A Multi-Agent Reflective Architecture for User
Assistance and its Application to E-Commerce

Antonella Di Stefano!, Giuseppe Pappalardo?, Corrado Santoro', Emiliano
Tramontana?

'Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
*Dipartimento di Matematica e Informatica
Universita di Catania
Viale A. Doria, 6 - 95125 Catania, Italy
{adistefa, csanto}@diit.unict.it, {pappalardo,tramontana}@dmi.unict.it

Abstract. Assisting an application can involve several tasks of a dif-
ferent nature; thus it can be a complex job which is better performed
by several autonomous agents. Accordingly, in many scenarios, several
small assistant agents, each dedicated to a single task, are employed to
supply help and to enhance the same application.

This paper proposes a software architecture that allows multiple assis-
tants to serve the same application and interact with each other as nec-
essary, while working autonomously from each other. This architecture
interfaces assistants with an existing application by means of computa-
tional reflection. The latter mechanism allows meaningful user activities
to be intercepted by assistants, and the outcomes of their activity to
be supplied to the application. No assumptions need to be made about
the application or the assistants; assistants can be changed, added and
removed as necessary to adapt the application to unforeseen scenarios,
conversely an assistant can be employed to support several applications.
The usefulness and applicability of the proposed architecture is demon-
strated by an e-commerce case study: we show how a suitable assistant
set can integrate with and enhance a bare web browser, making it fit to
support e-commerce activities.

1 Introduction

Although common widely-known applications provide a user-friendly GUI and a
set of functionalities that help users carrying out their work, they can be further
improved with assistant agents [11,17,4] that facilitate user operations and/or
add support for user-specific activities. In this field, one of the most famous
example is the Microsoft Office assistant, which is an ActiveX object, integrated
with the Office suite. Other research proposals provide assistants to help web
browsing [14, 6], chatting [15], web mining [12], etc.

Up to now, the techniques used to connect assistant agents with an applica-
tion need to be (re-)designed each time a new application is extended or a new
assistance functionality is integrated; this is because the connection is generally

obtained by exploiting the access points provided by the application itself or by
the operating system environment (e.g. scripting services). In any case, solutions
are application- or environment-dependent and no general technique to interface
applications and assistants exists. In addition (with few exceptions like [6,12]),
assistants proposed so far consist of a single component which embeds all the
supplied functions, thus making it hard to modify assistance functionalities or
add further ones.

To overcome the above limitations, this paper proposes a multi-agent archi-
tecture for the modular design of application assistance software based on a set
of cooperative agents. It extends [4] by supporting coordination among various
assistants working for the same application. The architecture is conceived not
to be tied to a specific application. It exploits computational reflection [16] to
interface with an existing application written in an object-oriented program-
ming language. We adopt the metaobject model [8] to capture control from an
application object whenever an operation is performed on it (e.g. a method is in-
voked), and to bring control within the associated metaobject, which can choose
to modify the behaviour of the application object. In the proposed architecture,
a set of assistant agents, each entrusted with a specific task, cooperate with a
special agent, called Coordinator, which handles interactions between them and
the application. This agent incorporates some metaobjects, which intercept con-
trol from application objects, and cooperates with assistant agents. It triggers
assistant activities and uses their outcomes to change or enrich the behaviour of
the application.

The proposed architecture affords a great degree of flexibility and modularity
in the design and implementation of assistants. Each of these can be seen as a
“plug-in”, which can be added (even at run-time) if its functionality is needed,
or can be removed in the opposite case, without affecting the functioning of the
entire system.

The architecture has been employed to coordinate a set of assistants aimed
at facilitating e-commerce activities. We envisage several types of assistants en-
hancing a web browser with functionalities for e-commerce and simplifying the
steps that users must perform before purchase. An assistant is dedicated to each
of the following tasks:

— understanding user preferences from visited web pages and from typed key-
words;

— extracting data from web pages to collect features of interesting goods;

— creating on the client side a virtual cart that stores potential user’s pur-
chases;

— finding offers for user selected goods;

— monitoring the trend of prices of user selected goods.

The outcomes of assistant activities are used to change browser behaviour, by
e.g. re-organising web pages and highlighting important pieces of information on
web pages, as the user navigates.

The outline of the paper is as follows. Section 2 presents the reflective soft-
ware architecture for coordinating multiple web assistants. Section 3 describes

in detail a set of assistants cooperating within the proposed architecture, in or-
der to enhance a web browser. Section 4 analyses related work. Conclusions are
presented in Section 5.

2 An Architecture for Coordinating Assistants

2.1 Reflection

A software system is said to be reflective when it contains structures, representing
some of its own aspects, which allow it to observe, and operate on, itself [16]. A
reflective system is typically a two-level system comprising a baselevel, intended
to implement some functionalities, and a metalevel, which observes and acts
on the baselevel. A widespread reflective model is the metaobject model, which
associates each baselevel object for which this is deemed useful, with a corre-
sponding metalevel object called metaobject. As Figure 1 shows, metaobjects
intercept control from their associated objects whenever e.g. an object method
is invoked (see (1) of Figure 1), or an object changes its state [16, 8]. Once control
is within metaobjects (2), these are able to inspect and change the state of their
associated objects, and to modify objects behaviour by activating operations,
changing parameters, etc. After control has been captured by metaobjects, it is
usually given back to the object invoked initially (3).

2: traj T
P 3: reﬂect¢

metalevel

baselevel

I invocation

()

Fig. 1. Metaobject model

Reflective systems have been exploited to transparently provide software sys-
tems with synchronisation [22], adaptation to changing conditions of the envi-
ronment [23], fine grained allocation of objects in a distributed environment [5],
etc.

Metaobjects are associated with objects by means of reflective object-oriented
languages, such as OpenC++ [2], Javassist [3], etc. The former language is a re-
flective version of C++ that relies on inserting keywords into the source code
to provide an application with metaobjects. Then the OpenC++ code is trans-
formed into executable code by a special pre-compiler. The latter language is a
reflective version of Java that allows objects to be associated with metaobjects

by changing selected bytecode parts, and injecting into objects statements that
notify some of their events to metaobjects.

O Assistant Agents

= ~ ACL Interactions

\

- » Reflective Mechanism

Coordinator

Application

Fig. 2. Reflective software architecture coordinating several assistants

2.2 The Architecture

Assistants aim at providing additional information and functionalities to users
while they work with an application. For this, assistants need to capture user
activities and appropriately react by changing the application behaviour.

The software architecture that this paper proposes exploits computational
reflection as a means to integrate assistants into an application. In such an
architecture, complexity is handled and the support for modularity is effectively
realised by using several autonomous and specialised (assistant) agents.

The architecture consists of an application (typically a web browser, how-
ever we are exploiting it also for other applications) at the baselevel, and various
agents, i.e. a Coordinator and some assistants, at the metalevel (Figure 2). Sev-
eral assistants enable achieving modularity since each of them is built as a small
component dedicated to a single task.

Assistants interact with the application by means of the Coordinator agent,
whose purpose is to communicate assistants the interesting events of the applica-
tion, to use assistant outcomes to change some operations of the application, and
to allow exchanging data between assistants. Communication between agents—
both assistants and Coordinator— is performed by using messages, that is Agent
Communication Language (ACL) speech acts [13].

Thanks to reflection, the Coordinator is able to detect the effect of user oper-
ations on the application (i.e. method invocations, changes of object attributes,

etc.). On the basis of this detection, the Coordinator deduces user actions and
notifies the occurrence of these to other agents, according to their requests. In
particular, each agent interested in being informed of a specific event sends a
request-whenever speech act to the Coordinator defining, as the condition, the
user action to intercept. Conversely, the Coordinator, each time that condition is
met (i.e. the user action is intercepted), notifies requesting agents via an inform
speech act, which carries additional parameters related to the action itself.

The Coordinator is also responsible to perform actions onto the applica-
tion, derived from the outcomes of the reasoning process of assistant agents.
For example, if an assistant wishes to highlight some words on the application
(e.g. searched keywords), it can ask the Coordinator to change the colour of
those words each time they occur in a loaded page. This is done by sending a
request speech act, containing the action to be done, to the Coordinator.

The characteristics of the proposed reflective software architecture, and espe-
cially those of the Coordinator, allow various assistants to be plugged-in, accord-
ing to the user needs. Reflection makes the application not aware of assistants
changing its behaviour, whereas the Coordinator has to know only that some
assistants need to be notified and that they can provide data to be used for
the application, but has no knowledge at design time about their number and
specific task. Indeed, assistants can be of any type and can be created incre-
mentally. The only constraint for assistants, to be able to interact with each
other and the application, is the type and meaning of events and data that they
are able to exchange. To make it possible for the Coordinator to work with
several unknown assistants, it exploits the Observer design pattern [9] and the
Blackboard architectural style [20].

Figure 3 shows the proposed reflective software architecture allowing several
assistants and an application to be interfaced, and the structure of the Coordi-
nator.

2.3 Components of the Coordinator

In order to achieve/perform its operations, the Coordinator is based on the set of
components shown in Figure 3, which also depicts the dynamic of interactions.
These components are: metaobjects Switcher, implementing the interactions
with application objects; and metalevel objects Merger and Blackboard realis-
ing the interactions with assistants, by means of an ACL. Each component is
described in the following.

— Metaobjects Switcher are employed to detect events of the application. They
are associated with those application objects that generate events which
some assistants are interested in, and those application objects whose be-
haviour can be changed by assistants.

Each metaobject captures all the method invocations and state changes of
an application object (see (1) of Figure 3), thus it is able to detect a specific
set of events and to intervene to modify the behaviour of the application
object. E.g., for e-commerce assistants, the events that metaobjects capture

Assistant

request-whenever (event)
4: request(getState)

|

T 3: inform(event)

l request(do-something)

Coordinator

:Merger

2: update(event, data”

Metaobjects

I: trapﬁ

:Switcher

-y
5: get(data)

\ pdate(event, data)

:Blackboard

\get(data)
/get(d ata)

:Switcher

:Switcher

metalevel

baselevel

—>»>

Objects

Application

Fig. 3. Coordinator functionalities and interactions with assistant agents

include: downloading a new web page, rendering a web page, displaying a
word on the screen, inserting a word in a web form.

— Metalevel object Merger receives information on events and data of the ap-

plication by metaobjects Switcher (2). As in the Observer design pattern, it
handles a list of observers—i.e. agents involved in the assistance activity—for
each intercepted event and sends them notification (3). If needed, assistants
may receive additional data, related with the event, using a suitable request
speech act (4).
The Observer design pattern allows updating the state of the assistants that
need to know changes of the application state. It lets assistants change or
increase their number without modifying the Merger (i.e. the subject, in the
design pattern terminology) or other observers. It ensures loose coupling
between the Coordinator and assistants.

— Metalevel object Blackboard is a repository for the outcomes of assistants

and it constitutes a way to make results available to the application and
to assistants. OQutcomes derive from assistants deduction activity and are
communicated asynchronously to this component in order to influence the
behaviour of the application. Metaobjects access the Blackboard (5) and,
according to retrieved outcomes, change the behaviour of their associated
application object, by e.g. modifying its parameters, and synchronise assis-
tance activities with the object operations.
In our architecture, the Blackboard component is also a shared knowledge
base, that is used by an assistant to obtain information inferred by other
assistants during their activity. This architectural style allows independent
assistants to work cooperatively and to share results [1]. Each assistant is
not required to know about others, thus enhancing modularity.

Metaobjects are the means to access the application objects both to gather
data and to modify their behaviour. They also provide coordination for the
assistants activity and synchronisation between them and the application. The
application changes its state for user activities and for its computation, and
concurrently the assistants perform computation and provide their outcomes,
from their deduction activity. Metaobjects exploit the moment when control
is captured to pour the assistants (partial) outcomes to the application. This
synchronisation ensures that the application is not badly affected by additional
concurrent activities and it does not add complexity due to the handling of
concurrency since it is very easy to be implemented.

2.4 A Case-Study: Changing the Behaviour of a Web Browser

In order to better understand the mechanisms of the architecture, in this Section
we provide a simple example showing how a web browser is extended by adding
user assistance functionalities. We consider a single assistant agent charged with
the task of finding and highlighting keywords each time a new web page is loaded
and displayed by the browser. The assistant builds a ranked list of keywords by
means of a term-frequency algorithm (see Section 3.1), which is updated each

time a new page is loaded. The top elements of the list are used to determine
the words to highlight.

As discussed in [4], the first step of a programmer wishing to build the con-
nection between the assistance software and an application is identifying the
events that trigger assistant activity. In this case, the relevant events are: down-
loading a new web page and rendering a web page, which are briefly sketched
below.

1. Downloading a new web page. The assistant needs, from the Coordinator, a
notification each time a new page is requested by the user and loaded by
the browser. To this aim, at startup, the assistant contacts the Coordinator
using a request-whenever speech act which expresses the assistant’s interest
in receiving this notification. Each time a new page arrives, the Coordinator
answers with an inform speech act containing the downloaded HTML source
page.

2. Rendering a web page. In order to perform keyword highlighting, the assis-
tant executes a request speech act that supplies the Coordinator a ranked
list of tuples, in the form (keyword,colour), where the colour indicates how
important a word is.

After identifying the set of events triggering assistance, the second design
step to be performed is understanding which browser objects are involved with
the events identified in the first step. Obviously, these objects depend on the im-
plementation of the web browser. E.g., referring to the Jazilla Java browser [21],
the above events are handled respectively by objects SimpleLinkListener and
JTextPaneRenderer.

The third design step is connecting the identified application objects with the
Coordinator by capturing their method calls by means of metaobjects. For this
purpose, we use the Javassist [3] reflective extension of Java. In the example at
hand, metaobject SwitcherListenis associated with object SimpleLinkListener
and captures control when a new page is downloaded (i.e. when method hyperlinkUpdate ()
is invoked). This informs object Merger (see Figure 3) of this event, which, in
turn, sends an inform message to the assistant. Once this message has been sent,
control is returned to the application, which continues its normal execution.

As concerns keyword highlighting, application object JTextPaneRenderer,
which displays web pages, is associated with metaobject SwitcherRender. The
latter traps control before a page is displayed, searches the page for the the
keywords of the ranked list, stored in the Blackboard, and modifies the page
formatting to change the foreground colour of the keywords.

3 Web Assistants for E-Commerce

By exploiting the architecture proposed in the previous Section, we designed a
multi-agent system aimed at assisting e-commerce activities performed through
a web browser. The application extended is the web browser Jazilla. At this
stage we have developed and tested the Coordinator and a simple version of

Data Extraction Cart Manager

Assistant Assistant

User Profiler Goods Finder

Assistant Assistant

[Coordinator]

— - -

Appllication (Browser)

Fig. 4. E-commerce assistants for a web browser

the assistants described in the following. The set of assistant agents envisaged is
depicted in Figure 4; they cooperate together to perform the following activities:

understanding user preferences from visited web pages and typed keywords;
— extracting data about interesting goods from visited web pages;

storing extracted data into a virtual cart;

— finding offers for some user selected goods.

3.1 User Profiler Assistant (UPA)

This assistant is entrusted with the task of profiling the user while he browses
the Internet, in order to automatically determine user preferences and interests.
For this purpose, it analyses and classifies the visited Web pages. This activ-
ity is triggered when a new page is loaded by the web browser and performed
autonomously and asinchronously from the web browser and its user. UPA is
informed by the Coordinator that a new page has been loaded.

Once the assistant is triggered, it employs a classification algorithm to charac-
terise the current web page, by finding out its degree of “similarity” to categories
of a predefined set. The adopted approach is analogous to the one described in
[18]. The latter algorithm uses a set of page categories and a set of weighted key-
words for each category generated in a training phase specialised for e-commerce
activities. These two sets are stored into two appropriate local tables. New pages
are classified by calculating and ranking the similarity value to each predeter-
mined category.

This classification algorithm finds the frequencies of the words of a web page
and normalises them by considering the length of the web page. To take into
account user interests, in addition to the algorithm cited above, our assistant

changes the keyword weights of each category according to the most recurrent
keywords of the visited pages. This allows tuning the keyword weights within
a category to be tuned in order to adapt to the user’s navigation activity. The
outcome of the characterization of user preferences is a list of ranked keywords,
called WebPro requested pagesfile, obtained from the keywords of each scored cat-
egory normalised with the weight of the category itself. UPA sends the WebPro-
file list to the Coordinator, which stores it into the Blackboard in order to make
it available to other assistants and to the browser application.

Additionally, a user can show his/her interest for some keywords by marking
the appropriate text in the web pages. Consistently with the adopted methodol-
ogy, the latter user operation is captured by the Coordinator, which identifies the
marked words and notifies them to this assistant. As a result the latter changes
the weight of the new keywords in its categories. The ranked list of keywords is
used, when pages are displayed on the web browser, to determine which words
to highlight, as described in Section 2.4.

Note that this kind of assistant is not e-commerce specific, except for its
training phase. Its activities can be used also for other kinds of assistance, which
shows that this assistant can be reused as a module in several contexts.

3.2 Data Extraction Assistant (DEA)

This assistant is responsible to search for the parts of a web page that refer to
goods. It is notified by the Coordinator of the downloading of a new web page
and autonomously performs its page analysis. It uses the keywords previously
collected by UPA and stored on the Blackboard to find out whether some goods
are interesting.

If any relevant goods are displayed on the web page, DEA gathers good
names, prices, availability, features, links to other web pages where they are
offered, etc. and stores them into a local list, called GoodList. By doing so this
assistant builds a structured version of the data contained in an unstructured
web page, so that data can be easily manipulated. This is achieved by a well-
known algorithm [7]), using an ontology that describes the data of interest.
The ontology allows producing a database scheme. Based on the ontology, it
is possible to automatically extract data from web pages and structure them
according to the generated database scheme.

Once new data are gathered, the assistant compares these with those pre-
viously stored and ranks requested pages goods so that the most accessed ones
are on top of the GoodList. This list is sent to the Coordinator and stored into
the Blackboard so that it can be read by other assistants when needed. When
visiting a new web page any occurrence of a good that had been selected by
DEA is highlighted. In order to carry out this service, the rendering of a web
page is captured by a metaobject that searches the page for items occurring in
the GoodList stored in the Blackboard.

A user can show his/her interest on specific goods by marking the appropriate
text in a web page. Analogously to the previous assistant, this assistant is notified

about the marking action performed by the user and carries out its extraction
algorithm to update the list of goods.

3.3 Cart Manager Assistant (CMA)

The goods collected by DEA are accessed by the Cart Manager Assistant and
presented to the user on request. This assistant shows a new window that graph-
ically compares for each good the prices on different web sites or, depending on
the type of data available, the trend of prices over time. These data are trans-
formed on-the-fly by the assistant for more effective presentation; thus, when
necessary, currency conversion is performed, additional costs are considered (e.g.
V.A.T., delivery fee), etc. The user can interact with the graphical representa-
tion of data to notify the assistant which goods are more relevant for her/him.
This phase allows the assistant to have hints about user preferences and so to
tune its activities.

This virtual cart has many benefits that accrue from the fact that data about
goods are stored exclusively at the client side. To begin with, it enhances security
and privacy, since such data may be sensitive and personal; thanks to this client
side solution, remote web sites are cut off from their handling and only the proper
user is given the opportunity to work on them. The second benefit is to simplify
user operations on selected data, since the virtual cart handles data provided by
several web sites. It provides a common repository that the user can easily access
avoiding the fragmentation of data among several web sites and independently of
the availability of the network connection. Other benefits of the virtual cart are:
handling additional personal information, such as the budget for types of goods;
organising goods inside categories, calculating requested pagesprice trends, since
it keeps track of the offers for the same goods on different web sites.

By a user/assistant interface, the user can ask to see the list of items in the
cart, or graphs comparing prices or displaying their trends.

Data organised by this assistant are converted to some suitable format (such
as one a spreadsheet can read) and permanently stored. This allows other ap-
plications to further analyse data, separately from the assistant, and permits
integration of the collected data into other applications.

3.4 Goods Finder Assistant (GFA)

For some user selected goods, this assistant carries out additional operations,
such as seeking on the web further offers, or data. When viewing the data handled
by CMA, the user can ask for more detail on a good simply by clicking on it. In
response, GFA autonomously searches and accesses web pages where goods can
be found, and analyses them in the background looking for the good of interest.
If such a good is found, GFA asks DEA to extract the appropriate data from
the web page and informs CMA of the new gathered data.

Addresses of Web pages and search engines where goods are searched are
stored in a list handled by GFA. Each entry of this list contains both the web
address, the categories of goods which can be found, and a weight for each

category. This weight is constantly updated taking into account whether a search
of a good has been successful, thus tuning the effectiveness of a web address for
a given category in accordance with the number of hits.

4 Related Work and Discussion

The literature reports many works dealing with agents that support user ac-
tivities [11,17,14,6,15,12]. Yet, the majority of them deals with a single agent
that embeds all assistance activities and interfaces with the application using
ad hoc techniques. We have already cited the Microsoft Office Assistant, which
is an ActiveX object (MSAgent) catering only for user interactions, while as-
sistance tasks proper must be addressed by the application [19]. The MSAgent
is also used in [12] to provide the visual looks for a set of agents which assist
the user in web mining activities; however this approach is based on JavaScript
and thus assistants can only be used with a (JavaScript enabled) web browser
and in a Win32 environment (since the MSAgent is a Win32-ActiveX object).
Assistants proposed in [14,15,17] are interfaced with the application by means
of AppleScript [10], and thus require an application to be controllable by means
of this technology. In contrast to these approaches, our proposal exploits a gen-
eral methodology—reflection—which does not require the application, nor the
operating system (or GUI libraries) to provide special interface "hooks”. It is
platform-independent and can be applied to any application provided its source
code, or only its Java bytecode, is available.

The second difference with other proposed approaches lies in the modular
architecture: each agent is charged with a specific task and can be added or re-
moved at run time without affecting the structure of the entire system. The Co-
ordinator allows a complete separation between interfacing and assistance tasks,
thus making the assistance activity independent of the particular application to
be extended. For example, using the same e-commerce assistants presented here,
we can extend different web browsers by simply adapting the Coordinator to the
specific browser. Moreover, some assistants, originally designed to aid a partic-
ular type of application, can be later used to assist another type of application.
E.g., a word processor user writing commercial letters advertising some goods
for sale could be presented by GFA with a list of similar goods found in the Web.

Finally, the proposed architecture is also suitable to operate in a distributed
environment; some agents, such as GFA or an assistant monitoring price trends
and goods availability, could operate on some “reference server sites” in the
background, irrespective of whether site users are browsing the web; they would
provide search results as soon as a user opens his browser. In addition, if we
include an agent capable of HTTP communication, we could be able to support
the “personal mobility” [6], in order to offer search results also when the user is
browsing the web from a PC different than his own.

5 Conclusions

This paper has described a reflective software architecture allowing multiple
assistant agents to aid an application. The architecture handles the integration
of assistants into the application, while enabling assistants to perform their tasks
autonomously. Assistants need not be known at design time and can be added,
when available, at run time.

Regarding performance issues, we have tackled it by making the interaction
loose between application and assistants, e.g. giving assistants sufficient auton-
omy for carrying out their activities. This has been experimentally observed to
avoid the application to be excessively delayed. Moreover, interception of appli-
cation events, by metaobjects, can be carefully tuned to introduce a bearable
overhead, e.g. capturing the rendering of the whole web page and introducing
changes once for all is much faster than capturing the rendering of each word.

We have shown the usefulness and applicability of the architecture by means
of a set of e-commerce assistants that enhance a web browser. However, the
architecture can be easily used in other contexts varying the set of assistants,
the application or both.

References

1. G. Cabri, L. Leonardi, and F. Zambonelli. Mobile-Agent Coordination Models for
Internet Applications. IEEE Computer, 33(2), February 2000.

2. S. Chiba. A Metaobject Protocol for C++. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA’95), pages 285-299, 1995.

3. S. Chiba. Load-time Structural Reflection in Java. In Proceedings of the ECOOP
2000, volume 1850 of Lecture Notes in Computer Science, 2000.

4. A. Di Stefano, G. Pappalardo, C. Santoro, and E. Tramontana. Extending Ap-
plications using Reflective Assistant Agents. In Proceedings of the 26th Annual
International Computer Software and Applications Conference (Compsac’02), Ox-
ford, UK, 2002.

5. A. Di Stefano, G. Pappalardo, and E. Tramontana. Introducing Distribution into
Applications: a Reflective Approach for Transparency and Dynamic Fine-Grained
Object Allocation. In Proceedings of the Seventh IEEE Symposium on Computers
and Communications (ISCC’02), Taormina, Italy, 2002.

6. A. Di Stefano and C. Santoro. NetChaser: Agent Support for Personal Mobility.
IEEE Internet Computing, 4(2), March/April 2000.

7. D. W. Embley, D. M. Campbell, Y. S. Jiang, S. W. Liddle, Y.-K. Ng, D. Quass,
and R. D. Smith. Conceptual-Model-Based Data Extraction from Multiple-Record
Web Pages. Data Knowledge Engineering, 31(3):227-251, 1999.

8. J. Ferber. Computational Reflection in Class Based Object Oriented Languages.
In Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA’89), volume 24 of Sigplan Notices, pages
317-326, New York, NY, 1989.

9. E. Gamma, R. Helm, R. Johnson, and R. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley. Reading, MA, 1994.

10

11.
12.

13.

14.

15.

16.

17.

18.

19.
20.

21.
22.

23.

D. Goodman. Danny Goodman’s AppleScript Handbook. Random House, New
York, 1994.

J. Bradshaw et al., editor. Software Agents. AAAI Press, Cambrigde, Mass., 1997.
Y. Kitamura, T. Yamada, T. Kokubo, Y. Mawarimichi, T. Yamamotom, and
T. Ishida. Interactive Integration of Information Agents on the Web. In Proceed-
ings of CIA 2001, volume 2182 of Lecture Notes in Artificial Intelligence. Springer,
2001.

Y. Labrou, T. Finin, and Y. Peng. Agent Communication Languages: the Current
Landscape. IEEE Intelligent Systems, March-April 1999.

H. Lieberman. Letizia: An Agent That Assists Web Browsing. In International
Joint Conference on Artificial Intelligence, Montreal, August 1995.

H. Lieberman, P. Maes, and N. Van Dyke. Butterfly: A Conversation-Finding
Agent for Internet Relay Chat. In International Conference on Intelligent User
Interfaces, Los Angeles, January 1999.

P. Maes. Concepts and Experiments in Computational Reflection. In Proceedings
of the Conference on Object-Oriented Programming Systems, Languages and Appli-
cations (OOPSLA’87), volume 22 (12) of Sigplan Notices, pages 147-155, Orlando,
FA, 1987.

P. Maes. Agents that Reduce Work and Information Overload. In Bradshaw, J.,
editor, Software Agents. AAAI Press/The MIT Press, 1997.

H. Mase. Experiments on Automatic Web Page Categorization for IR system,
1998. Technical Report, Stanford University.

Microsoft Corporation. Microsoft Developer Network Library, 2000.

M. Shaw and D. Garlan. Software Architecture - Perspective on an Emerging
Discipline. Prentice Hall, 1996.

SourceForge. Jazilla Home Page. WWW, 2002. http://jazilla.sourceforge.net.

E. Tramontana. Managing Evolution Using Cooperative Designs and a Reflective
Architecture. In W. Cazzola, R. J. Stroud, and F. Tisato, editors, Reflection
and Software Engineering, volume 1826 of Lecture Notes in Computer Science.
Springer-Verlag, June 2000.

E. Tramontana. Reflective Architecture for Changing Objects. In Proceeding of
the ECOOP Workshop on Reflection and Metalevel Architectures (RMA’00), Nice,
France, June 2000.

