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Abstract The separation of concerns is important to attain object ori-
ented systems which can be easily evolved. This paper presents a reflec-
tive architecture which enforces the separation of concerns by allocating
functional, interaction and synchronization code to different levels. A
variant of collaborations (CO actions) is used to capture interactions be-
tween objects and avoids spreading the description of interactions among
the participating objects. Functional and interaction code are also sep-
arated from synchronization code by means of metalevel components.
Introducing changes into the reflective architecture to consider evolution
needs is facilitated by the loose coupling of different concerns. Hence,
changing a concern often consists of modifying only one component of
the reflective architecture. The paper describes the reflective architecture
in terms of a case study. The evolution of the reflective implementation
of the case study is compared with the evolution of an alternative im-
plementation and the benefits of the proposed architecture are shown by
using an evolution metric.

1 Introduction

Object oriented systems consist of a collection of interacting objects. In such
systems interactions are mixed with functional code and spread among several
objects. Therefore, both objects and interactions are difficult to express and
reuse. When those systems need to evolve, the code is difficult to understand,
since it mixes functionalities of objects with their interactions, and difficult to
modify, since a change in an object might cause all the interacting objects to
change.

Several approaches, which can be grouped under the name of collaborations
(or contracts), have been proposed to describe sets of interactions between ob-
jects, and to avoid interactions being scattered among objects [24,29]. However,
most of these approaches do not enforce a clear separation between functional
and interaction aspects, so changing one implies also changing the other [2,3,14].
Other approaches which achieve such a separation require extending the exist-
ing object oriented model, thus compromising the feasibility of implementations
using standard object oriented languages [12,19].
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This paper uses cooperations to represent interactions between objects, and
a reflective architecture for implementing software systems using objects and
cooperations [8,9]. In a cooperative object oriented design relationships between
objects are only captured by cooperations. A reflective implementation of a co-
operative object oriented design allocates cooperations at the metalevel, thus
enhancing the evolution of software systems, and providing a means of imple-
menting the control of access to objects transparently from the objects [10,28].
The aim of the present paper is to show, using a case study, how the reflective
architecture supports evolution. Some evolution scenarios are analysed for the
case study and an evolution metric is presented to quantify the effort to change
the reflective system. The evolution scenarios are compared with the equivalent
evolution of an alternative implementation of the case study.

This paper is an extended version of [28] which presents the detail of a reflec-
tive architecture implementing a cooperative object oriented design, and where
the enhancement provided by the reflective implementation is quantified by an
evolution metric. A different version of the case study was previously presented
in which evolution was discussed in the context of a cooperative object oriented
design [27].

The paper is structured as follows. Section 2 describes the cooperative object
oriented design and how it enhances evolution. Section 3 introduces the relevant
background concerning reflection and the motivation for using reflection in our
approach. Section 4 shows the cooperative object oriented design of a case study
and its reflective implementation. Section 5 analyses evolution scenarios for the
case study and compares the reflective implementation with an alternative one.
The related work is presented in section 6 and eventually conclusions are pre-
sented in section 7.

2 Cooperative Object Oriented Design and Evolution

Object oriented systems consist of a collection of interacting objects. Interac-
tions are usually described within objects, thus a complex set of interactions is
difficult to express since it is scattered among objects. In a cooperative object
oriented (COO) design, the object oriented model is extended by explicitly rep-
resenting collaborative activities between objects which are expressed in terms
of cooperative actions (CO Actions) [8,9]. Instances of CO actions are called co-
operations. Using the COO design, objects are employed to model components’
behaviour, and cooperations are used to model interactions between objects. A
CO action specifies the collaborative activity of its participating objects and the
pre-conditions, invariants and post-conditions associated with a collaborative
activity. These express the respective conditions for a group of objects to start,
hold and finish a cooperation.

Classes of a COO design are not aware of each other. The behaviour of a class
is described only in terms of its own methods. This yields the construction of
classes which are easy to understand and modify, since they do not mix functional
and interaction code. Classes are also likely to be reused, because they are not



Using Reflection to Enhance Evolution 61

specialised with interaction code. Similarly, since interactions between classes
are described as CO actions and clearly separated from classes, they are easy to
express and likely to be reused.

Changes that reflect evolving needs of a system can be incorporated only in
the definition of new interactions among the existing components of the system.
Hence, a COO design can evolve by changing only its CO actions, while classes
remain unchanged. The diagram in figure 1 represents a COO design. Boxes illus-
trate classes, rounded boxes illustrate CO actions and lines connect a CO action
with its participating classes. The three classes of the diagram participate to CO
action COActionA, and its evolution attained by defining CO action COActionB.
Consider a system which handles data for flight reservations. The classes of figure
1 then represent flights, customers, and tickets. CO action COActionA is respon-
sible for booking tickets and thus describes interaction between those classes.
Evolution of the system may necessitate changing the rules for booking a ticket,
for example allowing a flight to be held for a while without being paid. That
evolution scenario is incorporated into a new CO action (COActionB) describing
a new set of interactions between the classes. Those classes remain unchanged
when defining the new CO action.

A COO design can also evolve by changing classes. The CO actions where
the changed classes participate can still be used as long as the methods used and
the roles the classes play remain unchanged.

Fig. 1. Evolution of a COO design.

3 Reflective Architecture for Supporting Evolution

A reflective software system is a software system which contains structures rep-
resenting aspects of itself that enable the system to support actions on itself [23].
A reflective architecture consists of a baselevel and a metalevel, where objects
and metaobjects are respectively implemented. Two major reflective approaches
have been identified [5,13]: communication reification and metaobject model. In
the former approach the metalevel represents and operates on messages between
objects, whereas in the latter the metalevel represents and operates on objects.
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In the metaobject model, metaobjects are instances of a class able to intercept
messages sent to their associated objects. The interception of messages allows
metaobjects to perform some computation on the messages before delivering
them to the objects, therefore making it possible to intertwine different concerns.
The execution of an object’s method can be suspended to verify constraints, to
achieve synchronization, etc. [1,17].

A key concept in reflection is that of transparency: in a reflective system
baselevel objects are not aware of the presence of metalevels above them. Thus,
the development of objects is independent of that of metaobjects, and the con-
nection of metaobjects to objects is performed without changing any of them.

In a COO design, objects and cooperations are easier to evolve and more
likely to be reused because they only describe functional and interaction code,
respectively. Evolution of COO systems can be attained by assuming that ob-
jects remain unchanged while cooperations can be modified or replaced. In the
reflective implementation of a COO design, objects and cooperations are located
respectively at the baselevel and metalevel. Different levels of a reflective archi-
tecture can be used to implement different parts of the same application, as in
the Operating Systems Apertos [21] and Mach [25]. The metalevel adds function-
alities to the baselevel, since the behaviour of the latter is altered by metalevel
computation.

Reflection enhances evolution by allowing aspects of objects to be customised
at the metalevel [18], and by encapsulating into the metalevel the part of an ap-
plication more likely to change when new requirements are taken into account
[4]. Since cooperations are located at the metalevel, this encapsulates the part of
a COO system which is more likely to change when such a system evolves. Re-
placing cooperations is facilitated because of the clear division between baselevel
and metalevel.

The evolution of COO systems is also enhanced by separating the application
software from the control of the access to objects by several cooperations. The
concurrency control is implemented by managers associated with objects and
cooperations, which are located at the metalevel.

The reflective architecture supports evolution since it provides the separation
of functional and interaction aspects, the hiding of the complexity of a changeable
application, and the separation between concurrency control and application,
which makes it possible to change both application and concurrency control
independently.

4 COO Design and Reflective Architecture of a Case
Study

To describe the reflective implementation of a COO design we use the electronic
height control system (EHCS), which aims to increase the driving comfort by
adjusting the chassis level to different road conditions [26]. It controls the height
of a vehicle by regulating the individual height of the wheels through pneumatic
suspensions. Figure 2 illustrates the physical system which is composed of four
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wheels, each of which has a valve and a height sensor, connected to a compressor
and an escape valve. For each wheel of the vehicle, the height of the suspension
is increased by opening the wheel valve, closing the escape valve and pumping
in the air, and decreased by opening the escape and wheel valves, and blowing
off the air.

Fig. 2. Electronic height control system.

4.1 COO Design of the EHCS

The COO design of the EHCS is achieved by mapping each physical component
into a class and describing interactions between such classes using CO actions.
As figure 3 illustrates, the COO design of the EHCS is composed of classes:
Compressor, EscapeValve, Wheel, WValve and HeightSensor; and CO actions:
DecreaseSP, IncreaseSP, and ReadSP. In the diagram, CO actions list the par-
ticipants of their collaborative activity.

Classes. Class Compressor provides a method which starts and stops the com-
pressor pumping air and a variable which holds the state of the compressor.
Class EscapeValve provides methods for opening and closing the escape valve,
and a variable holding the state of the valve. Class Wheel provides methods for
increasing and decreasing the set point of the height of the wheel, and a variable
which holds the height of a wheel. Class Wheel is composed of two other classes:
class HeightSensor which can read the height of a wheel; and class WValve
which provides methods to open and close the valve of the wheel, and a variable
holding the state of the valve.

Since in a COO design a class does not incorporate interactions, it can only
be described in terms of its own methods. In the COO design of the EHCS class
Compressor is not aware of the other classes such as, for example, EscapeValve
and Wheel. However, class Wheel is aware of classes HeightSensor and WValve
since it is composed of those two classes. Nevertheless, the interactions between
such classes are also described by means of CO actions.
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Fig. 3. COO design of the EHCS.

CO Actions. CO actions are defined by their four methods: pre(), inv() and
post() to check pre-conditions, invariants and post-conditions, respectively, and
coll() to execute the collaborative activity involving a set of objects. Each
CO action is implemented into a metaobject to keep it clearly separated from
application objects and other CO actions.

CO actions IncreaseSP and DecreaseSP respectively describe how to attain
an increase and a decrease in the height of a suspension. The former CO action
activates methods of objects :Compressor and :WValve; and checks conditions
on other objects to start, hold, and properly end the collaborative activity. CO
action ReadSP describes how to read the height of a suspension. The value of
the height is provided by method readValue() of class HeightSensor and it is
stored in variable height of class Wheel. The activation of cooperation :ReadSP
is carried out by cooperation :IncreaseSP, thus :ReadSP is a nested cooperation.
To keep this description simple detail about nested cooperations will be given
in the following sub-section.

When describing a CO action a new class is created. Such a class inherits from
the abstract class Cooperation a method (collab()) which is responsible for
activating the methods which check preconditions, execute collaborative activ-
ity, and check postconditions. Method collab() is also responsible for starting
a new thread which checks the invariants while the collaborative activity is ex-
ecuted. Moreover, class Cooperation provides the primitives which allow the
introspection of baselevel objects.

In the following we show an example of CO actions, which is the Java code
of CO action IncreaseSP.

class IncreaseSP extends Cooperation {
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protected int SetPoint = 100;
protected Object compressor, escapevalve, wheel, wvalve,

heightsensor;

// initialization code

public boolean pre() {
if (introspect(escapevalve,"close") &&

introspect(wheel,"height") < SetPoint) return true;
return false;

}

public boolean inv() {
if (introspect(escapevalve,"close") &&

! introspect(wvalve,"close") &&
introspect(compressor,"on")) return true;

return false;
}

public boolean post() {
if (introspect(escapevalve,"close") &&

introspect(wheel,"height") > SetPoint) return true;
return false;

}

public void coll() {
returnRef1 = invokeMethod(wvalve, "openValve", null);
returnRef2 = invokeMethod(compressor, "compOn", null);
returnRef3 = invokeMethod(wvalve, "closeValve, null);
isOK = readSP.collab(wheel, heightsensor);

}
}

The code has been developed using Dalang, a reflective version of Java [30].
Dalang implements metaobjects as wrappers for objects to allow interception of
method calls of the object. Metaobjects exist during run-time, so they can be
dynamically created, destroyed, and associated to objects. A meta configuration
file is used to determine the association of metaobjects with objects. A run time
adaptive version of the EHCS case study was previously presented [11].

The reflective implementation of a COO design does not depend on a partic-
ular reflective language. Thus, the code could be produced using other reflective
languages that allow interception of method calls and introspection of objects,
such as: OpenC++ [6], OpenJava [7], metaXa [15].
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4.2 Reflective Architecture of the EHCS

To produce a reflective implementation of a COO design, each object is associ-
ated with an object manager and each cooperation with a cooperation manager
[10,28]. However, as explained in the following, nested objects and nested coop-
erations can generate a different reflective architecture. Object and cooperation
managers are used to provide support to the application and their responsibilities
include control of access to objects in a concurrent environment.

When some objects in the COO design are parts of an enclosing object, the
reflective architecture can be changed in order to optimise the implementation.
In this case the manager of the enclosing object can provide its services for the
inner objects, and those objects do not need their own managers. It is essential,
nevertheless, to assure that the inner objects are relevant to the other objects of
the system if only related with its enclosing object.

Figure 4 shows the reflective architecture of the COO design of the EHCS. To
simplify the reflective architecture, not every object has been associated with an
object manager. Objects :WValve and :HeightSensor can be considered inner
objects of :Wheel and so the services provided by object manager :WManager
for :Wheel are also used by those two inner objects.

Fig. 4. Reflective architecture of the EHCS.

Object Managers. The role of an object manager is to control the access
to its associated object, and to establish the rules for cooperations to invoke
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the services of that object. Another service that can be provided by an object
manager is the invocation of a cooperation manager when control is trapped at
the metalevel.

Concurrency control can be achieved by evaluating the state of the object,
thus the object manger handles the rules which check the object state and de-
termines whether to grant access to the object. Another way to achieve concur-
rency control is by enforcing mutual exclusion. To allow synchronization between
threads two methods are provided to request an object for ’read’ accesses and
’write’ accesses, respectively, readRequest() and writeRequest(). The object
manager allows multiple ’read’ accesses while denying all ’write’ accesses, or al-
lows only one ’write’ access while denying all the others. Two other methods are
provided to release the object (readRelease() and writeRelease()).

The result of a request depends on the state of the object associated with
the object manager. The object manager will return a failure indication if the
associated object cannot be used. Hence an object manager implements a balking
policy; however, other policies such as guarded suspension, rollback/recovery, etc.
can be also implemented [20].

In the EHCS concurrency control has to be enforced since more than one
:Wheel could ask to use the compressor at the same time. To implement the
concurrency control object manager :CManager is able to inspect :Compressor
to check whether the state of object :Compressor allows its use. Concurrency
control can be enforced also by mutual exclusion, so :CManager will grant access
only if the object :Compressor is not being used.

An object manager is described as a class which implements the interface de-
fined by the generic ObjectManager, which consists of methods readRequest(),
writeRequest(), readRelease(), writeRelease() and invokeMethod(). The
implementation of object manager CManager when concurrency control is en-
forced by mutual exclusion is shown in the following. The synchronized keyword
of Java is used to ensure that only one thread executes inside object :CManager
at a given time. The methods of CManager update two variables according to the
number of ’read’ and ’write’ accesses, and determine the availability of object
:Compressor. When access is granted the reference to object :Compressor (i.e.
target obj) is passed to the requesting cooperation manager.

class CManager implements ObjectManager {

protected Object target obj = null;
protected boolean intialization = true;

protected int readers = 0;
protected int writers = 0;

public synchronized Object readRequest() {
if (writers == 0) {

readers++;
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return target obj;
}
return null;

}

public synchronized Object writeRequest() {
if (readers == 0 && writers == 0) {

writers++;
return target obj;

}
return null;

}

public synchronized void readRelease() {
if (readers > 0) readers--;

}

public synchronized void writeRelease() {
if (writers > 0) writers--;

}

public void invokeMethod(Object target,
String methodname, Object arg[], String metaParam) {
if (intialization) init reference(target);

}
}

Cooperation Managers. The services provided by a cooperation manager are
the coordination of the requests for accessing a group of objects participating
in a cooperation and the activation of the associated cooperation. A coopera-
tion manager is also responsible for selecting alternative cooperations in case
of failure when requesting objects, and for starting recovery actions if the exe-
cuted cooperation cannot meet the post-conditions. Cooperation managers hold
references to the object managers of the objects involved in a cooperation.

A cooperation manager acquires the rights to access objects participating
in a cooperation by asking the respective object managers, then it gives the
control to one of the associated cooperations. While enforcing control of access
to objects, deadlock must be prevented or avoided, thus a cooperation manager
implements a prevention or avoidance strategy.

In the EHCS cooperation manager IncSPManager is responsible for asking
object managers to access objects :Compressor, :EscapeValve and :Wheel.
When the access is granted by the object managers, IncSPManager will give
control to cooperation :IncreaseSP. The following shows the Java code of
IncSPManager. The interface of a cooperation manager, consisting of methods
init() and activate(), is defined by the generic CooperationManager.
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class IncSPManager implements CooperationManager {

protected static CManager cmanager;
protected static EVManager evmanager;

// initialization code

public void activate() {
Object target0, target1, target2;
target0 = wmanager.writeRequest();
target1 = cmanager.writeRequest();
target2 = evmanager.readRequest();
if (target0 != null && target1 != null && target2 != null) {

boolean isOK=increaseSP.collab(target0,target1,target2);
}
wmanager.writeRelease();
cmanager.writeRelease();
evmanager.readRelease();

}
}

Nested Cooperations. Cooperations can be organised in a hierarchy, hence
there is a top level cooperation which controls cooperations nested within it.
Nested cooperations are lower level cooperations. Similarly to Moss’s model of
nested transaction, a nested cooperation is a tree of cooperations where the sub-
trees are either nested or flat cooperations [16]. Top level cooperations are able
to organise the flow of control, determine when to invoke which cooperation,
as well as carry out actual work, whereas leaf level cooperations only perform
actual work. With respect to the concurrency control, all the objects held by a
parent cooperation can be made accessible to its sub-cooperations.

In the proposed reflective architecture cooperation managers are associated
only with top level cooperations. A cooperation manager is responsible for ac-
quiring all the objects used by a cooperation tree. The accessing rights to the
objects are then passed from the cooperation manager to the top level coopera-
tion and from the latter to lower level cooperations.

In the COO design of the EHCS cooperation :ReadSP, which describes how
to read the height of a suspension, is a nested cooperation of :IncreaseSP. In
the reflective architecture cooperation manager IncSPManager is associated with
cooperation :IncreaseSP, whereas no cooperation manager is associated with
cooperation :ReadSP.

The collaborative activity of cooperation :IncreaseSP describes, among
other things, the invocation of nested cooperation :ReadSP. The latter coop-
eration defines the interactions between objects :Wheel and :HeightSensor.
The accessing rights to such objects are passed from :IncreaseSP to :ReadSP.
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Flow of Invocations. The following describes the sequence of invocations
for activating :IncreaseSP in the reflective architecture illustrated in figure
4. When increase() of :Wheel is invoked (1), the call is intercepted (2) by ob-
ject manager :WManager which activates cooperation manager :IncSPManager
(3). The latter requests access to the objects involved in the cooperation (4).
When access has been granted by all the object managers, control is given to co-
operation :IncreaseSP (5). At the application level, cooperation :IncreaseSP
checks whether the pre-conditions are satisfied (6). Once the check returns true,
the collaborative activity starts (7), and the invariants are checked. As part of
the collaborative activity of cooperation :IncreaseSP, cooperation :ReadSP is
activated to update the value of variable height of Wheel. When cooperation
:ReadSP finishes the control goes back to cooperation :IncreaseSP where the
post-conditions are checked (8). Finally, the control goes back to the cooperation
manager which can release the objects (9).

5 Evolution of the EHCS

A COO system evolves by evolving its classes, CO actions, control to access
objects, or adding some classes. The proposed reflective architecture facilitates
evolution by providing separation between objects, cooperations and control of
access to objects. Each element of the architecture can be easily changed, with
little impact on the other elements. Although the proposed reflective architecture
better supports evolution of COO systems when only changing their CO actions,
it also supports changes of classes and managers. In this section we propose some
evolution scenarios that might affect the EHCS and discuss the effectiveness of
the proposed reflective architecture in dealing with changes.

The evolution of the reflective implementation of the EHCS will be compared
with that of an alternative implementation which makes no use of CO actions nor
reflection. A metric is used to measure the evolution effort for each implementa-
tion and to evaluate the effectiveness of the proposed reflective implementation.

The alternative implementation uses only the class diagram shown in figure
3 (i). However, classes Compressor, EscapeValve and Wheel provide methods
that allow their acquisition and releasing (i.e. readRequest(), writeRequest(),
readRelease() and writeRelease()). Method increase() of class Wheel de-
scribes the interactions between objects and consists of the calls to synchronize
threads, the checking of preconditions, the execution of collaborative activity,
etc. That is, it describes all the functionalities of IncSPManager, IncreaseSP
and ReadSP of the reflective implementation. Analogously, method decrease()
of class Wheel describes the functionalities of DecSPManager, DecreaseSP and
ReadSP.

5.1 Evolution of Interactions

Suppose that the EHCS has to evolve by implementing a specialised control al-
gorithm which is able to accommodate gravel as a new type of road. The new
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control algorithm describes a set of interactions between the existing classes to
regulate the height of the suspension (for example, defining a new set point).
The change in the reflective implementation for expressing the new requirement
is restricted to the definition of a new CO action, IncreaseSPGravel. Coopera-
tion manager IncSPManager will be changed to select one of two cooperations:
:IncreaseSP or :IncreaseSPGravel, while classes and all the other CO actions
and managers remain unchanged. In general changes in CO actions do not in-
volve any changes in the related classes, since the reflective architecture makes
classes not aware of the CO actions in which they participate.

Suppose now that the new control algorithm, which regulates the height of
the suspension when the road is gravel, has to be introduced into the alternative
implementation of the EHCS. The new control algorithm will be defined as a
new method of class Wheel (i.e. increaseGravel()), which implements synchro-
nization and interaction code (similarly to method increase()). Modifying class
Wheel is difficult since it describes several concerns. Moreover, although only the
interaction code is new, calls for synchronization and starting of threads have to
be rewritten. As a result the code implementing increaseGravel() will be much
longer than the code for IncreaseSPGravel of the reflective implementation and
more difficult to write.

5.2 Evolution of Concurrency Control

Suppose that the physical system changes by introducing a new type of com-
pressor which permits air to be pumped to more than one wheel at the same
time. A different policy is then adopted to handle the use of the compressor
so that more than one access is allowed for object :Compressor at the same
time. The change in the reflective implementation consists of the definition of
a new object manager for object :Compressor that will replace the old one.
All the classes, CO actions and managers remain unchanged. In general changes
in object managers have no impact on the other elements of a COO system.
In fact, object managers interact only with cooperation managers and objects.
Since cooperation managers are not involved with the rules of accessing objects,
and objects are not aware of object managers changing object managers do not
impact other elements.

When the new synchronization code is introduced in the alternative imple-
mentation of the EHCS, class Compressor needs to be updated by changing
the methods which allow synchronization. Evolving the alternative implemen-
tation requires more effort than evolving the reflective one, since the rules for
accessing the objects are not clearly separated from other functionalities of class
Compressor.

5.3 Evolution of Classes

The EHCS can evolve by changing its classes to reflect changes in the physical
elements where they are mapped. For example, class Compressor, which initially
provides one method both to start and stop the compressor, could be changed
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to implement two methods, instead of one, one for each activity. Thus, method
CompOn() has to be changed and method CompOff() is added. In the reflective
implementation the only element, other than Compressor, which needs to be
updated is CO action IncreaseSP.

Another example is when the physical system changes to accommodate an
escape valve for each wheel, and the software needs to be restructured. In this
scenario class EscapeValve can be considered an inner class of Wheel (the same
as class WValve), so object manager EVManager is not necessary anymore, instead
WManager will be used. Cooperation manager IncSPManager is changed to refer
to object manager WManager, class Wheel needs to be changed to incorporate
EscapeValve, and CO action IncreaseSP is changed to refer to the new inner
object of Wheel. The other classes and their respective object managers remain
unchanged.

Modifying classes is the sort of evolution scenario that can start substantial
changes in systems based on the COO design. However, from the first example we
can observe that when a class changes its interface only the CO actions which use
that class have to be modified, whereas object and cooperation managers remain
the same. From the second example, we can see that changing the structure of
the classes implies changes in the CO actions and their respective cooperation
managers, but not in all the classes and their respective object managers.

When method compOff() is added to the alternative implementation of the
EHCS class Compressor is updated. Also method increase() of class Wheel
is updated. Since method increase() intertwines fragments of code describ-
ing synchronization and interactions, evolving the alternative implementation is
much more difficult than evolving the reflective implementation.

When class EscapeValve becomes an inner object of class Wheel in the alter-
native implementation, class Wheel will be changed accordingly and its method
increase() will be updated to refer to it. Again method increase() has to be
modified. Class EscapeValve does not need methods for synchronization any-
more, so it needs to be modified as well.

5.4 Evolution Metric

An evolution metric is a number that represents the effort necessary to evolve
a fragment of code. It quantifies the effort to understand the code, to modify
it and to write a new fragment of code. The effort to understand and modify
a code is related to the tangling between different concerns of the code, since
tangled code is difficult to understand and to modify. When modifying a tangled
code it is necessary to mentally untangle it, therefore the more tangled the code
the more difficult it is to evolve.

According to [22] the tangling ratio of a code is calculated by means of the
following:
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Tangling =

# of transition points between

different concerns of the code

LOC
(1)

The transition points are the points in the source code where there is a
transition between fragments of code dealing with different concerns. The con-
cerns considered in this paper are the implementation of the functionality, the
synchronization of threads and the interactions between objects. For example,
referring to cooperation manager IncSPManager synchronization code is repre-
sented as non-underlined code, whereas the interaction code which consists of
activating a cooperation is underlined. Then, a transition point occurs between
the non-underlined code and the underlined one and another transition point
occurs between the underlined code and the non-underlined one.

The evolution metric cannot be equal to the tangling ratio since a code
implementing only one concern has a tangling ratio equal to zero. Instead the
effort to evolve such a code is greater than zero. The evolution ratio, calculated
according to the following, considers the effort to understand and modify a code.

Evolution =

# of transition points between

different concerns of the code + 1
LOC

(2)

Table 1 summarises the measurements of transitions and lines of code (LOC)
and the evolution ratio of each object of the reflective and alternative implemen-
tation of the EHCS.

Table 2 summarises the average evolution ratio for the scenarios of evolution
described above for the two implementations of the EHCS.

The evolution ratio of a group of classes is the average evolution ratios of such
classes. For example, the third row of table 2 refers to the introduction of method
compOff(), which in the reflective implementation consists of modifying cooper-
ation IncreaseSP and class Compressor, and in the alternative implementation
consists of modifying class Wheel and class Compressor. Thus, the figures of the
third row of table 2 are the average evolution ratios of the classes involved.

The figures of table 2 suggest that evolving the reflective implementation re-
quires less effort than evolving the alternative one, for all the scenarios that have
been considered. However, the evolution metric reflects only partially the effort
to evolve a code, since, while it measures the effort to understand and modify
a code, it does not quantify the effort to write a new fragment of code. We ex-
pected that the figures of the first row were not so close to each other, while the
figures of the second row were more close to each other. For example, a change



74 E. Tramontana

Table 1. Evolution ratios.

Reflective EHCS Alternative EHCS

transitions LOC evolution transitions LOC evolution
Wheel 0 15 7 % 27 94 30 %
Compressor 0 6 17 % 7 28 29 %
EscapeValve 0 13 8 % 9 35 29 %
HeightSensor 0 5 20 % 0 5 20 %
WValve 0 13 8 % 0 13 8 %
WManager 0 48 2 %
CManager 0 36 3 %
EVManager 0 36 3 %
ReadSP 0 24 4 %
IncreaseSP 0 29 3 %
IncSPManager 4 21 24 %
DecreaseSP 0 27 3 %
DecSPManager 4 19 26 %

Table 2. Comparison of evolution ratios.

Reflective EHCS Alternative EHCS
Evolution of interactions 24 % 30 %
Evolution of concurrency control 3 % 29 %
Evolution of classes (i) 10 % 29.5%
Evolution of classes (ii) 11 % 29.5%

into the alternative implementation could necessitate writing a fragment of code
specifying several concerns, and the same change into the reflective implementa-
tion could require the adding of code specifying only one concern (or vice versa),
thus the effort just to write new code would have a different impact for the two
implementations. We argue that the disagreement in our expectations is due to
the lack of the evolution metric to quantify the effort to write a new fragment
of code.

6 Related Work

Other approaches have been developed to separate functional and interaction
code. The Composition Filters approach extends the conventional object ori-
ented model with message filters [2]. Incoming messages pass through the input
filters and outgoing messages pass through the output filters. Filters are used to
pass messages to other objects (internal or external) and to translate messages.
The Composition Filter model can be used to define Abstract Communication
Types which are objects describing interactions among objects. When a message
received by an object is accepted by a particular filter, named Meta filter, this
is passed to an Abstract Communication Type object to handle it.
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The Mediator design pattern is an object that encapsulates how a set of
objects interact [14]. Mediator promotes loose coupling by keeping objects from
referring to each other explicitly. It is responsible for controlling and coordinating
the interactions of a group of objects. Each participant of a collaborative activity
knows its mediator object and communicates with the mediator whenever it
would have otherwise communicated with other colleagues.

Ducasse et al. propose to extend the object oriented model by using con-
nectors [12]. Connectors specify dependencies between objects, and maintain
and enforce all the activities between objects. A connector is a special object
describing all the information relating to the interactions of objects, including
data conversion, interface adaptation, synchronization and coordination.

Kristensen et al. define the concept of activity to describe collaborations be-
tween objects [19]. An activity is a modelling and language mechanism that may
be used to capture the interplay between groups of objects throughout at dif-
ferent points in time. When the activity abstraction mechanism is objectified,
it depicts the relationships that link interacting objects. To support the map-
ping from design with activities onto implementation entities, some language
constructs have been proposed to be added to the existing object oriented lan-
guages. An activity is described by a relation-class, an extension of a standard
class able to relate the participants of an activity.

In the Layered Object Model layers encapsulate objects and messages sent
to or from an object are intercepted by the layers [3]. When a message is inter-
cepted, the layer evaluates the contents and determines the appropriate action.
The layered object model extends the object model providing some layer types
(adapter, observer, etc.), and it can be also extended with new layer types.

All the above approaches have similarities with our work: they all provide
means of explicitly describing interactions between objects into an explicit entity,
however some of them lack a clear separation between objects and their interac-
tions, thus changing one of them impacts the other [2,3,14]. Other approaches
extend the object oriented model and so they do not allow implementation using
standard object oriented languages [12,19].

7 Conclusions

Building a software system that can evolve to incorporate any requirements is
impossible. Often systems can be evolved only to incorporate changes that are
predictable during their development. However, it is possible to characterize
general principles which result in easily evolvable systems. We argue that those
principles include the separation between different concerns and the provision of
the appropriate architectural support. The support for evolution is provided by
considering objects independent of each other and allocating components which
coordinate the interaction between objects. The increased number of components
for representing a system in terms of the reflective architecture is effective in sep-
arating different concerns and reduces complexity since the various components
can be understood and altered independently.
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When systems implemented using the reflective architecture are evolved ob-
jects do not necessarily need to change, instead cooperations are able to capture
new object configurations. Reflection has been used to separate different parts
of a system, to provide means to intertwine synchronization, interaction and
functional code, and to place at the metalevel the part of the system more likely
to change.

A case study has been used to show the reflective architecture and some of
its evolution scenarios have been described and compared with an alternative
architecture. An evolution metric has also been presented to quantify the effort
of evolving a system and to characterize the enhancement of evolution due to
the reflective architecture.

Ongoing research concerns the expansion of the services provided by object
and cooperation managers in order to allow the handling of role-based coopera-
tive designs and of cooperations in a distributed environment. The consistency
and effectiveness of the evolution metric is being tested for other evolution sce-
narios. Moreover, we foresee the inclusion into the evolution metric of means of
measuring the effort to write a new fragment of code.
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