Resilience4J

» Resilience4j é una libreria per il supporto alla gestione dei
guasti che é progettata con la programmazione funzionale

» Fornisce funzioni di ordine alto (decoratori) che prendono
come input funzioni (espressioni lambda o metodi)

» | decoratori disponibili realizzano Timeout, Circuit Breaker,

Bulkhead, Rate Limiter, Retry

RESILIENCEA)

Prof. Tramontana - Gennaio 2026

3 4
Esempio con TimeLimiter e Retry Esempio con Circuit Breaker
» Configurare un TimeLimiter e indicare la durata massima del servizio » Impostare una Configurazione per il circuit breaker
(timeOUtDuration) CircuitBreakerConfig config = CircuitBreakerConfig.custom()

.failureRateThreshold(50) // percentuale di fallimenti per aprire il circuito
> Configurare un Retry e indicare il numero di tentativi (maxAttempts) e .waitDurationInOpenState(Duration.ofSeconds(5)) // ritardo da open -> half-open
.slidingWindowSize(1@) // numero di chiamate da osservare nello stato chiuso

I'intervallo fra un tentativo e il successivo (waitDuration) .minimumNumber0fCalls(5)
.permittedNumberOfCallsInHalfOpenState(3)

. Lbuild();
» Dichiarare un Supplier che invoca il servizio su un thread dedicato
CircuitBreaker circuitBreaker = CircuitBreaker.of("bankService", config);

Supplier<CompletableFuture<String>> futureSuppl = () —>

CompletableFuture.supplyAsync(() —> bank.charge(accountId, amount)); > Decorare || servizio da invocare (ChargeACCOUnt) con ||
» Decorare il supplier con un timeout circuit breaker
Callable<String> timedCall = TimeLimiter.decorateFutureSupplier(timeLimiter, futureSuppl); Supplier<String> decoratedSupplier = CircuitBreaker.decorateSupplier(circuitBreaker,

. () —> bank.chargeAccount(accountId, amount));
» Decorare il timeout con un retry
» Chiamare il servizio

Callable<String> retryableCall = Retry.decorateCallable(retry, timedCall);
result = decoratedSupplier.get();

» Effettuare la chiamata

retryableCall. call(); Prof. Tramontana - Gennaio 2026 Prof. Tramontana - Gennaio 2026

