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Abstract host where to run an application, their user is nevertheless

still asked to write appropriate code describing the job and

The Grid is a dynamic environment in which resources driving the matchmaking phase, which will determine the
can quickly go from idle to busy state depending on applica- host where the application is deployed. In an alternative ap-
tion operations. In such a scenario, resources can be usedproach, based on services provided by a library such as e.qg.
more effectively by introducing reservation and allocation. CoG [16], an application has to include invocations to both

As a solution, this paper proposes STREGA: a software find resources and deploy itself. No existing approach can
architecture that handles resource reservation and greatly be considered fully transparent.
simplifies the integration of applications with a Grid envi- Resource reservation and allocation is crucial in environ-
ronment. In it, resources needed by applications are auto- ments as dynamic as Grid ones. The reservation phase pro-
matically detected, and operations such as resource reser-vides some confidence that a following allocation request
vation and allocation are accordingly transparently per- Wwill succeed. Moreover, reservation avoids resources to be-
formed e.g. using Globus services. come (over)loaded by simultaneous use from several appli-

Within STREGA, some components are aimed at undercations. This could make it difficult or impossible for an
standing the needs of application classes, other component@pplication to carry on or satisfy its temporal constraints.
dynamically re-adapt resource requests on the basis of the The Globus toolkit is the most widespread implementa-
observed application behaviour. Additional components are tion of Grid services and protocols and is currently used
proposed to support reservation when this is unavailable to support the major Grid projects [8]. Recent Globus

from the underlying system (i.e. Globus and the OS). extension proposals contain a software component, called
GARA [9], which handles resource reservation. Currently

in Globus, resource allocation is made possible by a soft-
ware component called GRAM [4]. GRAM uses the sched-
ulers provided by the resources to handle their allocation
(suitable underlying schedulers are therefore needed).

Grid systems provide standard open protocols that en-  The aim of this paper is twofold: firstly it proposes some
able sharing of resources controlled by different domains. software components that support the phases of resource

Executing a Grid application, once implemented and finding, application deployment, and resource reservation
available, is not really smooth. It poses several difficul- and allocation; secondly, it shows how applications can
ties related with operations typical of the Grid environment, be transparently provided with the proposed support com-
such as deployment, resource reservation and allocation [8]ponents, by means of an integrating software architecture,
When submitting an application, users must pass an authenwhich we call STREGA (Support for Transparently han-
tication phase [8, 10]. Moreover, users have to find the dling REsources for Grid Applications).
needed resources among those available on the Grid, such Our approach focuses on Java applications, but is easily
as a host holding the appropriate hardware and software, theadapted to other (possibly non object-oriented) contexts.
repository providing the necessary input files, etc. Integration is easily achieved thanks to two devices: (i)

Once needed resources have been identified, the applisupport components employed are capable of estimating
cation has to be deployed accordingly. Although some the needs of an application, which relieves programmers or
software facilities are nowadays available, such asRee users from the burden of providing information necessary
source Brokerfor DataGrid [1], which help choosing the forintegration; (ii) the connection mechanism used does not

1. Introduction



force applications to be aware of the said support.

The connection mechanism exploited is basedom- -
putational reflectiof13]. Thanks to the use of reflection reftectille mefhanism
in STREGA, we manage to introduce Grid related concerns
(such as resource finding, reservation and allocation) into
applications that do not consider such issues.

This paper is structured as follows. Next section intro-
duces the concept of computational reflection. Section 3
describes the STREGA software architecture. Finally, con-
clusions are drawn in Section 4.

Application

Reder Remon Rho
A metalevel

Globus API

Figure 1. STREGA overview
2. Computational Reflection

and finds them, relying on the indexing services avail-

Computational reflectiorprovides a software system . .
b iy y able in Globus or over it.

with means to observe some of its own parts and perform
operations on them [13]. A reflective object-oriented sys- Resource Request Monitor (Remon)understands the re-

tem usually consists of two, or more, levels; according to quirements of the application classes, and dynamically
the metaobject modghhich is the most widespread one, reserves and allocates resources on behalf of the appli-
objects at the lower level, termduhselevel are transpar- cation according to its run time evolution.

ently observed and influenced by higher level objects, re- )

siding at themetalevel Thesemetaobjectginstances of a Resource Holder (Rho) takes into account resource reser-
special clasdetaobject ) can modify the behaviour of vation and allocation requests issued on behalf of var-
their associated baselevel objectsigrceptingoperations ious classes (not necessarily all within the same appli-
on them, e.g. instantiations and invocations. A metaobject ~ Cation). Reservation is performed by using Globus ser-

associated with an object is also ableiiepectthe object vices when available, or ad hoc services (to be specifi-
to retrieve its state and structure at run-time. cally implemented) otherwise.

Java supports inspection, while interception can be sup-  As we argue in [6] (in a context different but in this
plied by additional packages, such as Javassist [3]. respect comparable to the present one), besides the latter

Reflection is effective in separating the development of metalevel classes, additional ones are in fact necessary to
parts of code of different nature, while providing the nec- sypport distributed concerns such as e.g. objects and oper-
essary connection between them at run-time. Reflectivegtions delivering. Especially noteworthy among them are
systems have been proposed to separate typical applicatiopgcator ~ and ServerProxy , which are used respec-
functionalities from supplementary concerns such as syn-tjyely to store the location of distributed objects, and to re-

chronisation [15], distribution [6], etc. ceive data and commands on the server side.
Let us note that the authorisation of a user who wants to
3. The STREGA Software Architecture work with Grid hosts is performed automatically within the

Globus toolkit. A user needs only to initialise the Globus

STREGA aims to transparently provide applications service responsible to certify his identity to resource man-
with reservation handling. STREGA baselevel can be iden-2agers throughout the execution of the application. Thus no
tified with the application logic (addressing user-oriented Metalevel support is needed for transparent authorisation.
issues like simulations, transformations of raw data, and STREGA metalevel classes will now be described in
other computations); whereas the metalevel handles Griddreater detail.
resource reservation and allocation by interfacing with )

Globus services, with the twofold goal of understanding 3-1. Resource Finder (Reder)

which resources the application needs, and properly con-

necting application classes to Globus components. Usually, in a Grid environment, users, once logged in,
As sketched in Figure 1, STREGA relies on the follow- need to find the appropriastatic resourcegi.e. hosts, op-

ing metalevel classes to integrate applications with Globus. €rating system, run time libraries, input files, and/or appli-
cations) before they can execute their activity. Generally,

Resource Finder (Reder)is responsible to find Grid re- as far adynamic resourcessuch as host workload, avail-
sources satisfying specified criteria. For this it accepts able bandwidth, etc., are concerned, users cannot make as-
arequest for needed resources, produces the equivalergumptions on their dynamics or state, and are not enabled
code describing the resources in an appropriate form,to check or trust their conditions.



o ey application is running, so as to adapt to the needs it exhibits
gy

Reder Remon Rho at run time. Thanks to the reflective approach, applications
| metalever are provided with resource reservation and allocation, with-
¢ @ j=new Job(jobAd) gr=new GargReservation(h,r) OUt fOrCing their programmers, nor their.us_ers, to e_xpl_ic-
HistMatchingCE() Oy itly handle these issues. The task of monitoring application
Bl:{:ks;u(r;es) Vs {Qf=nou Gramob(s) q) | grcindighe) classes and estimating their needed resources is entrusted to

metaobjecRemon This metaobject is associated with each
baselevel application class so as to intercept all operations

GRAM = -- GARA . .. . ..
and transform implicit needs into explicit resource reserva-
tion and allocation requests.
To find out what a class need®emonstatically analyses
Figure 2. STREGA and Globus interactions its bytecode, determining the following data, as appropriate.
i. the list of run time libraries used by the class;
In STREGA, static resources are found, while the appli- ii. the list of input files accessed by the class;

cation executes and transparently for it, by clResler .
This class implements queries to a DataGrid facility, called
Resource Broker (RBjhat, on the basis of the requirements

iii. an indication whether it extends the standard
JDK classThread or implements JDK interface

presented to it and the resources it knows about, finds the Runnable ;
most appropriate host. To this aim an RB explém®rma- iv. the estimated number of objects created inside its
tion Serviceswhich can be considered as repositories hold- code:

ing a list of available resources. Several RBs are available, o
each referring to groups of repositories. The querying pro- V- an estimation of the degree of use of processor,
cess assumes that the reference to at least an RB is known. ~ disk and network that this class performs once in-
The RB concept is modelled after tMatchmakef14]. stantiated.

Accordingly, classReder is endowed with method
find(String spec) , Which takes a list of static re-
sources as the input parametgrec ; transforms it into

the equivalenCIass_ified Adverti_sement (C_IassA{jM]; in- . lated to static resources, appear in requestReder to
vokes the appropriate RB service; and finally returns a list find a host. Items (iii), (iv) and (v) above, instead, are used

Or]: ayaﬂable_host.; satls;y%ng the re(;qussthlgggre ﬁ(a)csgowsm interactions withRho for the sake of reservation and al-
the interactions betweeReder and the via the Co location of dynamic resources.

library. Resqlts from RB are appropriatgly cached into The estimated degree of processor, disk and network use
Reder to avoid frequent and time consuming queries. are determined in advance for a class, by an analysis of
its bytecode. Three totals callegh,,;, opg;sk and opye;

are calculated by adding up all weighted occurrences of,

respectively: all opcodes, method invocations to packages
related to disk access, and method invocations to network-
AV related packages. The weight given to each invocation op-
applications use them. On the one hand, resources can bg,qe occurrence depends on the associated JVM instruction
replaced or disconnected without advance warnings. O”complexity, the nature of the application (e.g. a file copier

the other hand, due to the lack of precise knowledge aboutyjication is given different weights than an image recog-
the applications that will be executed, it is difficult to fore- 0 application) and its context (including, e.g., the loop
cast resource use beforehand. For these reasons, and in ﬂ??esting level). Then we set:

absence of reservation mechanisms, a running application
could experience difficulties when using a resource whose g, — PPdisk ,, _ OPnet gy oy,

MetaobjectRemontransforms the estimation of needed
resources into explicit requests to the other metalevel ob-
jectsReder andRho. Lists (i) and (ii) above, being re-

3.2. Resource Request Monitor (Remon)

The Grid is a dynamic environment in which resources
can quickly go from idle to busy state depending on how

degree of utilisation varies. As a result it could become OPtot OPtot
impossible for the application to, e.g., satisfy its temporal \yhich indicate disk, network and processor use respec-
constraints or even carry on. tively. These three parameters are intended to describe

In STREGA, resource reservation and allocation are per-the yse rate of the respective resource. Eugrepresents
formed both when the application is started and while the how much disk operations are performed related to the total

1The ClassAd language is a data model that can be used to represenfMount of CompUta“c_mS carried out. The higher the value
services and constraints. of du, the faster the disk needed for such a class.




In previous investigations [5], the above parameters have Remote Host RhoGPU
been successfully used to characterise the nature of a class, ‘Rho dcreserve() f /o
and understand the most appropriate allocation. Moreover, /
since they do not require substantial computations, they can
be calculated at run time, just before an object is instanti-
ated. In any case they need to be determined just once for ‘Reder
each application class. . d(-k)

WhenRemonintercepts the creation of a new instance of :Remon ———
an application class, it determines whether it will be invoked 2: trapT
concurrently with other application threads (cf. indication etalovel
(i) extracted from the bytecode). If so, more resources T S RS EELRERRRRRERRRAEE
are needed, since the CPU will be asked to operate for the
invoking object and, in parallel, the newly created object.
Thus, it seems appropriate tHRémonshould pass a hew
reservation request towar&ho. However, if an instantia-
tion does not spawn a separate thread, resource reservation
is only requested tRho for class parameters that differ sub-
stantially from the average ones of previous instantiations.

As a strategy to avoid too frequent resource requests,
those actually issued specify a larger amount of resourceswe rely on its services and simply implement invocations
than strictly necessary. This resource surplus is propor-to it inside Rho. It should be noted that, in such a case,
tional to the number of remaining instances that will be GARAS reservation policy imposes some rules (e.g. what to
created subsequently by the class whose has been in-  reserve and how to ask for it) to our architectural component
tercepted (cf. indication (iv) extracted from the bytecode). Rho. In our experimentsRho accesses GARA for the sake
When Remonintercepts an instantiation, it compares the of reservation through the Java CoG library. As Figure 2
actual use of resources with the already reserved ones, anghows,Rho uses constructdaraReservation(h,r)
decides whether a new reservation reque®ito is neces-  to instantiate a new object of claG@araReservation
sary. If so, resource allocation is postponed URtibgrants  thus performing the reservation on hiwsof the resources
the requested reservation, This allows the execution of thedescribed i (see (b)).
object’s constructor and subsequent method calls on it. In the second scenario, when GARA is unavailable

Remonhandles the scenario in which resource reserva-within the underlying middleware, or its facilities are un-
tion does not succeed, i.e. whBfo decides that no more  satisfactoryRho handles reservation and allocation.
requests can be accepted. In this case the needed resources |, gch a scenaridiho interacts with classe@hoCPU
have to be searched on other hosts. TRemonobtains  Rpopisk andRhoNet, each providing a reservation and
from Reder the list of capable hosts in order to start & gjjocation policy customised for a resource category. The
phase that allocates objects remotely (see Section 3.4 fok5sk ofRho is to intercept every request froRemonand
the description of interactions between metalevel objects). (e_direct it to the appropriate resource handler class. As

Figure 3 shows, classéRho, RhoCPU RhoDisk and
3.3. Resource Holder (Rho) RhoNet cooperate as in design pattefacade[11]. This
provides an interfacing clasRo) that shields clients from

Metalevel clasRho handles resource reservations and directly accessing many small classes, each implementing
allocations through its methodseserve(float pu, a specialised resource reservation policy. The interfacing
float du, float nu) and allocate(int id) , class delegates the work to known classes when asked for
respectively. The first method takes as input parameters theéd service. The main advantage of this design pattern is
resource use parameters characterising the class (those deromoting weak coupling between clients and the small
termined byRemon cf. Section 3.2), and returns an integer classes, thus enhancing reuse and evolution.
resource identifier. The second method takes this identifier Rho’s methodreserve()  invokes each class with the
as input parameter and uses it to actually allocate the re-appropriate parameter characterising the resource category
served resources. (e.g.pu for classRhoCPU. When the reservation of all the

We consider two reservation scenarios. The first appliesresources is successful, an identifier is built and returned to
when the underlying middleware provides the necessarythe caller to allow subsequent allocation. Zero is returned if
support for reserving resources, which in Globus is repre- resource reservation could not be satisfied.
sented by the GARA service. When GARA is available, Rho's methodallocate() uses the provided identi-

: reserve()

> :RhoNet
8: reserve() Rh /
-Rho

6: reserve()

:RhoDisk

ﬂa: reserve()

Figure 3. STREGA class diagram



fier to check that allocation for a reserved resource is per-a stage after which further execution of even a small job
formed just once. Moreover, it allows checking whether takes an excessive processing time. These workloads will
inappropriate allocation is attempted, e.g. by an object thatbe referred to a&w andmaz, respectively. For determin-
is trying allocation without a previous reservation. ing thelow workload we run a sample algorithm that mea-
For both the reservation scenarios taken into account,sures how fast the CPU is when no jobs are executing, i.e.
i.e. with or without GARA support, we ultimately per- when only the basic services are active (cf. the concept of
form resource allocation relying on the services provided relaxation[5]). For determining thenax workload we pro-
by GRAM. Methodallocate() uses the CoG Java li- gressively increase the load by executing a known job an
brary to access GRAM services through the mechanismsincreasing number of times, until the execution time of the
sketched in Figure 2 as Java statements. When GARA is notsample algorithm is considered too costly. The job we use
used, because unavailable or unsuitable, then ourRlags  to load the host consists of an active object whose class has
creates an instance, say, of classGramJob (describ- a highpu. The number of times the job has to be executed
ing the resources to be requested based on the constructort reach thenaz workload is stored as2maxz. Our sam-
RSL [4] string parameters| ), and then requests their al- ple algorithm executes in 10 milliseconds on a idle 2GHz

location on hosh by invoking methodyj.request(h) Pentium processor with 512MB of RAM. We consider that
(see Figure 2, (c)). In contrast, when GARA is used, classsuch a host has reached thax workload when the execu-
Rho simply invokes methodind() on the instancer , tion time of the sample algorithm is 100 times longer than

used for the previous reservation (Figure 2, (b)), speci-on the idle host (1 second in our case).
fying as parametegbp an instance of the Globus class We then calculate an intermediate threshold, cattéd,
GaraBindParameters  (see (d)). as the mean value between the two previous thresholds. Fi-

As shown in Figure 3, resource reservation requests tonally ahigh threshold is calculated as the mean value be-
Rho can be received froRemoninstances residing on the tween thenid andmax thresholds.
local host or on remote hosts. In the latter case, we have At run time, we periodically sense the actual host work-
to distinguish whetheRemonis trying to reserve resources load, and count reservation requests that have been accepted
for the first time for the distributed application at hand. without an ensuing allocation yet. Thegendingrequests

If so, some support (i.€ServerProxy ) hasto be pro-  are considered no more valid, and thus eliminated, after a
vided locally, to receive application data and commands fixed time-frame. A new reservation request is accepted
from remote hosts. As a result, the resources requestedor any value ofpu, provided the measured workload is be-
have to be incremented to account for the resources thatow the mid threshold and the number of pending requests
will be exploited byServerProxy . When enough re- less tham2maz/2. When the measured workload is be-
sources are available locally, th&ho instantiates the new  tweenmid andhigh and the pending requests are less than
ServerProxy and communicates the port that the remote n2maxz/4, we accept requests whoge is below 0.5. We
Remonwill use. do not accept any request when the workload exceeds the
high threshold.

Using the described algorithm, once reservation is per-
formed, RhoCPUwill avoid to accept requests that poten-

ClassRhoCPUestimates at run time whether more requests tially overload the CPU.
can still be accepted without overloading the CPU. Itis dif-
fig:ult to calcu!ate_the Ipad oﬁgred by a code fragment by 3.3.2 Reserving Network and Disk
simply analysing it statically, since many factors are uncer-
tain. The actual load offered by a fragment of code, among Recently, some communication protocols have appeared
other things, depends on: the flow of control inside it, the that allow data transmission modes to be differentiated,
varying CPU use of different parts inside the fragment of in order to support non-trivial quality of service manage-
code, the effect of simultaneously executing several frag-ment [2]. In this context, resource reservation can support
ments, the CPU type and the frequency of its cycles, thethe achievement of a better communication service. For
amount of available memory, etc. [12]. this purpose, rather than employing a reservation service
We consider whether to accept the reservation for exe-constrained by a time-based approach [7], which assumes
cuting a new instance of a class on the basis of the currenknowledge that we cannot extract from the class code (such
workload of a host angu (see Section 3.2). We consider as starting time and duration of the communication), we
that the highepu, the higher the workload of a CPU will propose a simpler reservation policy, similar to that devised
be after execution of the corresponding instance. for CPU power, in Section 3.3.1.
In an off-line measurement phase, we determine the l.e., in order to decide when the available bandwidth or
workloads of a host when (1) it is idle, and (2) has reached disk can be further reserved on a host, appropriate thresh-

3.3.1 Reserving CPU Power



olds are determined off-line, and, while the application runs, where reservation is supported by the Globus GARA com-
classRhoNet and RhoDisk periodically monitor band-  ponent and where GARA is unavailable.

width and disk use, respectively. Requests to reserve net-
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