
RESILIENCE4J
Prof. Tramontana - Gennaio 2026

Resilience4J
▸ Resilience4j è una libreria per il supporto alla gestione dei

guasti che è progettata con la programmazione funzionale

▸ Fornisce funzioni di ordine alto (decoratori) che prendono
come input funzioni (espressioni lambda o metodi)

▸ I decoratori disponibili realizzano Timeout, Circuit Breaker,
Bulkhead, Rate Limiter, Retry

2

Prof. Tramontana - Gennaio 2026

Esempio con TimeLimiter e Retry
▸ Configurare un TimeLimiter e indicare la durata massima del servizio

(timeoutDuration)

▸ Configurare un Retry e indicare il numero di tentativi (maxAttempts) e
l’intervallo fra un tentativo e il successivo (waitDuration)

▸ Dichiarare un Supplier che invoca il servizio su un thread dedicato
Supplier<CompletableFuture<String>> futureSuppl = () ->
 CompletableFuture.supplyAsync(() -> bank.charge(accountId, amount));

▸ Decorare il supplier con un timeout
Callable<String> timedCall = TimeLimiter.decorateFutureSupplier(timeLimiter, futureSuppl);

▸ Decorare il timeout con un retry
Callable<String> retryableCall = Retry.decorateCallable(retry, timedCall);

▸ Effettuare la chiamata
retryableCall.call();

3

Prof. Tramontana - Gennaio 2026

Esempio con Circuit Breaker
▸ Impostare una configurazione per il circuit breaker
CircuitBreakerConfig config = CircuitBreakerConfig.custom()
 .failureRateThreshold(50) // percentuale di fallimenti per aprire il circuito
 .waitDurationInOpenState(Duration.ofSeconds(5)) // ritardo da open -> half-open
 .slidingWindowSize(10) // numero di chiamate da osservare nello stato chiuso
 .minimumNumberOfCalls(5)
 .permittedNumberOfCallsInHalfOpenState(3)
 .build();

CircuitBreaker circuitBreaker = CircuitBreaker.of("bankService", config);

▸ Decorare il servizio da invocare (chargeAccount) con il
circuit breaker

Supplier<String> decoratedSupplier = CircuitBreaker.decorateSupplier(circuitBreaker,
 () -> bank.chargeAccount(accountId, amount));

▸ Chiamare il servizio
result = decoratedSupplier.get();

4

