
SHARK, a Multi-Agent System to Support Document Sharing and Promote
Collaboration

Antonella Di Stefano1, Giuseppe Pappalardo2,
Corrado Santoro1, Emiliano Tramontana2

University of Catania
1Dept. of Computer and Telecommunication Engineering

2Dept. of Mathematics and Computer Science

Viale A. Doria, 6 - 95125 - Catania, Italy

{adistefa,csanto}@diit.unict.it

{pappalardo,tramontana}@dmi.unict.it

Abstract

This paper describes SHARK, a document-sharing
multi-agent application providing users with a means
to share documents and allowing keyword-based search.
SHARK’s agents operate transparently—with respect to
the user—by analysing (i) user’s personal documents and
(ii) user’s actions performed during web browsing. Activ-
ity (i) aims at categorising users’ documents, in order to
allow keyword-based search. Activity (ii) aims instead at
determining user’s interests. Both activities provide an im-
proved documents searching ability and help finding users
who share common interests, thus promoting potential col-
laboration among them. SHARK is designed to run in
AgentCities, a world-wide network of multi-agent platforms
based on the FIPA standard.

1 Introduction

Nowadays several technologies are used to remotely find
documents of interest over a network. Alongside web
browsing in search of resources published on web servers,
an increasing popularity has been gained by software sys-
tems based on the peer-to-peer (P2P) concept, whereby
users can search documents directly on other users hosts
and download those found interesting [17, 37, 35, 34, 36].

P2P and file sharing systems are the subject of in-
tense research. Since the birth of Napster, researchers
have spent much effort in providing effective approaches
for supporting file distribution and query in a P2P sys-

tem [27, 3, 38, 9, 4]. Such approaches aim at finding the best
way to distribute knowledge about the files to be shared, in
order to speed up searching and downloading. Basically, the
objective is to improve performances by exploiting replica-
tion, while ensuring information consistency.

However, in document sharing and searching, another
important aspect is the quality of search, i.e. the ability to
find the documents with the right relevance with respect to
a user-provided query. This issue depends not only on the
algorithms used to perform the search, but, above all, on the
technique used to extract the meaning—e.g. the most rele-
vant keywords—from shared documents (unless of course,
as in “semantic” P2P [2], documents already carry ample
descriptive metadata). For this information to be optimally
exploited, it is important to appropriately disseminate it
among the P2P hosts. Finally, it would be highly desirable
to make document search more effective by tailoring it to
the user, dynamically adapting it to her/his interests.

In view of this personalisation goal, it struck us as a
waste of useful information that, usually, the activities of
browsing the web and using P2P software systems are car-
ried out independently from one another. In this work, we
propose an infrastructure that can benefit from data gathered
from the documents a user chooses to share, and the obser-
vation of his/her web browsing activity. From this informa-
tion, we build user profiles, useful to personalise document
search in accordance with user’s interests and observed be-
haviour. Our P2P search support is, in this respect, some-
what similar to techniques used by web search engines that
try to match a known user profile with current requests.

We have designed the SHARK (SHARing Knowledge)
document sharing system with a view to the three noted

1

objectives: extraction of metadata from documents, their
dissemination, and search personalisation. Important de-
sign features accomplished by SHARK are: (i) maintain-
ing a high autonomy between its “intelligent” information
handling and typical P2P activities, i.e. document sharing,
searching and downloading, and, at the same time, (ii) pro-
viding a component-based framework that allows not only
reuse of components but also integration of new function-
alities. Indeed, the model of software agents particularly
fits the design and implementation of component-based,
autonomous and intelligent activities, like those related to
metadata extraction and searching. In addition, personalisa-
tion can be easily obtained by means of specialised personal
agents [18, 21, 22, 13, 10, 12], which are able to observe
user behaviour, infer the goals the user wants to achieve
with her/his activities, and help him/her in reaching these
objectives. Such an “assistance” capability is exploited in
SHARK to integrate agents with existing client/server ap-
plications (like web browsers) in order to transparently un-
derstand user preferences. The knowledge on these user
preferences is then used by SHARK agents, which, by
means of cooperation, are able to discover relations between
users interests and promote collaboration among users.

Our prototype application for SHARK is a system for
the dissemination and retrieval of scientific and educational
documents; it has been designed to be used by profes-
sors and students. Professors are SHARK users that pub-
lish their scientific and educational documents, while stu-
dents exploit SHARK services only to perform document
retrieval by means of the web-based search support.

The remainder of this paper is structured as follows. Sec-
tion 2 gives an overview of the proposed infrastructure and
outlines the work of the agents. Section 3 details the be-
haviour of each proposed agent. Finally, conclusions are
collected in Section 4.

2 Overview of SHARK

2.1 System Architecture

The working scheme of SHARK is strongly based on
the topology and the architecture of the network hosting it,
i.e. the AgentCities project [33], a world-wide network of
hosts—we call them AgentCities Servers—running FIPA-
compliant [16] agent platforms (such as JADE [16], FIPA-
OS [1], etc). The aim of AgentCities is to provide the exe-
cution environment for distributed multi-agent applications.
In particular, the testbed for SHARK is the Italian branch of
AgentCities, which is the ANEMONE network [30].

In SHARK, computers, connected through the Internet,
may play two different roles (see Figure 1): client ma-
chines, which are the user’s PCs, and AgentCities Servers,
which act as access nodes for document gathering and

query. A SHARK network is structured hierarchically, for
AgentCities Servers are responsible for supporting client
machines (preferably belonging to the same AgentCities
site). An AgentCities Server and the associated clients run
each an instance of an agent platform (e.g. JADE); more-
over, AgentCities Servers must also run a web applica-
tion server (e.g. Tomcat [31]), in order to allow interaction
among agents and WWW pages.

2.2 Activities and Services of SHARK

The essential activities performed by SHARK are the
following:

1. Analysing and categorizing users’ (public) documents,
in order to extract the information needed for docu-
ment search.

2. Analysing activities performed by the user in every-
day web browsing in order to understand his/her pref-
erences and interests.

3. Providing a web-based interface in order to assist
the user not only in finding the documents related to
his/her query, but also in contacting other SHARK
users who share similar interests.

The services listed above are managed and supported by
a set of agents executing on the AgentCities Servers and
on each client machine. The activities performed by these
agents aim at offering a support for sharing and search-
ing documents, highlighting potential areas of collaboration
among users with common interests. In detail, the agents’
activities can be described as follows.

• Agent Cruncher is responsible to gather and analyse
user’s documents, in order to extract a set of keywords.

• Agent Categoriser, on the basis of the keywords ex-
tracted, autonomously associates some categories to
the documents analysed by the Cruncher.

• Agent UserProfiler is connected with the user browser
to sense his/her activity and continually update the user
profile accordingly [11, 10].

• Agent Searcher performs document searches on the
basis of a user-provided query, also aiming at finding
other users whose profile may be of interest with re-
spect to the given query.

• Agent Correspondent handles document download
requests originating from other users.

• Agent Advertiser autonomously finds users whose
profiles match each other (to a certain degree).

2

AgentCities Server

Client Stations

Shark Agents

Shark Agents

Shark Agents

Shark Agents

Client Stations

Shark Agents

AgentCities Server

UNIPR Domain

UNICT Domain

���
�
�������
�

���
�
����

	
�������
�

��������
�

���������
����

���������
����

UserProfiler

Categoriser

Searcher

Cruncher

Correspondent

Advertiser

Figure 1. Overview of the Architecture of SHARK

As Figure 1 illustrates, Agents Cruncher, UserPro-
filer and Correspondent run on each client machine, while
agents Categoriser, Advertiser and Searcher run on each
AgentCities Server.

3 The Agents of SHARK

In this Section we provide a full description of the pur-
poses and activities performed by each agent of SHARK.

3.1 Gathering Knowledge about User’s Docu-
ments

Generally, the P2P document sharing model aims at
making publicly available a set of documents chosen by
the owner. Any SHARK user is thus required to specify
which directories, on his/her client, contain the documents
that s/he wants to share.

According to such a setting, the Cruncher agent period-
ically scans the specified directories and analyzes each doc-
ument found. This aims at identifying a set of keywords that
is made available to the rest of the system in order to allow
document categorization. The Cruncher employs data ex-
traction techniques reported in the literature [22, 19, 14, 21],
some of which have been used by the authors in other agent-
based applications [13, 10, 12].

As depicted in Figure 2, the type of the document is
determined by strategies modelled on that of the Unix
“file” utility. Depending on the file type, a suitable con-
tent filter is applied, aiming at removing all formatting in-
structions and any other information that is not strictly re-
lated to the text contained in the document. For exam-
ple, for a LATEX document, the filter removes the comment
lines and the LATEX commands (i.e. \title, \author,
\begin/end{document}, etc.); while for an HTML

Documents
Public

Italian

Stemmer

English

Stemmer

RTFHTMLLaTeX Text

Content
Filtering

Filter Filter Filter Filter

Stop−word removal
Stemming &

Term Frequency
Counter

Ranked Keyword List

Cruncher

User’s

PC

Disk

Figure 2. Tasks of the agent Cruncher

3

document, the filter removes comments, scripts and tag
strings. In the current SHARK prototype implementation,
the filters are only provided for LATEX, HTML, RTF and
plain-text1 files.

The result of the filtering phase is the plain text of the
document and some additional metadata that qualify the
document itself. In particular, these metadata are the ti-
tle, the language and the keywords given by the document’s
writer. Indeed, these metadata can be extracted only for
some kinds of documents. LATEX and HTML documents
have this information encapsulated in proper tags2, while,
for other document types, these metadata are unavailable.

The output of the filtering phase is then sent to the stem-
mer, a Cruncher’s module entrusted with the task of ex-
tracting the stem of each word by applying Porter’s algo-
rithm or a derived one [26, 32]. A different stemming sub-
module is employed according to the document language—
if provided in the metadata—while, if the language is un-
known, the default English stemmer is used. The stemmer
sub-module also performs stop-word identification by re-
moving all the words (i.e., articles, conjunctions, adjectives,
etc.) that are useless for categorising a document. The list
of stems is finally given to a module that performs a fre-
quency count of each term. The result of this last phase is
a list of stems, ranked accordingly to their frequency in the
document.

At this stage, two kinds of data are available for further
processing:

1. the list of keywords proper, or explicit keywords (e-
keywords for short), i.e. those originating from meta-
data provided by document authors;

2. the ranked list of stems, or implicit keywords (i-
keywords for short), as determined by the Cruncher.

All this information, together with file names and user
personal data3, is sent by the Cruncher to the Categoriser
agent running in the user’s AgentCities server, and will be
stored in the server database (cf. Section 3.3).

3.2 Understanding User’s Preferences

The objective of SHARK is not only to provide a doc-
ument sharing system but also to promote collaboration
among users on the basis of common research and educa-
tional interests. For this to be possible, user’s preferences

1The plain text filter performs only encoding conversions, e.g. Unicode
to UTF-8, depending on configuration decisions.

2The title is determined by tags \title in LATEX and <title> in
HTML. Writer-assigned keywords are extracted by analysing tag <meta
name="keywords"> for HTML documents, while, for LATEX doc-
uments, this is possible only if they have a “keywords” environ-
ment. The document language is also encoded in proper HTML/LATEX
tags/commands (e.g. <body lang="it-IT">).

3User name, contact info and email address.

keyword extraction
and stemming

baselevel objects

metalevel objects

Reflective Mechanism

ANEMONE Home Page

File Edit Bookmarks

addBookmark()

delBookmark() renderHTML()

UserProfiler

metalevel

baselevel

to Categorizer

Figure 3. The Reflective UserProfiler Agent

should be known to the system that, in this way, can per-
form the adequate matching among users’ interests.

To this aim, the user’s browser on the client host is in-
terfaced with the UserProfiler agent, which observes user’s
actions as s/he surfs the Internet, trying to determine his/her
interests. The approach employed aims at analysing both
the visited web pages, in order to extract a set of key-
words, and the actions performed by the user during brows-
ing (e.g. adding a page to the bookmarks or removing it), in
order to understand the relevance of a page for the user.

To make such activities possible, the UserProfiler needs
to be interfaced with the browser using a mechanism able
to intercept both visited pages and users actions [13, 10].
To this aim, the UserProfiler exploits computational re-
flection [23], a software engineering technology that allows
events taking place in an application to be intercepted by
some of its components. Thanks to this mechanism, an ap-
plication can be transparently extended by appropriately in-
fluencing its behaviour. Essentially, a reflective system con-
sists of a baselevel, hosting an application, and a metalevel,
hosting the components interacting with and extending the
application. The reflective approach adopted is the metaob-
ject model [15, 7, 8, 28, 29]. Given an application written
in an object-oriented language, the metaobject model may
associate to a selected application (baselevel) object a met-
alevel object. Each operation made on the baselevel object
(i.e method invocation, attribute get, attribute set) will then
be intercepted by the associated metalevel object, which can
choose to modify the behaviour of the baselevel.

This scheme is used in SHARK for the UserProfiler
agent, which observes from the metalevel user’s interac-
tion with the browser (i.e. the baselevel). Following the
approach described in [11], user’s actions captured by the
UserProfiler are (cf. Figure 3):

1. Downloading a new web page. By intercepting the
method invoked to render a newly arrived page, the
UserProfiler extracts page contents and performs key-

4

ANEMONE Home Page

File Edit Bookmarks

keyword extraction
and stemming

UserProfiler

HTTP Proxy to the Web

to Categorizer

HTTP Traffic

Figure 4. The Non-Reflective UserProfiler
Agent

word determination and ranking using the same ap-
proach as Cruncher (cf. Section 3.1). Keywords from
all visited pages are thus collected together (frequen-
cies of the same keywords belonging to different pages
are all summed) and ranked, obtaining a single ordered
list of keywords. This information is then passed on to
the Categoriser.

2. Adding a URL to the bookmarks. In this case, the page
is considered “very interesting”. Therefore, after inter-
cepting the method invoked by the “Add to Bookmark”
menu item selection, the page is analysed as described
above and its keyword frequency counts are doubled.

3. Removing a URL from the bookmarks. The page is
now considered “not interesting”. Therefore, after in-
tercepting the method invoked by the “Delete item”
option selection, the associated page is retrieved, anal-
ysed and the frequency counts of its keywords are
halved.

In our prototype implementation, we extended a Java
web browser using the reflective extension Javassist [8] to
perform load-time association between UserProfiler’s met-
alelevel objects and the browser’s baselevel objects.

Reflective techniques are not always applicable, because
they need specific hooks, which consist of e.g. bytecode
manipulation libraries for Java, appropriate libraries or pre-
compilers for C++, or reflective languages. To overcome
this issue, we designed a non-reflective UserProfiler agent
that interacts with the browser by acting as a web-proxy
between the browser itself and the Internet (see Figure 4).
In this way, the UserProfiler is able to intercept and anal-
yse all the web pages visited by the user—thus performing
keyword extraction based on downloading activity (item (1)
of the above list)—but is unable to intercept operations on
bookmarks.

3.3 Categorising and Storing Documents

As discussed in Section 3.1, SHARK users’ documents
are automatically characterised by the lists of e-keywords
and i-keywords. The task of agent Categoriser is to clas-
sify documents and user profiles accordingly.

Agent Categoriser uses an ontology consisting of a
number of categories, say Computing, Law, Medicine,
..., each having a certain number of descendent cat-
egories. Each category is characterised by a list of
weighted keywords. For a known category, say Law,
there is a list of ordered keywords with their own weight,
e.g. 0.12 act, 0.11 rule, 0.10 code, 0.09
statute, ..., where the words that better characterise
the category have a bigger weight.

In our experiments, we have built an ontology by choos-
ing a suitable list of categories, and a training set of docu-
ments for each category. Using the algorithm described in
Section 3.1, we have then extracted the keywords occurring
in each document set and used them as the list characteris-
ing the associated category.

As in [24], once an ontology has been provided, Cate-
goriser determines which category a document belongs to,
by calculating a similarity value between the keywords of
the known categories and the keywords of the document. As
for the keywords characterising categories, each document
has a list of ordered keywords whose weight is proportional
to the number of occurrences. We have calculated the sim-
ilarity as the sum of the products between the weights of
each keyword found on both lists. This represents a scalar
product in a n-dimension space, where n is the number of
keywords in each category. The categories whose similarity
exceeds a threshold value are chosen as the categories for
the document; this association, expressed as document →
(Category1, SimV alue1), . . . , (Categorym, SimV aluem),
is stored in the local document database, present in the
AgentCities Server (cf. Section 3.4).

Categoriser is asked to determine the categories for user
documents by agent Cruncher, every time this finds that
new documents are made publicly available. By grouping
documents into categories it is possible to easily find all the
documents that are in some relation. E.g. the user can re-
quest a list of the documents that belong to the same cate-
gories as his/her document, or can choose to execute queries
about some categories only.

Moreover Categoriser periodically analyses the key-
word list built by each UserProfiler from the web pages
visited by the relevant user. Thus, Categoriser can deter-
mine which categories the keywords belong. These cate-
gories represent what we call the user profile.

5

3.4 Sharing Knowledge among AgentCities
Servers

The information on documents’ categories and user pro-
files gathered in an AgentCities Server must be made avail-
able to the other servers of the environment in order to al-
low document finding. To make this possible, two different
techniques could be employed by the infrastructure: (a) to
route each query made by a user on a AgentCities Server
to all the other servers; or (b) to broadcast information on
documents and users from a AgentCities Server to all the
other servers, in order to perform searches locally.

Both these approaches feature some disadvantages. On
one end, routing a query implies to contact servers that
could not have any document matching the criteria, thus
burdening the search activity with useless transactions; on
the other end, broadcasting information could imply a large
amount of network traffic when the number of documents
and users handled by the system increases and/or changes
frequently.

Our solution aims at providing a trade-off between the
above two techniques. Each Categoriser agent, after per-
forming the activities described in Section 3.3, computes a
weighted sum of the ranks of each category for all the doc-
uments processed. The result, that is a ranked list of the
categories handled by the AgentCities Server hosting that
Categoriser, is then stored in a database that is distributed
among all the AgentCities Severs using a Distributed Hash
Table (DHT) [27]. A similar approach in used for user pro-
files: the ranked list of categories relevant to all the user pro-
files managed by a AgentCities Server is stored in a DHT
spread over all the servers of the SHARK system. In sum-
mary, the following databases are managed:

• The local document database. It is in each AgentCities
Server and stores the associations among documents
and categories for all the documents held by the users
belonging to that AgentCities site.

• The site category database. It is based on a DHT and
stores the associations among each AgentCities Server
and the categories of all the documents handled by the
server.

• The local contact database. It is in each AgentCities
Server and stores the categories of profiles for the users
of the AgentCities Server.

• The site contact database. It is handled as a DHT and
stores the association among each AgentCities Server
and the categories of all the profiles for its users.

The choice of adopting different techniques to organise
and distribute SHARK’s databases is due to two reasons.
First of all, a local database for domain’s documents seems

a natural choice to favour collaboration among users be-
longing to the same domain. Moreover, the use of a local
document database allows users of a certain domain to find
and access local information also when the network is parti-
tioned. Secondly, when document searching and accessing
is performed through different domains (thus requiring the
network to be connected), the DHT provides a valid support
for data distribution among the various SHARK Servers.

Search is performed by using all these databases, as de-
tailed in Section 3.5. For this to be possible, all AgentC-
ities Servers must share the same ontology for document
categorisation; this is not a strong constraint but instead an
usual requirement for distributed systems that must share
meaning and semantics.

3.5 Searching for a Document

Users can search documents by pointing their web
browsers to one of the AgentCities Servers of the SHARK
system and then by typing the desired keyword(s) in the
web form that will appear. To support such a web-based in-
terface, each AgentCities Server involved in SHARK runs
a Tomcat application server [31] equipped with suitable li-
braries for activating AgentCities agents by means of JSP
code [5]. The browser is an interface for users to access
the P2P system provided by the infrastructure and agents
described hitherto.

Agent Searcher, running on the AgentCities Server, re-
ceives the keywords and starts the search process by per-
forming the following tasks:

1. The local document database is first queried, to find
the documents whose keywords match those requested
by the user.

2. The site category database is then queried, to find the
SHARK servers (AgentCities Servers) that refer docu-
ments with matching keywords.

3. The Searchers agents of such sites found are then
queried; these agents will return a list of matching doc-
uments.

4. Tasks 1–3 above are repeated for local- and site-
contact database, in order to find people sharing in-
terests that are common to those of the querying user.

As reported in the example screenshot in Figure 5, the
results of search tasks 1–4 are two ranked lists.

The first list (depicted on the right side of Figure 5) gives
all the documents matching the requested keywords and re-
ports, together with the document’s name, the document’s
relevance and the name of user who holds that document.
By clicking on the document’s name, the Correspondent
agent running in the client hosting the requested document

6

Figure 5. Search Results Example

is contacted, and the document is finally downloaded. Doc-
ument’s relevance is determined by using the frequency in
the document (in percentage with respect to all the docu-
ment’s keywords) of the keyword queried—if only one key-
word is provided. If more than one keyword is given, the
total relevance is computed as the average of each single
keyword relevance4.

The second list (depicted on the left side of Figure 5) re-
ports the name of the users who have, in their user profile,
the keyword(s) queried. The percentage near the name is the
relevance of the user profile with respect to the keyword(s)
queried, and is computed using the same method employed
for documents. By clicking on a user name, a possible con-
tact with that person can be established, as it is detailed in
the following SubSection.

3.6 Promoting Collaboration

SHARK provides two different mechanisms for promot-
ing collaboration among users: the former is user-triggered
and the latter is performed autonomously.

As introduced previously, the first mechanism—user-
triggered—is activated by a user query and when one of the
names of the list of matching users is clicked. Basically, the
action performed by the Searcher to promote collaboration
is to automatically send an email to the selected user an-
nouncing that “user x is interested in these arguments”.
It is up to the receiver, then, to decide whether to contact the
user who performed the query or to give up, if not interested

4This means that an implicit “and” is considered placed among key-
words. Currently, this is the sole search semantics provided by SHARK.
More flexible search expressions—i.e. allowing the use of “and” and “or”
operators—will be provided in the future releases of SHARK.

in such a collaboration.

Since SHARK’s agent Searcher can be also contacted
by unknown users, the type and the form of the message
sent depends on the fact that the user performing the query
is known or not. In the former case, the email message
sent contains not only the keywords typed by the user in
the search form, but also his/her interests (extracted from
his/her profile), in order to give a better indication of com-
mon interests. The UserProfiler agent recognises the con-
tacting user and sends to the Searcher a message contain-
ing his/her identity and profile. If the user is unknown to the
SHARK system, clicking on the contact will be not recog-
nised by any UserProfiler and, as a consequence, a pop-up
window appears to request the user email address before
sending the message.

The second mechanism—the autonomous one—is han-
dled by the Advertisers agents running in the various
AgentCities Servers. Each Advertiser knows the profiles of
the users relevant to its AgentCities Server5 and periodically
(once a month) contacts the other Advertisers in order to
determine the users with common interests. This is done by
performing a matching between the profiles of the various
users, checking that the matching degree is above a given
threshold. As a consequence, users with common interests
are notified with an email message, leaving then the choice
on the opportunity to collaborate to the users themselves.
This matching task is performed periodically because pro-
files may change due to users’ activities and/or change of
interests.

5The agent has access to the user profile database.

7

4 Concluding Remarks

The research field of agents and P2P provides many
works essentially ranging from supporting information dis-
semination and discovery [34, 9, 3], to organizational is-
sues related to the use of “mediator agents” among net-
work peers [25]. Other works consider semantic concerns,
and deal with formal grammars for expressive query spec-
ification [20] or propose P2P approaches for the semantic
web [2, 6].

With respect to such approaches, SHARK differs in
both architectural and semantic aspects. The presence of
AgentCities Servers, that directly derives from the structure
of the AgentCities network on which SHARK operates, al-
lows a form of clustering for document information, thus
reducing the network activities needed during dissemina-
tion and query. This also allows treating a larger amount of
information for each document—i.e. the extracted/implicit
keywords—rather than the document’s title or the filename
as in [34, 3]. The latter aspect, i.e. the ability to automati-
cally extract the implicit keywords, does not require seman-
tic annotation for the documents, as in [2, 6], but allows
SHARK to operate with the current web environment and
with the documents generally handled by any user.

Above all, the main contribution of SHARK is to tie
users’ web browsing behaviour to P2P document sharing
principles, i.e. profiling the user and allowing not only
to find documents dealing with certain keywords but also
users having such keywords among their interests. This
is made possible thanks to the joint use of computational
reflection—for browser interfacing and user profiling—
with the agent technology—used to autonomously perform
user profile matching. Such a combination, in the light of
improving (scientific) knowledge dissemination and shar-
ing, can constitute an effective support for document and
user finding, and thus for promoting collaboration among
people/communities.

References

[1] http://fipa-os.sourceforge.net/. FIPA-OS
Web Site., 2003.

[2] M. Arumugam, A. Sheth, and B. Arpinar. The Peer-to-
Peer Semantic Web: A Distributed Environment for Sharing
Semantic Knowledge on the Web. In Proc. of Intl. Work-
shop on Real-World PDF and Semantic Web Applications
(WWW2002). Honolulu, Hawaii, USA, 2002.

[3] O. Babaoglu, H. Meling, and A. Montresor. Anthill: a
Framework for the Development of Agent-based Peer-to-
Peer Systems. In Proc. of 22

th Intl. Conference on Dis-
tributed Computing Systems (IDCS2002), Vienna, Austria,
2002.

[4] F. Bagci, J. Petzold, M. Trumler, and T. Ungerer. Ubiqui-
tous Mobile Agent System in a P2P-Network. In UbiSys-

Workshop at the Fifth Annual Conference on Ubiquitous
Computing, Seattle, October 12-15, 2003.

[5] D. L. Berre and O. Fourdrinoy. Using JADE with Java
Server Pages (JSP). In JADE Documentation available at
JADE Web Site http://jade.cselt.it/, 2002.

[6] S. Castano, A. Ferrara, and S. Montanelli. H-MATCH: an
Algorithm for Dynamically Matching Ontologies in Peer-
based Systems. In Proc. of SWDB’03, The first International
Workshop on Semantic Web and Databases, Co-located with
VLDB 2003, Humboldt-Universität, Berlin, Germany, 2003.

[7] S. Chiba. A Metaobject Protocol for C++. In Proceedings of
the Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’95), pages 285–299,
1995.

[8] S. Chiba. Load-time Structural Reflection in Java. In Pro-
ceedings of the ECOOP 2000, volume 1850 of Lecture Notes
in Computer Science, 2000.

[9] P. Dasgupta. Incentive Driven Node Discovery in a P2P Net-
work Using Mobile Intelligent Agents. In Proc. of the Intl.
Conference on Artificial Intelligence (IC-AI2003), Las Ve-
gas, Nevada, USA, 2003.

[10] A. Di Stefano, G. Pappalardo, C. Santoro, and E. Tramon-
tana. A Multi-Agent Reflective Architecture for User Assis-
tance and its Application to E-Commerce. In Cooperative
Information Agents (CIA 2002). LNAI Springer, Sept. 18-
20 2002.

[11] A. Di Stefano, G. Pappalardo, C. Santoro, and E. Tra-
montana. Extending Applications using Reflective Assis-
tant Agents. In 26th Annual International Computer Soft-
ware and Applications Conference (COMPSAC’02), Ox-
ford, 2002. IEEE.

[12] A. Di Stefano, G. Pappalardo, C. Santoro, and E. Tramon-
tana. Coordinating Multi-Agent Assistants with an Applica-
tion by means of Computational Reflection. In Design of In-
telligent Multi-Agent Systems Human-Centredness, Archi-
tectures, Learning and Adaptation, volume 162. Springer,
2004.

[13] A. Di Stefano and C. Santoro. NETCHASER: Agent Sup-
port for Personal Mobility. IEEE Internet Computing, 4(2),
March/April 2000.

[14] D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle,
Y.-K. Ng, D. Quass, and R. D. Smith. Conceptual-Model-
Based Data Extraction from Multiple-Record Web Pages.
Data Knowledge Engineering, 31(3):227–251, 1999.

[15] J. Ferber. Computational Reflection in Class Based Object
Oriented Languages. In Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’89), volume 24 of Sigplan Notices,
pages 317–326, New York, NY, 1989.

[16] Foundation for Intelligent Physical Agents. http://www.
fipa.org, 2002.

[17] R. L. Graham. Peer-to-peer: Toward a Definition. In
Proc. of IEEE Intl. Conference on Peer-to-Peer Computing
(P2P2001), Sweden, 2001.

[18] J. Bradshaw et al., editor. Software Agents. AAAI Press,
Cambrigde, Mass., 1997.

[19] Y. Kitamura, T. Yamada, T. Kokubo, Y. Mawarimichi, T. Ya-
mamotom, and T. Ishida. Interactive Integration of Infor-
mation Agents on the Web. In Proceedings of CIA 2001,

8

volume 2182 of Lecture Notes in Artificial Intelligence.
Springer, 2001.

[20] M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and
T. Koutris. Data Models and Languages for Agent-Based
Textual Information Dissemination. In Cooperative Infor-
mation Agents (CIA 2002). LNAI Springer, Sept. 18-20
2002.

[21] H. Lieberman. Letizia: An Agent That Assists Web Brows-
ing. In International Joint Conference on Artificial Intelli-
gence, Montreal, August 1995.

[22] H. Lieberman, P. Maes, and N. Van Dyke. Butterfly: A
Conversation-Finding Agent for Internet Relay Chat. In In-
ternational Conference on Intelligent User Interfaces, Los
Angeles, January 1999.

[23] P. Maes. Concepts and Experiments in Computational Re-
flection. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions (OOPSLA’87), volume 22 (12) of Sigplan Notices,
pages 147–155, Orlando, FA, 1987.

[24] H. Mase. Experiments on Automatic Web Page Categoriza-
tion for IR system, 1998. Technical Report, Stanford Uni-
versity.

[25] L. Penserini, L. Liu, J. Mylopoulos, M. Panti, and
L. Spalazzi. Cooperation strategies for agent-based P2P sys-
tems. Web Intelligence and Agent System, 1(1):3–21, 2003.

[26] M. F. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[27] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: a Scalable Peer-to-Peer Lookup Service
for Internet Applications. In 2nd International Workshop
on Peer-to-Peer Systems (IPTPS ’03), Berkeley, CA, USA,
2003. Springer.

[28] E. Tramontana. Managing Evolution Using Cooperative De-
signs and a Reflective Architecture. In W. Cazzola, R. J.
Stroud, and F. Tisato, editors, Reflection and Software En-
gineering, volume 1826 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, June 2000.

[29] E. Tramontana. Reflective Architecture for Changing Ob-
jects. In Proceeding of the ECOOP Workshop on Reflection
and Metalevel Architectures (RMA’00), Nice, France, June
2000.

[30] WWW. http://aot.ce.unipr.it:8080/
anemone/index.jsp, 2004.

[31] WWW. http://jakarta.apache.org/tomcat/,
2004.

[32] WWW. http://snowball.tartarus.org/, 2004.
[33] WWW. http://www.agentcities.net, 2004.
[34] WWW. http://www.freeproject.org, 2004.
[35] WWW. http://www.gnutella.com, 2004.
[36] WWW. http://www.jxta.org, 2004.
[37] WWW. http://www.napster.com, 2004.
[38] B. Yang and H. Garcia-Molina. Improving Search in Peer-

to-Peer Networks. In Proc. of 22
th Intl. Conference on Dis-

tributed Computing Systems (IDCS2002), Vienna, Austria,
2002.

9

