
Prof. Tramontana - Gennaio 2026

Microservizi
▸ I Microservizi sono servizi che si possono rilasciare in modo

indipendente e che rappresentano un certo dominio del business

▸ Le funzionalità incluse in un microservizio sono rese accessibili
agli altri servizi tramite la rete

▸ Un microservizio fornisce un endpoint che è una coda o una
chiamata REST sopra un certo protocollo di comunicazione di rete

▸ I microservizi abbracciano il concetto di information hiding,
ovvero nascondono più informazioni possibile ed espongono il
meno possibile attraverso le interfacce

▸ Si hanno più tipi di interfacce per la stessa funzionalità, e si usa
il simbolo di un esagono per il microservizio

1

Prof. Tramontana - Gennaio 2026

Concetti Chiave dei Microservizi
▸ Deploy indipendente: il rilascio di un microservizio è indipendente

dal rilascio degli altri

▸ Per permettere il deploy indipendente i microservizi sono
accoppiati in modo lasco. I microservizi non condividono i database

▸ Modellano un dominio del business (attività, lavoro)

▸ Possiedono il loro stato: evitano di usare un database condiviso. Se
un microservizio ha bisogno dei dati di un altro microservizio li chiede
tramite una interfaccia. Questo rende veramente possibile il deploy
indipendente

▸ Dimensione: non troppo grande … iniziare con uno o pochi
microservizi e quindi aggiungerne altri in modo da rispettare
information hiding, e abbassare la complessità

2

Prof. Tramontana - Gennaio 2026

Vantaggi dei Microservizi
▸ Permettono eterogeneità di tecnologie

▸ Robustezza

▸ Scalabilità

▸ Facilità di deploy

▸ Componibilità

3

Prof. Tramontana - Gennaio 2026

Stili di Comunicazione fra Microservizi
▸ Bloccante: un microservizio può effettuare una chiamata a un altro

microservizio e aspettare la risposta

▸ Asincrono: un microservizio può chiamare un altro microservizio e
portare avanti altro

▸ Richiesta-risposta: un microservizio manda una richiesta a un altro
microservizio e si aspetta di ricevere una risposta che lo informa del
risultato

▸ Guidato da eventi: i microservizi emettono eventi che altri microservizi
consumano e reagiscono di conseguenza. Il microservizio che emette
l’evento non conosce quale microservizio consumerà l’evento

▸ Dati condivisi: i microservizi possono collaborare attraverso una
sorgente di dati condivisi

4

Prof. Tramontana - Gennaio 2026

Scelte Tecnologiche
▸ Alcuni framework permettono di effettuare chiamate a

processi remoti come SOAP e gRPC

▸ REST: è uno stile architetturale attraverso il quale una
risorsa (per es. un Ordine o un Cliente) viene esposta e vi
si può accedere usando operazioni GET o POST

▸ GraphQL è un protocollo che permette ai consumatori di
definire query che prendono informazioni da microservizi
e che filtrano i risultati per restituire ciò che è richiesto

▸ Message broker: un middleware che permette di
effettuare una comunicazione asincrona attraverso code

5

Prof. Tramontana - Gennaio 2026

gRPC
▸ GRPC è un framework di comunicazione remota

sviluppato da Google. Serve a far comunicare microservizi
fra loro in modo efficiente

▸ Usa HTTP/2

▸ Usa Protocol Buffers (protobuf) invece di JSON

▸ E’ tipizzato

6

Prof. Tramontana - Gennaio 2026

Microservizi con SpringBoot
▸ Per poter usare i microservizi usando Spring Boot e Visual

Studio Code

▸ Impostare l’ambiente VS Code installando Spring Boot
Extension Pack

▸ Creare un progetto Spring Boot usando VS Code Spring
Initializr (oppure tramite https://start.spring.io), oppure
scaricando un progetto già creato da https://spring.io/
guides/gs/spring-boot

▸ Il progetto userà Spring Web (in modo da avere API REST)

7

Prof. Tramontana - Gennaio 2026

Componenti per gRPC
▸ Un contratto (protobuf) che definisce il servizio
service HelloService {
 rpc SayHello (HelloRequest) returns (HelloResponse);
}

▸ Una classe che gira su server Spring Boot
@GrpcService
public class HelloServiceImpl extends HelloServiceGrpc.HelloServiceImplBase {

 @Override
 public void sayHello(HelloRequest request, StreamObserver<HelloResponse> responseObserver) {
 HelloResponse response = HelloResponse.newBuilder().setMessage("Ciao " + name).build();
 responseObserver.onNext(response);
 }
}

▸ Client Spring Boot
@Service
public class HelloClient {
 @GrpcClient("hello-service")
 private HelloServiceGrpc.HelloServiceBlockingStub stub;

 public String call(String name) {
 HelloRequest request = HelloRequest.newBuilder().setName(name).build();
 return stub.sayHello(request).getMessage();
 }
}

8

Prof. Tramontana - Gennaio 2026

Sviluppo del Microservizio
▸ Aprire il file src/main/java/com/example/demo/DemoApplication.java e creare

una API REST come segue
package com.example.demob;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@SpringBootApplication
@RestController
public class DemobApplication {
 public static void main(String[] args) {
 SpringApplication.run(DemobApplication.class, args);

 }

 @GetMapping("/hello")
 public String hello(@RequestParam(value = "name", defaultValue = "World") String name) {
 return String.format("Hello %s!", name);
 }

 @GetMapping("/helloSpr")
 public String sayHello() {
 return "Hello, Spring Boot!";
 }
}

9

Prof. Tramontana - Gennaio 2026

Esecuzione
▸ Dal terminale si può eseguire mvn spring-boot:run

▸ Dal browser

▸ http://localhost:8080/hello

▸ http://localhost:8080/helloSpr

▸ http://localhost:8080/hello?name=Emi

10

Prof. Tramontana - Gennaio 2026

Inversion of Control (IoC)
▸ Spring Boot usa l’inversion of Control (IoC) che è il principio di progettazione

secondo cui gli oggetti (istanze) necessarie non si creano implementando
codice dell’applicazione ma è il framework Spring Boot a crearle

▸ La IoC è realizzata tramite lo Spring IoC Container, o ApplicationContext. Il
container crea gli oggetti (detti bean), ne gestisce il ciclo di vita e i loro
collegamenti

▸ La Dependency Injection (DI) è la tecnica usata per realizzare la IoC. Con la DI,
una classe prende le dipendenze dall’esterno anziché crearle al suo interno

@Service
public class OrderService {
 private final OrderRepository orderRepository;

 public OrderService(OrderRepository orderRepository) {
 this.orderRepository = orderRepository;
 }
}

@Repository
public class OrderRepository {
}

11

Prof. Tramontana - Gennaio 2026

Dependency Injection
▸ Spring Boot si serve delle annotazioni @Service e @Repository per

individuare le classi utili, riconosce che OrderService necessita di un
OrderRepository e gli inietta automaticamente l’istanza corretta

▸ La dipendenza tramite costruttore (Constructor Injection) è la prassi
raccomandata e fornisce: immutabilità, testabilità e dipendenze facili da
riconoscere

public OrderService(OrderRepository orderRepository) { ...

▸ In alternativa si può usare la Field Injection, annotando un campo
@Autowired
private OrderRepository repo;

▸ Oppure la Setter Injection
@Autowired
public void setRepo(OrderRepository repo) {
 this.repo = repo;
}

12

Prof. Tramontana - Gennaio 2026

Vantaggi Forniti da DI e IoC
▸ DI e IoC permettono il disaccoppiamento: una classe che

dipende da una interfaccia può prendere in input una
istanza di una qualunque classe che implementa
quell’interfaccia

▸ Il test è più facile poiché si può passare un mock o uno
stub facilmente

▸ Il codice ha meno dipendenze rigide e quindi è più facile
da evolvere

▸ Quindi, Spring controlla la creazione dei bean e inietta
automaticamente le dipendenze

13

Prof. Tramontana - Gennaio 2026

IoC, DI e Dati Persistenti
▸ I dati di in una tabella del database sono rappresentati nel codice tramite: Entity,

Repository, Service, e Controller

▸ Entity rappresenta il dato; e JPA (Java Persistence API) mappa sulla tabella l’entità
@Entity
@Table(name = "users")
public class User {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;

 private String email;
 private String name;
}

▸ Repository permette l’accesso ai dati della tabella
@Repository
public interface UserRepository extends JpaRepository<User, Long> {

 Optional<User> findByEmail(String email);
}

▸ Spring JPA crea la classe concreta, la registra come bean e la rende disponibile.
Quindi tramite DI Spring inietta il codice generato

14

Prof. Tramontana - Gennaio 2026

Dependency Injection Su Service
▸ Service usa il repository iniettato da Spring
@Service
public class UserService {

 private final UserRepository userRepository;

 public UserService(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 public User getUserByEmail(String email) {
 return userRepository
 .findByEmail(email)
 .orElseThrow(() -> new RuntimeException("User not found"));
 }
}

▸ Spring crea il codice di UserRepository che potrebbe usare SQL o altri
modi per prendere i dati dal database

▸ Spring inietta nel costruttore un’istanza di UserRepository

15

Prof. Tramontana - Gennaio 2026

Controller
▸ Il controller riceve le chiamate dal client e usa Service
@RestController
@RequestMapping("/users")
public class UserController {

 private final UserService userService;

 public UserController(UserService userService) {
 this.userService = userService;
 }

 @GetMapping("/{email}")
 public User getUser(@PathVariable String email) {
 return userService.getUserByEmail(email);
 }
}

▸ Attraverso le annotazioni RequestMapping e GetMapping si definisce il
percorso (path) dell’end point dell’URL, questo viene mappato su un metodo

▸ Spring inietta l’istanza di UserService al controller e collega tutti gli oggetti
che servono

16

Prof. Tramontana - Gennaio 2026

Annotazioni di Spring Boot
▸ Per i microservizi con Spring Boot si usano varie annotazioni

▸ @SpringBootApplication indica che la classe è il punto di avvio
dell’applicazione (ha il main)

▸ @Service indica una classe che contiene una business logic

▸ @RestController indica una classe che è un controller con API REST

▸ @RequestMapping associa i metodi del controller alle richieste
HTTP e definisce i percorsi

▸ @GetMapping, @PostMapping, @PutMapping, @DeleteMapping
sono le annotazioni per le corrispondenti operazioni REST

▸ @RequestParam prende i parametri dalla richiesta (url)

17

Prof. Tramontana - Gennaio 2026

Annotazioni
▸ Per dependency injection

▸ @AutoWired inietta le dipendenze automaticamente

▸ Per la persistenza dei dati

▸ @Entity indica una classe come una entità JPA (tabella
nel database)

18

Prof. Tramontana - Gennaio 2026

Servizi REST
▸ Un servizio REST (Representational State Transfer) è un servizio su web che è

progettato per facilitare la comunicazione di componenti su internet

▸ Le principali caratteristiche di un servizio REST sono

▸ Statelessness: ciascuna richiesta deve contenere le informazioni utili a ricostruire lo
stato, poiché il server non conserva informazioni fra una richiesta e la successiva

▸ Risorse: le risorse rappresentano qualsiasi dato e ogni risorsa è identificata da un
URI (Uniform Resource Identifier) unico

▸ Operazioni CRUD: i servizi REST supportano le quattro operazioni base sulle
risorse (Creation, Read, Update, Delete). Tali operazioni sono mappate su metodi
HTTP come segue: POST per creare, GET per leggere, PUT per aggiornare e
DELETE per rimuovere

▸ Rappresentazione: le risorse REST sono rappresentate in un formato specifico
(spesso JSON o XML). I client richiedono la rappresentazione desiderata
nell’header della richiesta

19

Prof. Tramontana - Gennaio 2026

Servizi REST
▸ Caratteristiche dei servizi REST (continua)

▸ Interfaccia Uniforme: i servizi REST hanno un’interfaccia uniforme e consistente,
ovvero si usano i metodi Get, Post, Put, Delete di HTTP per interagire con le
risorse

▸ Comunicazione Stateless: i servizi REST comunicano attraverso un modello
richiesta-risposta (request-response) senza stato. Ogni richiesta da un client
dovrebbe contenere tutte le informazioni necessarie al server

▸ Messaggi auto-descrittivi: le risposte dal server dovrebbero contenere le
informazioni per interpretarle, queste informazioni sono contenute negli
header HTTP e nei codici di stato

▸ Hypermedia Links: gli hyperlink possono essere usati nei servizi REST per
permettere ai client di scoprire ulteriori risorse

▸ Sistemi a Strati: i servizi REST dovrebbero essere progettati in modo che si
possano aggiungere vari intermediari come load balancer, cache, sicurezza

20

