nuovi

• E’ possibile modificare metodi esistenti

• Esempio

• Una classe Persona ha nome e cognome (più vari metodi)

• La classe Studente dovrebbe avere tutto ciò che Persona
fornisce (attributi e metodi) ed inoltre nuovi attributi e metodi

• Studente aggiunge esami, voti, etc.

• La classe Studente eredita da Persona

public class Studente extends Persona { ... }

• Studente è sottoclasse di Persona

• Persona è superclasse di Studente

11 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Ereditarietà

• La sottoclasse

• Eredita tutti i metodi e gli attributi della superclasse e può
usarli come se fossero definiti localmente

• Aggiunge altri metodi

• Può ridefinire i metodi della superclasse

• Non può eliminare metodi o attributi della superclasse

• Esempio

• La classe Studente

• Può usare tutti i metodi della classe Persona, es. setName

• Può aggiungere metodi, es. media

12 E. Tramontana - Eredità Object-Orientation - 7 dic 07

Ereditarietà

• Visibilità

• Ciò che è private è visibile solo alla classe, non alla
sottoclasse

• Ciò che è public è visibile a tutti, anche alla sottoclasse

• Se voglio far vedere qualche metodo o attributo alle
sottoclassi ma non a tutti

• Uso protected

