
Handling Run-time Updates in Distributed Applications

Marco Milazzo, Giuseppe Pappalardo, Emiliano Tramontana, Giuseppe Ursino
Dipartimento di Matematica e Informatica

Università di Catania

{pappalardo,tramontana}@dmi.unict.it

ABSTRACT
The server side of business software systems is commonly im-
plemented today by an ensemble of Java classes distributed
over several hosts. In this scenario, it is often necessary,
for performance tuning or bug fixing, to update the code
or change the location of some classes. Since business sys-
tems must typically stay on-line 24 hours a day, changes and
updates should be made without stopping system execution.

This paper proposes a distributed software architecture
which clearly separates the functionalities of the server-side
application from its on-line adaptation capabilities. As a re-
sult, developers are freed from considering adaptation con-
cerns, which are instead provided by separate, application-
independent, transparently integrated components. The lat-
ter analyse data related to the operational conditions of the
application, and, based on available statistics and expected
behaviour, trigger changes on the application classes.

The bytecode of classes expected to need on-line updat-
ing is modified at load time, so as to insert hooks that will
support run-time changes. No tampering with class files is
required. Particular care has been taken to ensure the type-
compatibility of classes thus manipulated.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design, Evolution, Adaptation

Keywords
Software evolution, Runtime adaptation, Separation of con-
cerns, Computational reflection, Distributed systems

1. INTRODUCTION
The server side of a distributed application usually con-

sists today of an ensemble of Java classes distributed over
several hosts.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

In general, the difficulty of predicting the operating con-
ditions of hosts in advance makes it hard to optimise desir-
able qualities, such as performance and fault-tolerance. E.g.
performances of applications involving multimedia content
delivery are affected by many factors, including data nature,
user mobility, media and bandwidth, and protocols.

As a result, making a distributed application meet the de-
sired quality requirements often costs a considerable amount
of manual configuration and tuning. However, an applica-
tion that exhibits a certain degree of adaptability, i.e. the
capability of dynamically changing some of its own parts,
would manage to tune its performance or cope with faults
automatically, even under changing operating conditions.
E.g., when a client terminal switches to a wireless network,
adopting data compression and encryption helps reducing
the bandwidth used and providing secure transmission. In
such a scenario, both client and server sides of an applica-
tion will need to adapt in various ways (e.g., by agreeing a
new protocol), and should do so automatically, inasmuch as
possible, to ensure smooth operating conditions.

In general, it is desirable for an application’s server side
to be equipped with adaptability features, in order to be
capable of adjusting itself to the type and amount of client
requests dynamically. E.g., this would allow the location
of services to be changed according to host load conditions.
Furthermore, server-side adaptability can go as far as to
allow the introduction of new versions of services, encap-
sulated into classes, even when these were unknown at the
time of the first deployment, i.e. as soon as new services are
made available by developers. An important application of
this capability is version updating, or versioning, whereby a
class is replaced by a newer, equally named, one, typically
for the sake of a bug fix or functionality improvement.

The noted dynamic adaptability is especially useful if it
can be implemented thoroughly on-line, without requiring
servers to be stopped. This is paramount for systems that
must stay on-line 24 hours a day, such as, often, business
applications. Indeed, some of these are expected to ensure
up to 98% of availability. On the other hand, bug removal
maintenance alone may result in the need for deploying new
versions of some classes as often as 20 times per month. Even
allowing a very short time-frame for all the operations (i.e.
stopping, upgrading and restarting) needed to bring a new
version on-line, the large number of times this may occur is
likely to impair availability. And even a brief stop during
an upgrade is painful anyway for end users. Consider that
a short disruption could still turn out to be critical in the
presence of a long-running, delicate user session, despite the

presence of checkpointing facilities.
As a simple alternative to on-line adaptation, redundant

hardware could also enable old and new versions of an ap-
plication to run in parallel, while the update is underway.
However, this solution, besides having itself a non-trivial im-
pact on software, might not be practicable, as the hardware
needed for highly available business application is usually
very expensive. Therefore, we maintain that software on-
line adaptation is indeed highly desirable. To support it,
appropriate mechanisms are needed to enable new code to
be integrated with, or substitute parts of, the existing one.

Although developers can embed adaptation abilities into
their application right from the start, using a variety of
mechanisms, this requires them to handle adaptation and
functional concerns together, thus increasing design and im-
plementation complexity. Rather, what is useful is a general
framework allowing developers to build adaptive applica-
tions while providing only some specifications about adap-
tation. These specifications should be handled on-line, by
application-independent components, capable of integrating
with the application transparently, to dynamically change it
as appropriate. This would effectively leave developers free
to concentrate on purely functional concerns.

In this paper we propose a general software architecture
that supports on-line versioning and automated adaptation,
based on operating conditions, for the server side of a dis-
tributed Java application. Our architecture handles the de-
livery of new class versions at the server side, and updates
the running version as necessary. “Hot swap” of classes is
ensured, which completely eliminates application down-time
and makes services virtually always available. The transpar-
ent integration between the support for adaptation and the
rest of the application is provided by the concept of compu-
tational reflection [5]. The proposed architecture is tailored
for multi-tier systems, since these are typically aimed at ad-
dressing the performance and scalability issues characteristic
of business-oriented and other critical applications.

In the last decade, computational reflection has been suc-
cessfully used for separating application, or functional, con-
cerns from non-functional ones, such as fault-tolerance [9],
distribution [10, 3], etc. The kind of reflective system we are
interested in is a two-level one, where the baselevel imple-
ments some application functionalities, with the metalevel
observing and controlling it.

In our approach, reflection is the key to providing: (i) the
ability to inspect the structure and behaviour of the applica-
tion, i.e. the baselevel, which permits class usage monitoring;
(ii) the ability to update some services on-line, for the sake
of adaptation, e.g., dynamic re-configuration or versioning;
(iii) the ability to add new services on-line.

This paper is structured as follows. Section 2 introduces a
software architecture capable of handling run-time changes
for a server side consisting of several tiers. Section 3 de-
scribes how the proposed architecture deals with class ver-
sioning. Section 4 discusses some related work. Finally,
conclusions are drawn in section 5.

2. TUNING AND UPDATING DISTRIBUTED
APPLICATIONS

2.1 4-Tier Systems
The proposed software architecture is aimed at a typical

User Centric
host A

Receiver

host B

Data

DB

Legacy
System

Presentation

Browser

Visual
Desktop

Data Centric

Dispatcher/
Controller

Receiver

Figure 1: The architecture for a 4-tier system.

e-business 4-tier system. This consists of various hosts and
software systems, which can be thought of as belonging to
one of the following four tiers (cf. Figure 1).

• The Data tier handles data storage and retrieval. It
consists of databases, legacy systems, repositories, etc.

• The Data Centric tier exchanges data with the adja-
cent tiers, while processing them in various ways, and
handles transactions.

• The User Centric tier is primarily responsible for im-
plementing the business logic, authorising accesses and
interfacing to user clients (e.g., this is where a web
server belongs).

• The Presentation tier is mainly intended for present-
ing and receiving data to/from users. It handles web
pages, user interfaces, etc. through clients. These com-
municate with server classes in the User Centric tier
by protocols like RMI, CORBA, SOAP, HTTP, etc.

In general, obvious benefits of this arrangement are im-
proved performance and reliability, for each tier spares the
others a substantial processing load, and is shielded from
their weaknesses. In particular, in our specific framework,
it is certainly advantageous that adaptation management be
confined to, and spread over, the mid-tiers (cf. Section 2.2),
leaving the Data tier unaffected.

Finally, it is worth noting that a 4-tier architecture alone
does support, to some extent, service change or replacement
in specific tiers and hosts, without affecting the rest of the
server side. However, this support is definitely insufficient
to guarantee end users the high availability goals discussed
in the Introduction. This makes our on-line adaptability
solution a natural complement of a 4-tier architecture.

2.2 An Architecture for On-line Adaptation
We now describe the proposed distributed architecture for

handling on-line adaptation in a 4-tier system.
The two main architecture components, shown in Fig-

ure 1, are called Dispatcher/Controller and Receiver. Dis-
patcher/Controller, located in the Data Centric tier, takes de-
cisions on changes in the distributed application, and holds
descriptions of the classes that can be spread, depending on
adaptation needs, over a set of User Centric tier hosts. Each
such host holds a Receiver, which gets commands and mes-
sages from the Dispatcher/Controller, and is in charge of: (i)
handling the transfer of classes to be deployed on its host,
and (ii) triggering changes onto the application.1

In the rest of Section 2.2 the architecture components are
described in further detail.
1There are both performance and logical reasons to place

2.2.1 Dispatcher/Controller
Dispatcher/Controller continually monitors relevant sys-

tem parameters and compares them with known statistics,
to reveal whether performances are unsatisfactory and apt
to be improved by modifying application classes or their lo-
cation. In accordance with adaptation rules set when the ap-
plication is configured at deployment time, Dispatcher/Con-
troller carries out several tasks, which are listed and de-
scribed below.

• Handling a list of Receivers, dynamically updated as
User Centric tier hosts appear and go down. This
information is needed to perform analysis and server
adaptation tasks.

• Maintaining descriptions, dynamically updated at run-
time, of application classes. The characteristics stored
for each class include worst execution time of its meth-
ods, number of connections started with other servers,
list of interacting classes, and location among all known
server hosts.

• Monitoring and collecting runtime data representing
the state of the network and hosts, as well as client
requests to the application.

Specifically, the network parameters monitored are the
average bandwidth used in a reference time interval,
and the number of times it gets used completely. To
watch host conditions, the CPU, disk and memory use
ratios are measured. Finally, the monitored applica-
tion parameters include: the number of active sessions,
the average duration of connections, the number of
queries in a reference time interval, and the average
time needed to serve a client.

The Dispatcher/Controller collects monitored parame-
ters by querying the Receiver on each host.

• Analysing collected parameters to find out which hosts
or network links are experiencing an overload.

For this aim, parameters are compared with thresholds
representing lower bounds for execution conditions, as
well as with the previously known behaviour of the
application. The analysis is driven by the applicable
adaptation rules, and may result in adaptation deci-
sions triggering substitution or migration of some ap-
plication classes.

• Adapting the application and the distribution of its
classes, so as to reduce the load of hosts whose capacity
is being overwhelmed by the client requests received,
and avoid congestion on network links. This allows the
system to deliver better performances.

• Notifying Receivers on all hosts of the presence of new
versions of application classes, as these are introduced,
e.g. to remove existing bugs, improve performances, or
add new services. This will trigger the update of in-
volved classes on all the hosts where they are running.

Although developers are asked to tell Dispatcher/Con-
troller that new class versions are ready, their chore is

in the Data Centric Tier the Dispatcher/Controller (it holds
configuration and performance data) and in the User Centric
tier the Receivers (they control business logic classes).

simplified because they are not asked to change the
class name for new versions. This makes it easier to
compile and test them with the existing classes. Dis-
patcher/Controller takes care of renaming the classes
and sending them as new ones to the appropriate Re-
ceivers. New versions will thus appear to the JVMs
involved as differently named classes.

The above monitoring and analysis activities are performed
periodically, and trigger notification and adaptation when
necessary.

2.2.2 Receiver
The Receiver acts as an intermediary whereby the Dis-

patcher/Controller can influence application classes located
on remote hosts. The tasks it is entrusted with are the fol-
lowing.

• Notifying its existence by registering itself with the
Dispatcher/Controller. During the registration phase,
the Receiver sends the Dispatcher/Controller data that
include a description of: (i) host characteristics that
do not change at run-time, such as CPU type, amount
of memory, network link bandwidth; as well as (ii)
the list of application classes that are located on the
Receiver’s host.

• Collecting run-time, application-related, information,
including the type and number of service requests re-
ceived, and abnormal execution indications (i.e. excep-
tions caught by the classes); these data are periodically
sent to the Dispatcher/Controller.

• Collecting environmental parameters that change at
run-time, such as host load and available network link
bandwidth, and sending them to the Dispatcher/Con-
troller.

• Listening to the Dispatcher/Controller commands or
messages and carrying out the related operations lo-
cally. Examples include the notification that a newer
class version is available (a message), or the request to
communicate an object’s state to other hosts (a com-
mand).

• Pulling new versions of classes from hosts where their
bytecode is known to reside, and handling class sub-
stitution.

The message sent by the Dispatcher/Controller to suggest a
Receiver to substitute application classes is structured as an
XML schema including the following tags:

• class, specifies the new class that should replace an
existing one (the former can implement a new version
of an existing service or a new service);

• old-class, provides the name of the existing class that
has to be replaced;

• host, is the host where the new class is available.

Within its host, Receiver informs the application, through
a metalevel class called VersionHandler (see Section 2.3),
that a new version of a class is available.

User Centric

host B

host A

Receiver

Receiver

Data Centric

Dispatcher/
Controller

2: send class

3: send state

1: inform

4: send invoke

Figure 2: Adaptation scenario

2.2.3 Adaptation Scenarios
Let us now describe the adaptation scenario the Dispatch-

er/Controller handles when it decides that the execution of
a certain application class should migrate from host A to
host B. This could arise from the analysis of the number
of active sessions, the average duration of connections, etc.,
and might aim, e.g., at reducing A’s workload.

As sketched in Figure 2, firstly Dispatcher/Controller in-
forms the Receiver on A that B is to take over from A the
execution a certain class Class1. Later, this notification will
lead the Receiver on A to trigger interception of all future
invocations on any Class1 instance on A, and forward them
to B (cf. (4) in Figure 2). Secondly, Dispatcher/Controller in-
forms Receiver on B that class Class1 will be delivered to B.
Thirdly, once delivery has completed, Dispatcher/Controller
instructs the Receiver on A to send its B counterpart the
state of each Class1 instance it held, so that a copy in ex-
actly the same state can be instantiated on B.

From now on, all invocations made on A to any trans-
ferred Class1 instance will need to be re-directed to that
instance’s reincarnation on B2. Moreover, calls made by such
a reincarnation at B, being originally intended for objects
living on A, will need to be redirected back to that host.
For both re-directions, we intercept the outgoing invoca-
tions and then handle the remote call (with proper care
for both incoming and outgoing parameters). For this pur-
pose, we employ our own reflective architecture [3], which
transparently handles distribution for unaware applications
through the metalevel classes Locator, Communicator and
ServerProxy. Communicator takes care of relocating a lo-
cal object to a remote ServerProxy, and, later, of redi-
recting calls intended for that object to the appropriate
ServerProxy. Relocated objects are tracked by Locator.
Since these metalevel classes are only concerned with the
transfer of data (describing objects and calls), they impose
virtually no additional computing load on hosts.

Another adaptation scenario arises when the existing ver-
sion of class class1V1 has to be updated by a newer ver-
sion class1V2. Thus, every method call to an existing in-
stance of class1V1 will have to refer to the new version. For
this purpose, Dispatcher/Controller informs the Receivers on
all the hosts holding class class1V1 instances that a new
version class1V2 is available, and asks them to download
its bytecode. By intercepting method invocations on ev-
ery class1V1 instance xV1, the metalevel will be able to

2Invocations occurring during the transfer of the Class1 in-
stance will be momentarily held back.

User Centric

2: update
3: set

Data Centric

Dispatcher/
Controller

1: inform

metalevel

baselevel

Version
Handler

Receiver

class1V1 class1V2

Modifier:

: :

Figure 3: Interactions between components

re-direct them to a class1V2 instance created to act as an
alias of xV1.

2.3 Intervening into Application Classes
In order to support the adaptation measures described

above, i.e. migrating and updating application classes, Re-
ceivers exploit the hook provided by a suitable metalevel,
connected at load-time to application classes.

The metalevel consists of classes Modifier and Version-

Handler, which provides a registry of class names and ver-
sions. At run-time, each baselevel class instance will have
an associated Modifier instance capable of intercepting and
re-directing operations on the former. Note that Modifier

is the same for any baselevel class associated with it. As a
consequence, it is application-independent.

Figure 3 shows how these classes collaborate to support
run-time adaptation.

2.3.1 VersionHandler
Class VersionHandler holds, as in a registry, names of

application baselevel classes, names of their newer versions,
references to instances of baselevel classes, and references to
Modifier metaobjects associated with the latter instances.

Suppose VersionHandler is notified by Receiver that a
new version class1V2 of class class1V1 is available (cf. (2)
in Figure 3). A registry lookup is then started, in order
to find the references to Modifier metaobjects that are con-
nected with instances of class1V1. Each such metaobject is
then informed that a new version class1V2 of the associated
baselevel class is available ((3), Figure 3).

2.3.2 Modifier
Class Modifier is reflectively associated with baselevel

classes as soon as they are loaded into the JVM. As a re-
sult, whenever a baselevel class class1V1 is instantiated,
a Modifier instance is automatically created. It traps in-
vocations to the associated class1V1 instance, and decides
whether to redirect them to an alternative object or let the
original flow proceed.

Suppose now a Modifier instance m is notified that the
class class1V1 of the associated baselevel object xV1 has
been updated as class1V2. It then instantiates3 class1V2,
say as xV2, and initialises it to a state mapped from that of
xV1 (trying to ensure state equivalence or somehow compat-
ibility). Finally, m records a reference to the new instance

3Of course, the first instantiation of class1V2 will have the
class automatically loaded into the JVM.

xV2. From this moment on, trapped invocations to xV1 are
redirected by m to xV2. (In Figure 3, the generic instances
:Modifier, :class1V1 and :class1V2 play the roles of m,
xV1 and xV2 in the preceding discussion, respectively).

It is worth observing, without further detail, that, even in
the presence of multiple class versions class1V2, class1V3,
. . . , Modifier stays associated only with the first version
class1V1. As a result, the overhead for the metalevel, in
terms of activities or required memory, does not increase,
thus scaling effortlessly. In particular, a Modifier instance
only needs a single redirection to find the latest class version.

3. ENSURING TYPE COMPATIBILITY
This section discusses some type-related issues, arising

with the proposed approach to adaptation based on evolv-
ing Java classes at run-time. By this evolution, we mean
the replacement of a running class by a new version, each
time the computational environment changes or requires a
new functionality, or a bug must be fixed.

We maintain that an evolution mechanism is only satis-
factory if it employs the standard JVM and operates within
Java type-compatibility rules. Our solution exploits, to en-
sure these constraints, the Java language concept of inter-
face, and the JVM dynamic class loading facility, i.e. a tai-
lored class loader. Furthermore, we feel the class versioning
concern should be completely transparent to application de-
velopers, i.e. strictly separated from purely functional con-
cerns. With a view to this goal, a framework like ours,
featuring load-time bytecode manipulation, can be of help
in that it permits necessary versioning-related information
to be injected into class bytecode.

The main obstacle we face is that, at run-time, if a newer
class version class1V2 has somehow effectively replaced the
initial one class1V1, the (remaining) original code could
contain variables (formals) of type class1V1, and poten-
tially try to assign to them instances of class1V2. How-
ever, this is forbidden in a standard Java environment, for
type-compatibility would be violated.

3.1 Type-Compatibility
Let us recall first the Java type-compatibility rules. In

Java, an object of type S (source) can be assigned to a vari-
able of type T (target) when one of the following rules is
satisfied.

• If S is a class, then: (i) if T is a class, then S must
either be T or a subclass of T; (ii) if T is an interface,
then S must implement T;

• otherwise, i.e. if S is an interface: (i) if T is an interface,
then S must either be T or inherit from S; (ii) if T is a
class, then T must be Object;

Given the above rules, if all the versions of a class are made
to implement the same interface, type-compatibility from
each version towards that interface will be ensured. This
will allow variables whose type is this interface to be as-
signed instances of any class version. To force this form of
type-compatibility, we appropriately modify the bytecode of
classes at load-time, as detailed below.

To begin with, a configuration file specifies: (i) whether a
class will need to be updated with new versions at run-time,
and (ii) the name of the interface to be used as all versions’
common ancestor. Each time a class is loaded, the modified

class loader: (a) looks up the corresponding interface in the
configuration file; (b) generates the specified interface’s class
file, if it is not found in the class path, by building a list of
all the class’ public methods; (c) manipulates the bytecode
of the class it is loading, so as to force it to implement the
desired interface. In this fashion, when a new version of a
class is deployed, since the configuration file specifies for it
the same interface as the original class, both versions will
end up implementing the same interface.

To complete the picture, it should be added that the mod-
ified class loader engineers all classes appropriately at load-
time: whenever it spots a variable whose type is an original
class potentially subject to versioning, it changes this type
to the appropriate interface. Thus, type compatibility will
hold for any subsequent class versions.

3.2 Handling New Instance Creation
While the re-direction of a method invocation to a new

version of a class has been discussed in Section 2.3, here we
examine how the creation of a new instance of such a class
is handled.

Let us suppose that the following statement originally oc-
curred within a class A.

class1V1 c = new class1V1()

As said above, this statement will be modified when class A
is loaded, so as to make variable c of type interfC1, which
we assume to be the interface specified for class1V1 (and
any later version) in the configuration file.

Within the software architecture of Section 2.3, just be-
fore the new class1V1 instance for c is created, a Modifier

metaobject is instantiated to be associated with it. The new
metaobject thus catches the instantiation for c on its incep-
tion. It will then look up (in the configuration file) the latest
version of class1V1, say class1V3, instantiate it and pass
a reference to the new instance to the baselevel. It is this
one that will be effectively assigned to variable c (now of
type interfC1), avoiding any type-compatibility error, even
though the original statement specified an instantiation of
class1V1.

From now on, all invocations to methods of c will auto-
matically execute the code of class class1V3, without even
needing to be re-directed by a Modifier metaobject. Of
course this redirection is still necessary, as detailed in Sec-
tion 2.3, for class1V1 (and class1V2) instances already ex-
isting when version class1V3 is deployed.

4. RELATED WORK
In the approach of Liang et al. [4], as in ours, a class can

be replaced by a newer version exploiting interfaces, but up-
dating its existing instances is not possible. In ours, instead,
instances of original, superseded classes are simply made to
execute the new version’s code, by means of interception.

Sato and Chiba [8] propose the use of negligent class load-
ers that can relax the version barrier between themselves.
In their approach, a new version of a loaded class shares
the latter’s name and cannot therefore be loaded again by
the same class loader. On the other hand, if a different
class loader is employed for this purpose, instances of one
of these versions cannot be assigned to a variable of the
other version. The solution of [8] is based on appropriate,
relaxed compatibility rules, which are checked by exploiting
the checkcast instruction. The JVM is modified so as to

make checkcast examine the version of the instance to be
assigned and, should this result in violating the (relaxed)
rules, throw ClassCastException. In contrast, in our ap-
proach a single class loader and the standard JVM suffice.

Malabarba et al. [6] propose a modified JVM and a tai-
lored class loader. The class loader can reload a class, when
the application requests so, by updating the modified JVM’s
internal structures so as to replace the code of a class by its
new version. They take care of re-binding existing instances
to the updated class code, as well as preserving type safety
by run-time checks and configurable rules intended to re-
ject untrusted code. This approach, unlike ours, requires a
modified JVM, and only copes with versioning by forcing
applications to be aware of it (because of the way they will
have to use the personalised class loader).

Oreizy et al. [7] propose a software architecture that en-
ables systems to be changed at run-time, by relying on ad-
hoc components and connectors. Decisions on changing or
adding components are not automated, but a human expert
operates on the architecture by configuring connectors so
that components are appropriately changed at run-time. In
our approach, application developers are kept unaware that
changes could be introduced at run-time, and in particu-
lar do not need to provide any ad-hoc interfaces, or inject
statements into application classes.

Amano and Watanabe [1] propose to perform adaptation
by selecting a known component that best fits environmental
conditions. Components can be connected and disconnected
at run-time, but new components cannot be included on-
line, as soon as they are available.

Cazzola et al. [2] present a reflective architecture that pro-
vides an application with the ability to adapt according to
evolution and validation strategies. The metalevel incorpo-
rates some knowledge about the application design to decide
how to react to environmental events, and whether it is safe
to perform changes into the running application. This re-
quires programmers to provide a representation of the appli-
cation design that cannot be derived from the classes. This
requirement can be difficult to fulfil, especially if the design
is not fully documented. Moreover, [2] does not deal with in-
troducing into an application new class versions at run-time,
but only with re-configuring loaded application classes.

5. CONCLUSIONS
In this paper an architecture for the on-line adaptation of

distributed server-side systems has been proposed. It allows
both class changes and class updates to take place on-line,
for the sake of performance tuning, functionality evolution
or bug fixing.

We manage to change the class (version) of existing in-
stances, without violating standard Java type-compatibility.
For this, no modification of the JVM or application source
code is required, and no additional or modified type com-
patibility rules need to be introduced. By manipulating
class bytecode at load-time, we ensure standard compatibil-
ity rules are not violated, and yet are effectively by-passed
without hampering the versioning mechanisms employed.

We may conclude that the proposed approach features
concern separation at three levels:

1. for application developers, functionality concerns stay
independent of on-line adaptation (note that not even
application source code is required);

2. the architecture and its mechanisms are general, i.e.
independent of the specific application they enhance
with on-line adaptation;

3. a standard JVM, with a single class loader, suffices; in
other words the adaptability concern has practically
no impact on the execution environment.

6. REFERENCES
[1] N. Amano and T. Watanabe. An Approach for

Constructing Dynamically Adaptable
Component-Based Software Systems using LEAD++.
In W. Cazzola, R. J. Stroud, and F. Tisato, editors,
Proceedings of the OOPSLA Workshop on Object
Oriented Reflection and Software Engineering
(OORaSE’99), pages 1–16, Denver, November 1999.

[2] W. Cazzola, A. Ghoneim, and G. Saake. Software
Evolution through Dynamic Adaptation of Its OO
Design. In H.-D. Ehrich, J.-J. Meyer, and M. D. Ryan,
editors, Objects, Agents and Features: Structuring
Mechanisms for Contemporary Software, Lecture
Notes in Computer Science 2975, pages 69–84.
Springer-Verlag, Heidelberg, Germany, July 2004.

[3] A. Di Stefano, G. Pappalardo, and E. Tramontana.
Introducing Distribution into Applications: a
Reflective Approach for Transparency and Dynamic
Fine-Grained Object Allocation. In Proceedings of the
Seventh IEEE Symposium on Computers and
Communications (ISCC’02), Taormina, Italy, 2002.

[4] S. Liang and G. Bracha. Dynamic Class Loading in
the Java Virtual Machine. ACM SIGPLAN Notices,
33(10):36–44, October 1998.

[5] P. Maes. Concepts and Experiments in Computational
Reflection. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’87), volume 22 (12) of Sigplan
Notices, pages 147–155, Orlando, FA, 1987.

[6] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F.
Barnes. Runtime Support for Type-Safe Dynamic Java
Classes. In Proceedings of the 14th European
Conference on Object-Oriented Programming
(ECOOP’00), volume 1850 of Lecture Notes in
Computer Science. Springer-Verlag, 2000.

[7] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-Based Runtime Software Evolution. In
Proceedings of ICSE, Kyoto, Japan, April 1998.

[8] Y. Sato and S. Chiba. Negligent Class Loaders for
Software Evolution. In Proceedings of the RAM-SE
workshop of the European Conference on
Object-Oriented Programming (ECOOP’04), 2004.

[9] R. Stroud and Z. Wu. Using Metaobject Protocols to
Satisfy Non-Functional Requirements. In Advances in
Object-Oriented Metalevel Architectures and
Reflection. CRC Press, 1996.

[10] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
Bytecode Translator for Distributed Execution of
“Legacy” Java Software. In Proceedings of the 15th
European Conference on Object-Oriented
Programming (ECOOP’01), volume 2072 of Lecture
Notes in Computer Science, pages 236–255.
Springer-Verlag, 2001.

