Programmazione Object-Oriented Dimensioni dei sistemi

¢ Per realizzare sistemi software di grandi dimensioni occorre avere * Per sistemi di piccole dimensioni (size < 1000 LOC)

supporti adeguati e L’elemento fondamentale & I'algoritmo

* Il linguaggio di programmazione deve consentire di * | programmi sono strutturati (strutture dati e di controllo)

* Esprimere le attivita da svolgere « Funzioni e procedure sono usate per avere I'astrazione di istruzioni
e Dare una struttura adeguata (modulare, per componenti) al complesse
software * Per sistemi di medie e grandi dimensioni
¢ Rendendo facile la scelta e la descrizione della struttura, ma anche . . - e
imponendo vincoli per ottenere modularita e La decomposizione in funzioni non basta, poiché:
« Coordinare le attivita di sviluppo » Non c’e accoppiamento tra dati e funzioni

e |l passaggio di parametri € complesso
. N . e Esistono tante variabili globali
* Ogni componente & un modulo che puo essere esteso e ’accoppiamento (stretto o lasco) tra funzioni non € evidente dalla

e Funzioni e procedure non possono essere intese come componenti struttura
e |l sistema diventa complesso e difficile da comprendere, quindi gli errori

¢ Costruzione del software per componenti

* | file che contengono funzioni non sono componenti sono difficili da trovare
E. Tramontana - Intro Object-Orientation - 24 nov 07) 1 E. Tramontana - Intro Object-Orientation - 24 nov 07] 2

Sistemi ad oggetti Astrazione sui dati

e Concetti chiave « Dati ed operazioni sono raggruppati in un componente
 Struttura dati nascosta (incapsulamento e information hiding)
» Operazioni che agiscono sui dati

e Tipi di dato astratto (ADT)

e Es. il numero complesso, il libro, il conto corrente « Vantaggi
e Stato « Accoppiamento tra dati e funzioni
* Modello client-server * Modularita
. . e Limita il numero ed il tipo di funzioni che agiscono sui dati
* Oggetti e classi * Integrita dei dati

* Solo le funzioni autorizzate agiscono sui dati

e Se un errore é presente sui dati, la ricerca dell’errore € localizzata solo
sulle funzioni che agiscono su quei dati

» Creazione di componenti autonomi (o quanto pit autonomi)
* Astrazione, ci allontaniamo dal linguaggio di programmazione

E. Tramontana - Intro Object-Orientation - 24 nov 07] 3 T Tramontana - Intro Object-Orientation - 24 ngv 7] 4
Entita simili (con valori divers

stesso tipo

Esempio di sistema classico

Esempio di classe Java

void main() {
int balance;

if (balance > amount)

balance = balance - amount;

}

¢ Non vi € astrazione
e Gestione a basso livello delle variabili
e Non abbiamo nel codice il concetto di balance
e Non possiamo riusare il concetto
* Riusare il codice significa par

E. Tramontana - Intro Object-Orientation - 24%hov 07] 5

Classe Account

// Questa classe tiene informazioni sul conto corrente
// La classe e’ public quindi accessibile dall’esterno
public class Account { // classe di nome Account
private int balance = 0; // attributo non accessibile dall’esterno
// il metodo deposito non restituisce nulla
public void deposito(int amount) { // metodo accessibile
balance = balance + amount; // aggiorno il valore di balance
}
// il metodo check restituisce un boolean
public boolean check(int amount) {
if (Camount > @) return true;

return false;

¥ E. Tramontana - Intro Object-Orientation - 24 nov 07] 6

Sintassi Java

* Account raggruppa
* |l dato: balance
e | metodi: deposito e check
e Account € un componente
e Molto piu che un insieme di dati o di funzioni
* Account € un nuovo tipo (non p_rimitivo), puo essere
inteso come una nuova categoria
* In un sistema ad oggetti avremo tanti nuovi tipi

» Durante lo sviluppo di un sistema ad oggetti ci chiederemo
¢ Cosa mettiamo dentro ciascun tipo

¢ Dove mettiamo ad es. le variabili costo, numero, etc.
E. Tramontana - Intro Object-Orientation - 24 nov 07] 7

¢ Modificatori

e public e private indicano cosa € accessibile o non-accessibile,
rispettivamente dall’esterno della classe stessa

« E buona norma che i dati (o attributi) siano private, quindi nascosti
alle altre classi

e Le operazioni (0o metodi) sono in genere public, quindi accessibili
dalle altre classi

¢ Valori di ritorno dei metodi

e E’ possibile dichiarare e restituire un valore di ritorno (es. int,
boolean) oppure nulla (allora si usa void)

¢ Si restituisce un valore al chiamante tramite return
* Valori iniziali

» Nell’esempio, I'attributo balance é dichiarato int e riceve subito il
Valore Zero E. Tramontana - Intro Object-Orientation - 24 nov 07) 8

Compilazione Esecuzione

() ()

¢ Classi Java e La classe TestAccount
e Ciascuna classe Java va conservata in un file a sé avente nome e Contiene il metodo main
uguale al nome della classe ed estensione .java (es. nome file « Da questo metodo inizia I'esecuzione del codice
Account.java)

i] ,] * Puo essere eseguita dalla JVM (es. java TestAccount) dopo
* |l codice sorgente (Account.java) va trasformato in codice essere stata compilata

eseguibile tramite il compilatore javac (es. javac Account.java)
* Il compilatore genera un file eseguibile (es. Account.class)
» L’esecuzione dei .class avviene tramite la JVM

* La JVM deve ricevere come argomento una classe che contiene il
metodo main

// Classe per il test della classe Account
public class TestAccount {
// il metodo main deve essere presente per poterla eseguire

public static void main(String[] args) {

e JVM
J Account unAccount = new Account();
* java.sun.com 1
° JZSE E. Tramontana - Intro Object-Orientation - 24 nov 07] 9 3 E. Tramontana - Intro Object-Orientation - 24 nov 07] 10

Classe Account vers. 2

public class Account {

private int balance = 0;

public void deposito(int amount) {
if (check(Camount)) // chiamo il metodo check della stessa classe

balance = balance + amount;

public boolean check(int amount) {
if (amount > @) return true;

return false;

E. Tramontana - Intro Object-Orientation - 24 nov 07] 11

