Microservizi

» | Microservizi sono servizi che si possono rilasciare in modo
indipendente e che rappresentano un certo dominio del business

» Le funzionalita incluse in un microservizio sono rese accessibili
agli altri servizi tramite la rete

» Un microservizio fornisce un endpoint che & una coda o una
chiamata REST sopra un certo protocollo di comunicazione di rete

» | microservizi abbracciano il concetto di information hiding,
ovvero nascondono pil informazioni possibile ed espongono il
meno possibile attraverso le interfacce

» Si hanno piu tipi di interfacce per la stessa funzionalita, e si usa
il simbolo di un esagono per il microservizio

Prof. Tramontana - Gennaio 2026

Vantaggi dei Microservizi
» Permettono eterogeneita di tecnologie
» Robustezza

» Scalabilita

» Facilita di deploy

» Componibilita

Prof. Tramontana - Gennaio 2026

Concetti Chiave dei Microservizi

» Deploy indipendente: il rilascio di un microservizio € indipendente
dal rilascio degli altri

» Per permettere il deploy indipendente i microservizi sono
accoppiati in modo lasco. | microservizi non condividono i database

» Modellano un dominio del business (attivita, lavoro)

» Possiedono il loro stato: evitano di usare un database condiviso. Se
un microservizio ha bisogno dei dati di un altro microservizio li chiede
tramite una interfaccia. Questo rende veramente possibile il deploy
indipendente

» Dimensione: non troppo grande ... iniziare con uno o pochi
microservizi e quindi aggiungerne altri in modo da rispettare
information hiding, e abbassare la complessita

Prof. Tramontana - Gennaio 2026

4

Stili di Comunicazione fra Microservizi

» Bloccante: un microservizio puo effettuare una chiamata a un altro
microservizio e aspettare la risposta

» Asincrono: un microservizio puo chiamare un altro microservizio e
portare avanti altro

» Richiesta-risposta: un microservizio manda una richiesta a un altro
microservizio e si aspetta di ricevere una risposta che lo informa del
risultato

» Guidato da eventi: i microservizi emettono eventi che altri microservizi
consumano e reagiscono di conseguenza. Il microservizio che emette
I'evento non conosce quale microservizio consumera l'evento

» Dati condivisi: i microservizi possono collaborare attraverso una
sorgente di dati condivisi

Prof. Tramontana - Gennaio 2026



Scelte Tecnologiche

» Alcuni framework permettono di effettuare chiamate a
processi remoti come SOAP e gRPC

» REST: & uno stile architetturale attraverso il quale una
risorsa (per es. un Ordine o un Cliente) viene esposta e vi
si puo accedere usando operazioni GET o POST

» GraphQL & un protocollo che permette ai consumatori di
definire query che prendono informazioni da microservizi
e che filtrano i risultati per restituire cio che é richiesto

» Message broker: un middleware che permette di
effettuare una comunicazione asincrona attraverso code

Prof. Tramontana - Gennaio 2026

gRPC

» GRPC & un framework di comunicazione remota
sviluppato da Google. Serve a far comunicare microservizi
fra loro in modo efficiente

» Usa HTTP/2
» Usa Protocol Buffers (protobuf) invece di JSON

» E'tipizzato

Prof. Tramontana - Gennaio 2026

Microservizi con SpringBoot

» Per poter usare i microservizi usando Spring Boot e Visual
Studio Code

» Impostare I'ambiente VS Code installando Spring Boot
Extension Pack

» Creare un progetto Spring Boot usando VS Code Spring

Initializr (oppure tramite https://start.spring.io), oppure
scaricando un progetto gia creato da https://spring.io/

guides/gs/spring-boot
» Il progetto usera Spring Web (in modo da avere API REST)

Prof. Tramontana - Gennaio 2026

Componenti per gRPC

» Un contratto (protobuf) che definisce il servizio

service HelloService {
rpc SayHello (HelloRequest) returns (HelloResponse);

» Una classe che gira su server Spring Boot

@GrpcService
public class HelloServiceImpl extends HelloServiceGrpc.HelloServiceImplBase {

@Override
public void sayHello(HelloRequest request, StreamObserver<HelloResponse> responseObserver) {
HelloResponse response = HelloResponse.newBuilder().setMessage("Ciao " + name).build();
responseObserver.onNext (response) ;
}
¥

» Client Spring Boot

@Service
public class HelloClient {
@GrpcClient("hello-service")
private HelloServiceGrpc.HelloServiceBlockingStub stub;

public String call(String name) {
HelloRequest request = HelloRequest.newBuilder().setName(name).build();
return stub.sayHello(request).getMessage();

¥ Prof. Tramontana - Gennaio 2026



Sviluppo del Microservizio

» Aprire il file src/main/java/com/example/demo/DemoApplication.java e creare
una API REST come segue

package com.example.demob;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.RestController;

@SpringBootApplication
@RestController
public class DemobApplication {
public static void main(String[] args) {
SpringApplication.run(DemobApplication.class, args);

+

@GetMapping("/hello")
public String hello(@RequestParam(value = "name", defaultValue = "World") String name) {
return String.format("Hello %s!", name);

@GetMapping("/helloSpr")
public String sayHello() {
return "Hello, Spring Boot!";

Prof. Tramontana - Gennaio 2026

Inversion of Control (IoC)

» Spring Boot usa l'inversion of Control (loC) che ¢ il principio di progettazione
secondo cui gli oggetti (istanze) necessarie non si creano implementando
codice dell'applicazione ma ¢ il framework Spring Boot a crearle

» La loC é realizzata tramite lo Spring loC Container, o ApplicationContext. Il
container crea gli oggetti (detti bean), ne gestisce il ciclo di vita e i loro
collegamenti

» La Dependency Injection (DI) & la tecnica usata per realizzare la loC. Con la DI,
una classe prende le dipendenze dall'esterno anziché crearle al suo interno
@Service

public class OrderService {
private final OrderRepository orderRepository;

public OrderService(OrderRepository orderRepository) {
this.orderRepository = orderRepository;

+
@Repository

public class OrderRepository {
} Prof. Tramontana - Gennaio 2026

Esecuzione

» Dal terminale si puo eseguire mvn spring-boot:run
» Dal browser

» http://localhost:8080/hello

» http://localhost:8080/helloSpr

» http://localhost:8080/hello?name=Emi

Prof. Tramontana - Gennaio 2026

Dependency Injection

» Spring Boot si serve delle annotazioni @Service e @Repository per
individuare le classi utili, riconosce che OrderService necessita di un
OrderRepository e gli inietta automaticamente I'istanza corretta

» La dipendenza tramite costruttore (Constructor Injection) é la prassi
raccomandata e fornisce: immutabilita, testabilita e dipendenze facili da
riconoscere

public OrderService(OrderRepository orderRepository) { ...
» In alternativa si puo usare la Field Injection, annotando un campo

@Autowired
private OrderRepository repo;

» Oppure la Setter Injection

@Autowired
public void setRepo(OrderRepository repo) {
this.repo = repo;

¥ Prof. Tramontana - Gennaio 2026



Vantaggi Forniti da Dl e lIoC

» Dl e loC permettono il disaccoppiamento: una classe che
dipende da una interfaccia puo prendere in input una
istanza di una qualunque classe che implementa
quell’interfaccia

» Il test & piu facile poiché si puo passare un mock o uno
stub facilmente

» Il codice ha meno dipendenze rigide e quindi & piu facile
da evolvere

» Quindi, Spring controlla la creazione dei bean e inietta
automaticamente le dipendenze

Prof. Tramontana - Gennaio 2026

Dependency Injection Su Service

» Service usa il repository iniettato da Spring

@Service
public class UserService {

private final UserRepository userRepository;
public UserService(UserRepository userRepository) {

this.userRepository = userRepository;

public User getUserByEmail(String email) {
return userRepository
.findByEmail(email)
.orElseThrow(() —> new RuntimeException("User not found"));

b

» Spring crea il codice di UserRepository che potrebbe usare SQL o altri
modi per prendere i dati dal database

» Spring inietta nel costruttore un’istanza di UserRepository

Prof. Tramontana - Gennaio 2026

loC, DI e Dati Persistenti

» | dati di in una tabella del database sono rappresentati nel codice tramite: Entity,
Repository, Service, e Controller

» Entity rappresenta il dato; e JPA (Java Persistence API) mappa sulla tabella I'entita

@Entity
@Table(name = "users")
public class User {

@I1d

@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;

private String email;

private String name;

}
» Repository permette I'accesso ai dati della tabella

@Repository
public interface UserRepository extends JpaRepository<User, Long> {

Optional<User> findByEmail(String email);

» Spring JPA crea la classe concreta, la registra come bean e la rende disponibile.

Quindi tramite DI Spring inietta il codice generato Prof. Tramontana - Gennaio 2026

Controller

» Il controller riceve le chiamate dal client e usa Service

@RestController
@RequestMapping("/users")
public class UserController {

private final UserService userService;

public UserController(UserService userService) {
this.userService = userService;

@GetMapping("/{email}")
public User getUser(@PathVariable String email) {
return userService.getUserByEmail(email);
¥
}

» Attraverso le annotazioni RequestMapping e GetMapping si definisce il
percorso (path) dell'end point dell’'URL, questo viene mappato su un metodo

» Spring inietta l'istanza di UserService al controller e collega tutti gli oggetti
che servono

Prof. Tramontana - Gennaio 2026



Annotazioni di Spring Boot

»

Per i microservizi con Spring Boot si usano varie annotazioni

@SpringBootApplication indica che la classe ¢ il punto di avvio
dell'applicazione (ha il main)

@Service indica una classe che contiene una business logic
@RestController indica una classe che € un controller con APl REST

@RequestMapping associa i metodi del controller alle richieste
HTTP e definisce i percorsi

@GetMapping, @PostMapping, @PutMapping, @DeleteMapping
sono le annotazioni per le corrispondenti operazioni REST

@RequestParam prende i parametri dalla richiesta (url)

Prof. Tramontana - Gennaio 2026

Annotazioni

» Per dependency injection

» @AutoWired inietta le dipendenze automaticamente

» Per la persistenza dei dati

» @Entity indica una classe come una entita JPA (tabella

nel database)

Prof. Tramontana - Gennaio 2026

20

Servizi REST

» Un servizio REST (Representational State Transfer) & un servizio su web che &

progettato per facilitare la comunicazione di componenti su internet

» Le principali caratteristiche di un servizio REST sono

» Statelessness: ciascuna richiesta deve contenere le informazioni utili a ricostruire lo

stato, poiché il server non conserva informazioni fra una richiesta e la successiva

» Risorse: le risorse rappresentano qualsiasi dato e ogni risorsa & identificata da un

URI (Uniform Resource Identifier) unico

» Operazioni CRUD: i servizi REST supportano le quattro operazioni base sulle

risorse (Creation, Read, Update, Delete). Tali operazioni sono mappate su metodi
HTTP come segue: POST per creare, GET per leggere, PUT per aggiornare e
DELETE per rimuovere

» Rappresentazione: le risorse REST sono rappresentate in un formato specifico

(spesso JSON o XML). | client richiedono la rappresentazione desiderata
nell’header della richiesta

Prof. Tramontana - Gennaio 2026

Servizi REST

» Caratteristiche dei servizi REST (continua)

v

v

v

v

v

Interfaccia Uniforme: i servizi REST hanno un’interfaccia uniforme e consistente,
ovvero si usano i metodi Get, Post, Put, Delete di HTTP per interagire con le
risorse

Comunicazione Stateless: i servizi REST comunicano attraverso un modello
richiesta-risposta (request-response) senza stato. Ogni richiesta da un client
dovrebbe contenere tutte le informazioni necessarie al server

Messaggi auto-descrittivi: le risposte dal server dovrebbero contenere le
informazioni per interpretarle, queste informazioni sono contenute negli
header HTTP e nei codici di stato

Hypermedia Links: gli hyperlink possono essere usati nei servizi REST per
permettere ai client di scoprire ulteriori risorse

Sistemi a Strati: i servizi REST dovrebbero essere progettati in modo che si
possano aggiungere vari intermediari come load balancer, cache, sicurezza

Prof. Tramontana - Gennaio 2026



