
1 E. Tramontana - Intro Object-Orientation - 24 nov 07

Programmazione Object-Oriented

• Per realizzare sistemi software di grandi dimensioni occorre avere
supporti adeguati

• Il linguaggio di programmazione deve consentire di

• Esprimere le attività da svolgere

• Dare una struttura adeguata (modulare, per componenti) al
software

• Rendendo facile la scelta e la descrizione della struttura, ma anche
imponendo vincoli per ottenere modularità

• Coordinare le attività di sviluppo

• Costruzione del software per componenti

• Ogni componente è un modulo che può essere esteso

• Funzioni e procedure non possono essere intese come componenti

• I file che contengono funzioni non sono componenti
2 E. Tramontana - Intro Object-Orientation - 24 nov 07

Dimensioni dei sistemi

• Per sistemi di piccole dimensioni (size < 1000 LOC)

• L’elemento fondamentale è l’algoritmo

• I programmi sono strutturati (strutture dati e di controllo)

• Funzioni e procedure sono usate per avere l’astrazione di istruzioni
complesse

• Per sistemi di medie e grandi dimensioni

• La decomposizione in funzioni non basta, poiché:

• Non c’è accoppiamento tra dati e funzioni

• Il passaggio di parametri è complesso

• Esistono tante variabili globali

• L’accoppiamento (stretto o lasco) tra funzioni non è evidente dalla
struttura

• Il sistema diventa complesso e difficile da comprendere, quindi gli errori
sono difficili da trovare

3 E. Tramontana - Intro Object-Orientation - 24 nov 07

Sistemi ad oggetti

• Concetti chiave

• Tipi di dato astratto (ADT)
• Es. il numero complesso, il libro, il conto corrente

• Stato

• Modello client-server

• Oggetti e classi

4 E. Tramontana - Intro Object-Orientation - 24 nov 07

Astrazione sui dati

• Dati ed operazioni sono raggruppati in un componente

• Struttura dati nascosta (incapsulamento e information hiding)

• Operazioni che agiscono sui dati

• Vantaggi

• Accoppiamento tra dati e funzioni

• Modularità

• Limita il numero ed il tipo di funzioni che agiscono sui dati

• Integrità dei dati

• Solo le funzioni autorizzate agiscono sui dati

• Se un errore è presente sui dati, la ricerca dell’errore è localizzata solo
sulle funzioni che agiscono su quei dati

• Creazione di componenti autonomi (o quanto più autonomi)

• Astrazione, ci allontaniamo dal linguaggio di programmazione

• Entità simili (con valori diversi) possono essere considerate dello
stesso tipo

5 E. Tramontana - Intro Object-Orientation - 24 nov 07

Esempio di sistema classico
void main() {

 …

 int balance;

 …

 if (balance > amount)

 balance = balance - amount;

 …

}

• Non vi è astrazione

• Gestione a basso livello delle variabili

• Non abbiamo nel codice il concetto di balance

• Non possiamo riusare il concetto

• Riusare il codice significa parametrizzare e inserire variabili globali
6 E. Tramontana - Intro Object-Orientation - 24 nov 07

Esempio di classe Java

// Questa classe tiene informazioni sul conto corrente

// La classe e’ public quindi accessibile dall’esterno

public class Account { // classe di nome Account

 private int balance = 0; // attributo non accessibile dall’esterno

 // il metodo deposito non restituisce nulla

 public void deposito(int amount) { // metodo accessibile

 balance = balance + amount; // aggiorno il valore di balance

 }

 // il metodo check restituisce un boolean

 public boolean check(int amount) {

 if (amount > 0) return true;

 return false;

 }

}

7 E. Tramontana - Intro Object-Orientation - 24 nov 07

Classe Account

• Account raggruppa

• Il dato: balance

• I metodi: deposito e check

• Account è un componente

• Molto più che un insieme di dati o di funzioni

• Account è un nuovo tipo (non primitivo), può essere
inteso come una nuova categoria

• In un sistema ad oggetti avremo tanti nuovi tipi

• Durante lo sviluppo di un sistema ad oggetti ci chiederemo
• Cosa mettiamo dentro ciascun tipo
• Dove mettiamo ad es. le variabili costo, numero, etc.

8 E. Tramontana - Intro Object-Orientation - 24 nov 07

Sintassi Java

• Modificatori

• public e private indicano cosa è accessibile o non-accessibile,
rispettivamente dall’esterno della classe stessa

• È buona norma che i dati (o attributi) siano private, quindi nascosti
alle altre classi

• Le operazioni (o metodi) sono in genere public, quindi accessibili
dalle altre classi

• Valori di ritorno dei metodi

• E’ possibile dichiarare e restituire un valore di ritorno (es. int,
boolean) oppure nulla (allora si usa void)

• Si restituisce un valore al chiamante tramite return

• Valori iniziali

• Nell’esempio, l’attributo balance è dichiarato int e riceve subito il
valore zero

9 E. Tramontana - Intro Object-Orientation - 24 nov 07

Compilazione

• Classi Java

• Ciascuna classe Java va conservata in un file a sé avente nome
uguale al nome della classe ed estensione .java (es. nome file
Account.java)

• Il codice sorgente (Account.java) va trasformato in codice
eseguibile tramite il compilatore javac (es. javac Account.java)

• Il compilatore genera un file eseguibile (es. Account.class)

• L’esecuzione dei .class avviene tramite la JVM
• La JVM deve ricevere come argomento una classe che contiene il

metodo main

• JVM

• java.sun.com

• J2SE 10 E. Tramontana - Intro Object-Orientation - 24 nov 07

Esecuzione

• La classe TestAccount

• Contiene il metodo main
• Da questo metodo inizia l’esecuzione del codice

• Può essere eseguita dalla JVM (es. java TestAccount) dopo
essere stata compilata

// Classe per il test della classe Account

public class TestAccount {

 // il metodo main deve essere presente per poterla eseguire

 public static void main(String[] args) {

 Account unAccount = new Account();

 }

}

11 E. Tramontana - Intro Object-Orientation - 24 nov 07

Classe Account vers. 2

public class Account {

 private int balance = 0;

 public void deposito(int amount) {

 if (check(amount)) // chiamo il metodo check della stessa classe

 balance = balance + amount;

 }

 public boolean check(int amount) {

 if (amount > 0) return true;

 return false;

 }

}

