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Abstract

The Grid is a dynamic environment in which resources
can quickly go from idle to busy state depending on applica-
tion operations. In such a scenario, resources can be used
more effectively by introducing reservation and allocation.

As a solution, this paper proposes STREGA: a software
architecture that handles resource reservation and greatly
simplifies the integration of applications with a Grid envi-
ronment. In it, resources needed by applications are auto-
matically detected, and operations such as resource reser-
vation and allocation are accordingly transparently per-
formed e.g. using Globus services.

Within STREGA, some components are aimed at under-
standing the needs of application classes, other components
dynamically re-adapt resource requests on the basis of the
observed application behaviour. Additional components are
proposed to support reservation when this is unavailable
from the underlying system (i.e. Globus and the OS).

1. Introduction

Grid systems provide standard open protocols that en-
able sharing of resources controlled by different domains.

Executing a Grid application, once implemented and
available, is not really smooth. It poses several difficul-
ties related with operations typical of the Grid environment,
such as deployment, resource reservation and allocation [8].
When submitting an application, users must pass an authen-
tication phase [8, 10]. Moreover, users have to find the
needed resources among those available on the Grid, such
as a host holding the appropriate hardware and software, the
repository providing the necessary input files, etc.

Once needed resources have been identified, the appli-
cation has to be deployed accordingly. Although some
software facilities are nowadays available, such as theRe-
source Brokerfor DataGrid [1], which help choosing the

host where to run an application, their user is nevertheless
still asked to write appropriate code describing the job and
driving the matchmaking phase, which will determine the
host where the application is deployed. In an alternative ap-
proach, based on services provided by a library such as e.g.
CoG [16], an application has to include invocations to both
find resources and deploy itself. No existing approach can
be considered fully transparent.

Resource reservation and allocation is crucial in environ-
ments as dynamic as Grid ones. The reservation phase pro-
vides some confidence that a following allocation request
will succeed. Moreover, reservation avoids resources to be-
come (over)loaded by simultaneous use from several appli-
cations. This could make it difficult or impossible for an
application to carry on or satisfy its temporal constraints.

The Globus toolkit is the most widespread implementa-
tion of Grid services and protocols and is currently used
to support the major Grid projects [8]. Recent Globus
extension proposals contain a software component, called
GARA [9], which handles resource reservation. Currently
in Globus, resource allocation is made possible by a soft-
ware component called GRAM [4]. GRAM uses the sched-
ulers provided by the resources to handle their allocation
(suitable underlying schedulers are therefore needed).

The aim of this paper is twofold: firstly it proposes some
software components that support the phases of resource
finding, application deployment, and resource reservation
and allocation; secondly, it shows how applications can
be transparently provided with the proposed support com-
ponents, by means of an integrating software architecture,
which we call STREGA (Support for Transparently han-
dling REsources for Grid Applications).

Our approach focuses on Java applications, but is easily
adapted to other (possibly non object-oriented) contexts.

Integration is easily achieved thanks to two devices: (i)
support components employed are capable of estimating
the needs of an application, which relieves programmers or
users from the burden of providing information necessary
for integration; (ii) the connection mechanism used does not



force applications to be aware of the said support.
The connection mechanism exploited is based oncom-

putational reflection[13]. Thanks to the use of reflection
in STREGA, we manage to introduce Grid related concerns
(such as resource finding, reservation and allocation) into
applications that do not consider such issues.

This paper is structured as follows. Next section intro-
duces the concept of computational reflection. Section 3
describes the STREGA software architecture. Finally, con-
clusions are drawn in Section 4.

2. Computational Reflection

Computational reflectionprovides a software system
with means to observe some of its own parts and perform
operations on them [13]. A reflective object-oriented sys-
tem usually consists of two, or more, levels; according to
the metaobject model, which is the most widespread one,
objects at the lower level, termedbaselevel, are transpar-
ently observed and influenced by higher level objects, re-
siding at themetalevel. Thesemetaobjects(instances of a
special classMetaobject ) can modify the behaviour of
their associated baselevel objects byinterceptingoperations
on them, e.g. instantiations and invocations. A metaobject
associated with an object is also able toinspectthe object
to retrieve its state and structure at run-time.

Java supports inspection, while interception can be sup-
plied by additional packages, such as Javassist [3].

Reflection is effective in separating the development of
parts of code of different nature, while providing the nec-
essary connection between them at run-time. Reflective
systems have been proposed to separate typical application
functionalities from supplementary concerns such as syn-
chronisation [15], distribution [6], etc.

3. The STREGA Software Architecture

STREGA aims to transparently provide applications
with reservation handling. STREGA baselevel can be iden-
tified with the application logic (addressing user-oriented
issues like simulations, transformations of raw data, and
other computations); whereas the metalevel handles Grid
resource reservation and allocation by interfacing with
Globus services, with the twofold goal of understanding
which resources the application needs, and properly con-
necting application classes to Globus components.

As sketched in Figure 1, STREGA relies on the follow-
ing metalevel classes to integrate applications with Globus.

Resource Finder (Reder) is responsible to find Grid re-
sources satisfying specified criteria. For this it accepts
a request for needed resources, produces the equivalent
code describing the resources in an appropriate form,
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Figure 1. STREGA overview

and finds them, relying on the indexing services avail-
able in Globus or over it.

Resource Request Monitor (Remon)understands the re-
quirements of the application classes, and dynamically
reserves and allocates resources on behalf of the appli-
cation according to its run time evolution.

Resource Holder (Rho) takes into account resource reser-
vation and allocation requests issued on behalf of var-
ious classes (not necessarily all within the same appli-
cation). Reservation is performed by using Globus ser-
vices when available, or ad hoc services (to be specifi-
cally implemented) otherwise.

As we argue in [6] (in a context different but in this
respect comparable to the present one), besides the latter
metalevel classes, additional ones are in fact necessary to
support distributed concerns such as e.g. objects and oper-
ations delivering. Especially noteworthy among them are
Locator and ServerProxy , which are used respec-
tively to store the location of distributed objects, and to re-
ceive data and commands on the server side.

Let us note that the authorisation of a user who wants to
work with Grid hosts is performed automatically within the
Globus toolkit. A user needs only to initialise the Globus
service responsible to certify his identity to resource man-
agers throughout the execution of the application. Thus no
metalevel support is needed for transparent authorisation.

STREGA metalevel classes will now be described in
greater detail.

3.1. Resource Finder (Reder)

Usually, in a Grid environment, users, once logged in,
need to find the appropriatestatic resources(i.e. hosts, op-
erating system, run time libraries, input files, and/or appli-
cations) before they can execute their activity. Generally,
as far asdynamic resources, such as host workload, avail-
able bandwidth, etc., are concerned, users cannot make as-
sumptions on their dynamics or state, and are not enabled
to check or trust their conditions.
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Figure 2. STREGA and Globus interactions

In STREGA, static resources are found, while the appli-
cation executes and transparently for it, by classReder .
This class implements queries to a DataGrid facility, called
Resource Broker (RB), that, on the basis of the requirements
presented to it and the resources it knows about, finds the
most appropriate host. To this aim an RB exploitsInforma-
tion Services, which can be considered as repositories hold-
ing a list of available resources. Several RBs are available,
each referring to groups of repositories. The querying pro-
cess assumes that the reference to at least an RB is known.
The RB concept is modelled after theMatchmaker[14].

Accordingly, classReder is endowed with method
find(String spec) , which takes a list of static re-
sources as the input parameterspec ; transforms it into
the equivalentClassified Advertisement (ClassAd)1 [14]; in-
vokes the appropriate RB service; and finally returns a list
of available hosts satisfying the request. Figure 2(a) shows
the interactions betweenReder and the RB via the CoG
library. Results from RB are appropriately cached into
Reder to avoid frequent and time consuming queries.

3.2. Resource Request Monitor (Remon)

The Grid is a dynamic environment in which resources
can quickly go from idle to busy state depending on how
applications use them. On the one hand, resources can be
replaced or disconnected without advance warnings. On
the other hand, due to the lack of precise knowledge about
the applications that will be executed, it is difficult to fore-
cast resource use beforehand. For these reasons, and in the
absence of reservation mechanisms, a running application
could experience difficulties when using a resource whose
degree of utilisation varies. As a result it could become
impossible for the application to, e.g., satisfy its temporal
constraints or even carry on.

In STREGA, resource reservation and allocation are per-
formed both when the application is started and while the

1The ClassAd language is a data model that can be used to represent
services and constraints.

application is running, so as to adapt to the needs it exhibits
at run time. Thanks to the reflective approach, applications
are provided with resource reservation and allocation, with-
out forcing their programmers, nor their users, to explic-
itly handle these issues. The task of monitoring application
classes and estimating their needed resources is entrusted to
metaobjectRemon. This metaobject is associated with each
baselevel application class so as to intercept all operations
and transform implicit needs into explicit resource reserva-
tion and allocation requests.

To find out what a class needs,Remonstatically analyses
its bytecode, determining the following data, as appropriate.

i. the list of run time libraries used by the class;

ii. the list of input files accessed by the class;

iii. an indication whether it extends the standard
JDK classThread or implements JDK interface
Runnable ;

iv. the estimated number of objects created inside its
code;

v. an estimation of the degree of use of processor,
disk and network that this class performs once in-
stantiated.

MetaobjectRemontransforms the estimation of needed
resources into explicit requests to the other metalevel ob-
jectsReder andRho. Lists (i) and (ii) above, being re-
lated to static resources, appear in requests toReder to
find a host. Items (iii), (iv) and (v) above, instead, are used
in interactions withRho for the sake of reservation and al-
location of dynamic resources.

The estimated degree of processor, disk and network use
are determined in advance for a class, by an analysis of
its bytecode. Three totals calledoptot, opdisk and opnet

are calculated by adding up all weighted occurrences of,
respectively: all opcodes, method invocations to packages
related to disk access, and method invocations to network-
related packages. The weight given to each invocation op-
code occurrence depends on the associated JVM instruction
complexity, the nature of the application (e.g. a file copier
application is given different weights than an image recog-
nition application) and its context (including, e.g., the loop
nesting level). Then we set:

du =
opdisk

optot
nu =

opnet

optot
pu = 1− du− nu

which indicate disk, network and processor use respec-
tively. These three parameters are intended to describe
the use rate of the respective resource. E.g.du represents
how much disk operations are performed related to the total
amount of computations carried out. The higher the value
of du, the faster the disk needed for such a class.



In previous investigations [5], the above parameters have
been successfully used to characterise the nature of a class,
and understand the most appropriate allocation. Moreover,
since they do not require substantial computations, they can
be calculated at run time, just before an object is instanti-
ated. In any case they need to be determined just once for
each application class.

WhenRemonintercepts the creation of a new instance of
an application class, it determines whether it will be invoked
concurrently with other application threads (cf. indication
(iii) extracted from the bytecode). If so, more resources
are needed, since the CPU will be asked to operate for the
invoking object and, in parallel, the newly created object.
Thus, it seems appropriate thatRemonshould pass a new
reservation request towardsRho. However, if an instantia-
tion does not spawn a separate thread, resource reservation
is only requested toRho for class parameters that differ sub-
stantially from the average ones of previous instantiations.

As a strategy to avoid too frequent resource requests,
those actually issued specify a larger amount of resources
than strictly necessary. This resource surplus is propor-
tional to the number of remaining instances that will be
created subsequently by the class whosenew has been in-
tercepted (cf. indication (iv) extracted from the bytecode).
When Remon intercepts an instantiation, it compares the
actual use of resources with the already reserved ones, and
decides whether a new reservation request toRho is neces-
sary. If so, resource allocation is postponed untilRho grants
the requested reservation, This allows the execution of the
object’s constructor and subsequent method calls on it.

Remonhandles the scenario in which resource reserva-
tion does not succeed, i.e. whenRho decides that no more
requests can be accepted. In this case the needed resources
have to be searched on other hosts. ThenRemonobtains
from Reder the list of capable hosts in order to start a
phase that allocates objects remotely (see Section 3.4 for
the description of interactions between metalevel objects).

3.3. Resource Holder (Rho)

Metalevel classRho handles resource reservations and
allocations through its methods:reserve(float pu,
float du, float nu) and allocate(int id) ,
respectively. The first method takes as input parameters the
resource use parameters characterising the class (those de-
termined byRemon, cf. Section 3.2), and returns an integer
resource identifier. The second method takes this identifier
as input parameter and uses it to actually allocate the re-
served resources.

We consider two reservation scenarios. The first applies
when the underlying middleware provides the necessary
support for reserving resources, which in Globus is repre-
sented by the GARA service. When GARA is available,
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Figure 3. STREGA class diagram

we rely on its services and simply implement invocations
to it inside Rho. It should be noted that, in such a case,
GARA’s reservation policy imposes some rules (e.g. what to
reserve and how to ask for it) to our architectural component
Rho. In our experiments,Rho accesses GARA for the sake
of reservation through the Java CoG library. As Figure 2
shows,Rho uses constructorGaraReservation(h,r)
to instantiate a new object of classGaraReservation ,
thus performing the reservation on hosth of the resources
described inr (see (b)).

In the second scenario, when GARA is unavailable
within the underlying middleware, or its facilities are un-
satisfactory,Rho handles reservation and allocation.

In such a scenario,Rho interacts with classesRhoCPU,
RhoDisk andRhoNet , each providing a reservation and
allocation policy customised for a resource category. The
task ofRho is to intercept every request fromRemonand
re-direct it to the appropriate resource handler class. As
Figure 3 shows, classesRho, RhoCPU, RhoDisk and
RhoNet cooperate as in design patternFacade[11]. This
provides an interfacing class (Rho) that shields clients from
directly accessing many small classes, each implementing
a specialised resource reservation policy. The interfacing
class delegates the work to known classes when asked for
a service. The main advantage of this design pattern is
promoting weak coupling between clients and the small
classes, thus enhancing reuse and evolution.

Rho’s methodreserve() invokes each class with the
appropriate parameter characterising the resource category
(e.g.pu for classRhoCPU). When the reservation of all the
resources is successful, an identifier is built and returned to
the caller to allow subsequent allocation. Zero is returned if
resource reservation could not be satisfied.

Rho’s methodallocate() uses the provided identi-



fier to check that allocation for a reserved resource is per-
formed just once. Moreover, it allows checking whether
inappropriate allocation is attempted, e.g. by an object that
is trying allocation without a previous reservation.

For both the reservation scenarios taken into account,
i.e. with or without GARA support, we ultimately per-
form resource allocation relying on the services provided
by GRAM. Methodallocate() uses the CoG Java li-
brary to access GRAM services through the mechanisms
sketched in Figure 2 as Java statements. When GARA is not
used, because unavailable or unsuitable, then our classRho
creates an instance, saygj , of classGramJob (describ-
ing the resources to be requested based on the constructor’s
RSL [4] string parameterrsl ), and then requests their al-
location on hosth by invoking methodgj.request(h)
(see Figure 2, (c)). In contrast, when GARA is used, class
Rho simply invokes methodbind() on the instancegr ,
used for the previous reservation (Figure 2, (b)), speci-
fying as parametergbp an instance of the Globus class
GaraBindParameters (see (d)).

As shown in Figure 3, resource reservation requests to
Rho can be received fromRemoninstances residing on the
local host or on remote hosts. In the latter case, we have
to distinguish whetherRemonis trying to reserve resources
for the first time for the distributed application at hand.

If so, some support (i.e.ServerProxy ) has to be pro-
vided locally, to receive application data and commands
from remote hosts. As a result, the resources requested
have to be incremented to account for the resources that
will be exploited byServerProxy . When enough re-
sources are available locally, thenRho instantiates the new
ServerProxy and communicates the port that the remote
Remonwill use.

3.3.1 Reserving CPU Power

ClassRhoCPUestimates at run time whether more requests
can still be accepted without overloading the CPU. It is dif-
ficult to calculate the load offered by a code fragment by
simply analysing it statically, since many factors are uncer-
tain. The actual load offered by a fragment of code, among
other things, depends on: the flow of control inside it, the
varying CPU use of different parts inside the fragment of
code, the effect of simultaneously executing several frag-
ments, the CPU type and the frequency of its cycles, the
amount of available memory, etc. [12].

We consider whether to accept the reservation for exe-
cuting a new instance of a class on the basis of the current
workload of a host andpu (see Section 3.2). We consider
that the higherpu, the higher the workload of a CPU will
be after execution of the corresponding instance.

In an off-line measurement phase, we determine the
workloads of a host when (1) it is idle, and (2) has reached

a stage after which further execution of even a small job
takes an excessive processing time. These workloads will
be referred to aslow andmax, respectively. For determin-
ing thelow workload we run a sample algorithm that mea-
sures how fast the CPU is when no jobs are executing, i.e.
when only the basic services are active (cf. the concept of
relaxation[5]). For determining themax workload we pro-
gressively increase the load by executing a known job an
increasing number of times, until the execution time of the
sample algorithm is considered too costly. The job we use
to load the host consists of an active object whose class has
a highpu. The number of times the job has to be executed
to reach themax workload is stored asn2max. Our sam-
ple algorithm executes in 10 milliseconds on a idle 2GHz
Pentium processor with 512MB of RAM. We consider that
such a host has reached themax workload when the execu-
tion time of the sample algorithm is 100 times longer than
on the idle host (1 second in our case).

We then calculate an intermediate threshold, calledmid,
as the mean value between the two previous thresholds. Fi-
nally ahigh threshold is calculated as the mean value be-
tween themid andmax thresholds.

At run time, we periodically sense the actual host work-
load, and count reservation requests that have been accepted
without an ensuing allocation yet. Thesependingrequests
are considered no more valid, and thus eliminated, after a
fixed time-frame. A new reservation request is accepted
for any value ofpu, provided the measured workload is be-
low themid threshold and the number of pending requests
less thann2max/2. When the measured workload is be-
tweenmid andhigh and the pending requests are less than
n2max/4, we accept requests whosepu is below 0.5. We
do not accept any request when the workload exceeds the
high threshold.

Using the described algorithm, once reservation is per-
formed,RhoCPUwill avoid to accept requests that poten-
tially overload the CPU.

3.3.2 Reserving Network and Disk

Recently, some communication protocols have appeared
that allow data transmission modes to be differentiated,
in order to support non-trivial quality of service manage-
ment [2]. In this context, resource reservation can support
the achievement of a better communication service. For
this purpose, rather than employing a reservation service
constrained by a time-based approach [7], which assumes
knowledge that we cannot extract from the class code (such
as starting time and duration of the communication), we
propose a simpler reservation policy, similar to that devised
for CPU power, in Section 3.3.1.

I.e., in order to decide when the available bandwidth or
disk can be further reserved on a host, appropriate thresh-



olds are determined off-line, and, while the application runs,
classRhoNet and RhoDisk periodically monitor band-
width and disk use, respectively. Requests to reserve net-
work, or disk, are accepted when current use is compatible
with the thresholds, the pending requests and the current
request, along the lines adopted for CPU use.

3.4. Interactions between STREGA Components

Figure 3 illustrates how STREGA components interact.
As soon as an application object performs an operation, e.g.
instantiates a new object (see (1) in Figure 3), the associated
metaobject:Remon intercepts the operation (see (2)) and
checks whether enough resources (e.g. processing power)
have been allocated so far. If not, reservation is required
for such resources by means of:Rho (see (3)) (only one
instance of this class is used for the whole host).

Object :Remon tries to reserve new resources, by in-
voking :Rho ’s method reserve() and specifying the
parameterspu, du andnu extracted from the class corre-
sponding to the associated object. When GARA services
are unavailable:Rho performs reservation by means of
classes:RhoCPU, etc. (see (4, 5, 6) in Figure 3). When the
reservation is successful,:Rho returns an identifier to al-
low subsequent allocation; otherwise:Remon tries to find
appropriate resources on other hosts by using:Reder ’s
find() method (see (7)).

Object :Reder returns the list of the hosts providing
the needed resources. The object to be allocated will be
instantiated on the host where its reservation has been suc-
cessful (see (8) in Figure 3). The first time a class has to be
instantiated on a remote host, this is transferred there by us-
ing the classServerProxy , which runs as an independent
thread. Before executing theServerProxy , an allocation
request is sent to the GRAM of the remote host for both this
server and the object itself.

Finally, it is worth recalling that whenever application
objects on a host invoke a method of a remote object, such
an invocation is delivered through the network to the remote
classServerProxy .

4. Conclusions

This work has proposed a reflective software architec-
ture called STREGA, which transparently integrates ap-
plications into a Grid environment. Integration support is
given by specialised components that transform the implicit
resource requests by an application into explicit requests to
its environment. The aim of the provided components is
to find the appropriate resources, either local or distributed,
and reserve and allocate them on behalf of the application
as needed at run time. We considered both the scenarios

where reservation is supported by the Globus GARA com-
ponent and where GARA is unavailable.
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