Introducing Distribution into Applications: a Reflective Approach for
Transparency and Dynamic Fine-Grained Object Allocation

Antonella Di Stefano!

Giuseppe Pappalardo?

Emiliano Tramontana?
! Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
2Dipartimento di Matematica e Informatica
Universita di Catania, Viale A. Doria, 6 - 95125 Catania, Italy
adistefa@diit.unict.it, {pappalardo, tramontana}@dmi.unict.it

Abstract

Developing distributed software systems is a complex ac-
tivity that involves facing not only the problems of a specific
application, but also those typical of distribution. Compu-
tational reflection supplies a means to handle different con-
cerns with distinct components and a framework in which
the latter can interact smoothly. We propose a reflective
software architecture that encapsulates distribution con-
cerns within components that are separated from and inde-
pendent of those addressing functional concerns. The pro-
posed architecture achieves a thorough management of dis-
tribution and in particular provides a means to dynamically
adapt allocation policies to the characteristics of applica-
tion objects, available hosts and changes of the distributed
environment. The proposed approach is helpful for achiev-
ing the incremental development of easy to evolve software
systems. In particular, we discuss the benefits of applying it
to existing web and e-commerce applications.

1. Introduction

Distributed software systems often intertwine the han-
dling of application functionalities with distribution related
issues, which typically include (possibly) location transpar-
ent access to services, workload allocation among different
hosts, adaptation to changing conditions of the network, etc.
This intertwining makes development of distributed appli-
cations more complex, and their reuse and evolution more
difficult [6]; on the contrary the key to improving this kind
of system design is to enforce separation between applica-
tion and distribution concerns.

It should be emphasized, however, that such a separa-
tion is not so easy to achieve, at least as far as distributed
allocation is concerned. Indeed, allocation policies aiming

to provide the most appropriate environment to application
objects cannot ignore the characteristics of the latter, nor
those of the hosts and the distributed environment. As a
result it would be desirable to have the ability to tailor allo-
cation policies to specific groups of objects. However, this
goal may well conflict with the noted one of separating ap-
plication from distribution issues.

In the last decade it has been shown that computational
reflection is helpful in separating application concerns from
others, such as fault-tolerance [12], synchronisation [16],
etc. Reflection provides the means for a software system
to observe some of its own parts and perform operations on
them [7]. A reflective object-oriented system usually con-
sists of two, or more, levels; objects at the first or base-level
(in our case application objects) are transparently observed
and influenced with higher level objects, called metaobjects.
For reflective systems the cost of integrating an application
with other concerns (such as distribution) is very low: for
the programmer it simply consists of making some appli-
cation objects reflective, whereas at run time it amounts to
the cost of jumping to the metalevel. However, existing re-
flective approaches that deal with distribution [8, 10, 11]
lack both the means to adopt specific allocation policies,
tailored to the characteristics of application objects, and the
mechanisms that allow run time adaptation to changes of
the distributed environment. A detailed analysis of these
approaches is given in Section 6.

Such limitations are not inherent to reflective ap-
proaches, but were already present in object-based [9], and
even more traditional ones, like PVM [14]. Furthermore,
they leave entirely to the application programmer the bur-
den to cope with the adaptation of the application to a dis-
tributed environment.

Yet different approaches rely on language support, typi-
cally in the form of directives, to let the programmer specify
the allocation of objects. This does allow allocation policies

to be tailored to the characteristics of application objects.
In [3] such a language includes some high-level directives
to drive object-allocation decisions at run time.

The present work proposes a software architecture that,
through the use of reflection, provides support for re-
mote communications, determines how to allocate objects
based on their characteristics, and adapts to run time net-
work faults. The proposed architecture enforces separa-
tion and independence between functional and distribution
concerns, thus simplifying the development and evolution
of distributed software systems. Distribution concerns are
handled by intercepting operations of application objects
(i.e. object instantiations and method invocations), thus hid-
ing any statements concerned with distribution from those
addressing functionalities. A further advantage of the advo-
cated approach is that metalevel components can be poten-
tially reused for various applications. In our view, a met-
alevel like that described in the following could even be-
come a general framework suitable for introducing distribu-
tion into a wide class of object-oriented applications.

Furthermore, the proposed reflective architecture per-
mits incremental development, in that it can be employed
to make distributed applications that were not thought as
such initially. This additional benefit is instead unavailable
to solutions based on language level allocation directives.

The outline of the paper is as follows. Section 2 presents
computational reflective systems. Section 3 describes how
distribution can be dealt with by means of a reflective soft-
ware architecture, whose merits are discussed in Section 4.
Section 5 provides an overview of how the proposed archi-
tecture can be helpful for handling distribution issues for e-
commerce web applications. Section 6 examines other dis-
tribution related reflective software architectures. Finally,
the conclusions are drawn in Section 7.

2. Reflective Systems

A software system is reflective when it represents some
of its own aspects through structures which enable it to ob-
serve and act on itself [7]. Typically, a reflective object-
oriented system consists of a baselevel and a metalevel,
where objects and metalevel objects are respectively hosted.
The most widespread reflective approach is the metaobject
model [5], which is the one adopted for the proposed archi-
tecture. This model operates on objects and uses metaob-
jects (i.e. instances of a special class at the metalevel) to
intercept events of the baselevel. In particular, a metaob-
ject associated with an object is able to inspect the object’s
state and to trap control before such an object is, e.g., in-
stantiated or invoked. Once control is trapped, metaobjects
can perform some computation and decide whether to give
control back to the objects.

The association of an object with a metaobject, which

is what makes it reflective, relies on bytecode manipulation
or injection of keywords into the source code of objects.
The former approach is used for Java extensions such as
Kava [17] and Javassist [2]. The latter is adopted by lan-
guages such as OpenC++ [1] and OpenJava [15].

3. Reflective Software Architecture for Distri-
bution

3.1. The Architecture

This Section proposes a reflective software architecture
aimed at introducing distribution into an existing object ori-
ented application. The only a priori architectural constraint
on these applications is that concurrent activities, if any,
should only interact through methods of monitor objects.
This guarantees that distribution introduced with our ap-
proach does not interfere with or jeopardize existing syn-
chronisation mechanisms of the application.

The proposed architecture places the application at the
baselevel and the support that handles distribution at the
metalevel. The latter distributes application objects accord-
ing to their characteristics, while keeping them unaware of
distribution. Moreover, the metalevel is able to re-locate
objects in order to meet run time changes within the net-
work due, e.g., to faults or unexpected overloads of rele-
vant duration affecting either hosts or network links. More
specifically, the activities entrusted to the metalevel of the
architecture are the following.

e Providing location transparency for the interaction be-
tween objects that have been spread to different hosts
by the allocation mechanisms.

e Measuring host workloads in view of balancing them.

e Monitoring network efficiency (through selected pa-
rameters), and the reachability of remote objects be-
fore actually invoking their methods, in order to handle
potential communication problems.

e Controlling the creation of application objects in order
to select the best available host for their allocation.

e Handling migration of application objects to adapt to
network faults and load balancing goals.

The activities of the metalevel are started by trapping
control when events of the application, such as creation of
a new instance and method calls from objects, are detected.
Both events can be intercepted in the reflective language
Kava [17], which has been employed for experiments.

Reflection is a helpful mechanism to detect at run time
distribution-related events generated by an application, and
to provide support to insert at run time activities extending

applications with distribution. Compared with other mech-
anisms, reflection provides the ability to intercept events
without actually changing the application objects and to in-
spect these in order to be aware of their state when handling
distribution. Thus, the reflective metalevel allows additional
capabilities, related to distribution and fault-tolerance, to be
added to an existing application in a transparent way.

The metalevel of the proposed architecture is built on top
of the existing classes. Thus, once the classes of an appli-
cation have been developed in a centralised version, they
are transformed into reflective ones in order to allow the
application to take advantage of a distributed environment.
Classes are transformed into reflective versions by associat-
ing them with metaobject classes called Interceptors®. This
association makes it possible to bring control within the
metaobject both before method invocations, which allows
remote communication to be handled transparently, and be-
fore the creation of new instances, which permits objects
to be allocated remotely. Different interceptor classes are
available, each implementing a different allocation policy.
For each application class, the interceptor class associated
with it at the metalevel, hence the relevant allocation policy,
is selected according to its specific characteristics. In gen-
eral, this enables allocation policies to be tailored to classes,
without making them even aware of distribution.

Besides interceptors, the metalevel hosts other classes
in order to provide its services. Class Adapt er is re-
sponsible to monitor the state of the network and hosts,
and to adapt the application to changing conditions by re-
locating objects. Class Locat or maintains a table storing
the location of each object of the application and the last
available state of the object. Classes Conmruni cat or and
Ser ver Pr oxy are responsible for handling communica-
tion between hosts at client and server side, respectively.

3.2. Case Study: a Multiuser Electronic Diary

To illustrate the above concepts, we consider as a case
study a shared electronic diary that handles the appoint-
ments of its users. In such a software system, each user
is characterised by a name and an email address, and an
appointment is characterised by the date and time when it
takes place, its location and the users engaged. As shown in
figure 1, the electronic diary consists of classes Appoi nt -
nment s, Addr essBook, and Fr ont End. The first and
second class handle information about a list of appoint-
ments and users, respectively. The third class handles in-
teraction with users by exploiting the methods provided by
the previous two classes.

Suppose now that objects of class Appoi nt ment s
need a relevant amount of memory and CPU “power” to find

1The association is specifi ed by a confi guration fi le, with Kava, or a
class, with Javassist, and then a transformer has to be invoked.

Appointments AddressBook FrontEnd

date name refApp

place email refABook

usernames .
setName()

setCoordinates() setEmail() main()

setNames() getName() showltem()

findSpace() getEmail() showList()

getltem() ..

getList()

deleteltem()

Figure 1. Class diagram of the electronic diary

a free time frame for all the invited users; method f i nd-
Space() is available for this purpose. Appoi nt ment s
is therefore associated with interceptor | nt er cept or -
CPU which tends to allocate instances on hosts possess-
ing enough resources. On the other hand, suppose that
class Addr essBook needs access to a particular file sys-
tem storing user data, which is only available on certain
hosts. For this reason, Addr essBook is associated with
a different interceptor, i.e. | nt er cept or Fi | eSys. Fi-
nally, class Fr ont End may need to run on the local host
for faster/easier communications with a user; it is therefore
associated with a suitable interceptor, called | nt er cep-
t or Local , which does not perform remote allocation.

Figure 2 shows, using the UML notation, the distributed
reflective software architecture of the electronic diary, in a
scenario where objects have been instantiated on two dif-
ferent hosts. The first host holds an object : Fr ont End
with its metaobject : | nt er cept or Local ; the second
host holds object : Appoi nt nent s with its metaobject
1 nt er cept or CPU.

Host| Host2

3. IookUp& f4: check()

:InterceptorLocal

6: forward

:Communicator :ServerProxy

5: remote invocation

:InterceptorCPU

metalevel

baselevel

7: findSpace()

I findSpace()
—>

:FrontEnd :Appointments

Figure 2. Distributed reflective software archi-
tecture

At run time the invocation of method fi nd-

Space() by :FrontEnd (see (1) in Figure 2) is
trapped at the metalevel (2) by the associated metaobject
: I nt er cept or Local . This metaobject checks whether
the invocation is for a remote object, by looking up its po-
sition using metalevel object : Locat or (3). If the object
is local, control is given back to the baselevel, otherwise
the availability of the connection is checked, using met-
alevel object : Adapt er (4) and if possible the remote in-
vocation is handled by metalevel object : Conmuni cat or
(5). The latter metalevel object communicates the re-
quest to a proxy on the remote host, i.e. : Ser ver Pr oxy
(6), which then invokes the appropriate method of object
: Appoi nt nent s (7). The return value of the invoca-
tion is handled back from object : Appoi nt nent s to the
caller, by means of the metalevel objects : Ser ver Pr oxy,
: Conmuni cat or and : | nt er cept or Local .

The metalevel objects introduced in Section 3.1 are de-
scribed in the following Sections.

3.3. Interceptor

Interceptors are metaobjects that are associated with the
classes of an application in order to handle the allocation
of their instances and its interactions in the distributed en-
vironment. When an object is about to be instantiated, the
interceptor traps such an operation and, according to its al-
location policy, decides where the object has to be created.
Moreover, it intercepts all the outgoing messages, so as
to handle remote communications transparently, and state
variables changes, so as to take a snapshot of the state of
the associated object. This is periodically communicated to
remote hosts, which will need it when the object must be
re-located.

Our architecture provides three different types of inter-
ceptors (but of course others can be introduced, as neces-
sary). The first, named | nt er cept or Local is used for
objects that need to stay on the local host, so it does not im-
plement any remote allocation policy of its associated ob-
ject (of course it must still check whether the creation of
objects is compatible with the current workload of the lo-
cal host). The second type of interceptor, named | nt er -
cept or CPU, tries to allocate objects on hosts that have
an adequate amount of memory and CPU “power”. The
third type of interceptor, called | nt er cept or Fi | eSys,
aims at allocating objects on hosts that provide access to
resources that can replace those the application would ex-
pect on the local host. These could be 1/0 devices, software
libraries, or file systems which are needed at run time. It
is worth noting that | nt er cept or CPUand | nt er cep-
t or Fi | eSys seek to achieve load balancing among those
hosts that provide interchangeable resources.

The specific kind of interceptor employed is chosen
when the association between objects and metaobjects is

performed. This allows allocation policies to be tailored
to the varying needs of application classes. This is a con-
figuration choice to be performed when the baselevel ap-
plication is deployed by integrating it with the metalevel.
Thus, at this stage, the programmer should be aware that
some communication costs could arise for accessing certain
objects. This implies that in some cases | nt er cept or -
Local could be preferred to avoid incurring into excessive
communication penalties.

In order to perform the allocation of objects, each type
of interceptor holds the information shown in table 1 about
the hosts in the distributed system.

Table 1. Interceptor table for the characteris-

tics of hosts
host nane | type

wor k|l oad

wor k|l oad

host nane | type

For each available host there is a table entry providing
the host nane, thet ype, i.e. an indication of its resources
(CPU power , file systems, 1/0 devices etc.), and wor k-
| oad, a measure of its workload (as determined by the
Adapt er component, see Section 3.4). Interceptors com-
pute the maximum of the ratio power / wor kl oad over
a set of hosts which includes all of them for | nt er cep-
t or CPU, or those providing the same resources as the local
host for | nt er cept or Fi | eSys. The remote host max-
imising the ratio is selected for the object to be instantiated.
The description of the network in terms of hosts available
and their characteristics (i.e. power of each host, resources)
is stored in a configuration file that interceptors read when
they are created.

Figure 3 shows the operations that are performed when
an object is instantiated and the associated interceptor de-
cides to create the object on a remote host.

e The instantiation of an object (1) is trapped by the as-
sociated interceptor (2), which starts some activities to
place the object on a remote host.

e The interceptor checks the state of the network and
hosts by querying object : Adapt er and updates its
table of available host workloads (3).

e The interceptor selects the best host according to its
allocation policy, and updates a table, held by object
. Locat or, maintaining the position of each remote
object (4).

e The interceptor sends the class of the object to be
instantiated remotely to the remote host (5,6); the

Host| Host2

:Adapt:
4: setUp()\ A: check

:InterceptorCPU

6: forward

—>
:Communicator

0
/45: send

:ServerProxy

:InterceptorCPU

2: trapT

metalevel

baselevel

7: instantiate

I: instantiate
—>

:Appointments :Appointments

Figure 3. Creating a remote object

transmission is handled by : Conmuni cat or and
. Server Proxy. Object : Ser ver Pr oxy, on the
remote host, listens for any incoming communica-
tion. The class can now be instantiated at the re-
mote host (7). (The first time this happens, the class
bytecode must have been shipped in advance by the
: Comuni cat or).

3.4. Adapter

An adapter is responsible to detect changes in the state of
the network (i.e. hosts and connections) and to handle such
changes, thus adapting the application to different network
configurations dynamically. When a network connection or
a host becomes unavailable or their performance degrade
excessively, some objects will become effectively unusable.
The adaptation then consists in moving the objects to dif-
ferent hosts. This is particularly useful in networks whose
condition can change remarkably at run time.

An adapter periodically measures the workload of each
host and the performance of the network connection. Since
a host may become unavailable because of unexpected
crashes or performance changes, we need to measure work-
load rather than estimate it. The workloads of hosts are
measured by running a test on each host, and then com-
municating the results periodically to peer adapters on other
hosts. The workload is measured using the concept of relax-
ation [4], which consists in calculating the execution time of
a specific sample process. By using various resource types,
such as I/0 and CPU, its execution time provides a measure
of the workload of the whole host. Thus, a relaxed host is
one that makes processes evolve slowly, and the measure-
ment of its relaxation gives a measurement of its workload.
This measurement has proved to be richer of information
and more effective than operating system workload data,
such as the number of processes, etc.

Analogously, connecting to the host may be difficult for
a certain time frame due to network interruption or traffic.
The state of the network connection is estimated by noting
the time frame necessary to establish a connection with a
remote host; when this frame exceeds a threshold the host is
considered to be unavailable for allocations of new objects.

An adapter runs as a thread that periodically checks the
workload of the local host, sends results to peer remote
adapters, and assesses network connections based on the
results received. For this aim, an adapter holds the in-
formation shown in table 2 about the state of the hosts.
Each table entry provides, for each host, the host nane,
its wor kl oad, t check, the time when the host measured
the workload with its own clock, t down, the duration of
the time frame over which a host has been down, and ok, a
flag indicating whether the host is currently available. The
flag is set when the t down value exceeds a threshold.

Table 2. Adapter table with the state of hosts
host name | workl oad | tcheck | tdown | ok

host name | workl oad | tcheck | tdown | ok

If a remote host cannot be reached, new objects that re-
place those become unreachable have to be instantiated on
other hosts. One of the hosts still alive is selected to reallo-
cate objects and it is responsible to instantiate the missing
objects. The instantiation is captured by the associated in-
terceptor that decides where they will be created. The last
observed state available of the missing objects is used to set
the state of these newly created ones.

The adapter and locator tables are sent to remote hosts
whenever an object is sent for allocation, or when a time-
out has expired for the purpose of updating the global state.

3.5. Communicator

On each host, a unique communicator dispatches all in-
vocations for remote objects to a server proxy, and handles
the delivery of a class that has to be instantiated remotely.
When delivering a class for remote allocation, the commu-
nicator also sends the bytecode of the metalevel classes of
the architecture and the local locator tables, since the re-
mote host needs to handle method calls and instantiations
of objects, as described earlier.

The communicator connects with a server proxy that first
instantiates the object and then invokes its methods, as di-
rected by the interceptor. Moreover, it communicates the
results of these operations back to the caller, or a failure
indication (through a predefined return value/raising an ex-
ception) if a communication time-out expires.

The workload introduced by a communicator is very
limited, since its tasks are communication- rather than
computation-oriented.

3.6. Server Proxy

For each host, a server proxy is used to receive, froma re-
mote host, invocations to be propagated to the local object,
and to send invocation results back to the caller. It continu-
ally executes a thread that listens whether some host wishes
to communicate. When this happens a server proxy will es-
tablish a connection, receive invocations and pass them to
the proper local object, send results back, check whether
the communication has been successful, and close the con-
nection.

The workload introduced by a server proxy on its host
is very limited, since its task only consists of communicat-
ing through the network with its peer, and, locally, invoking
operations on the object it represents.

3.7. Locator

Class Locat or is responsible to store information
about the location of each object of an application, and to
keep a copy of state variables of objects on its host. The
location of objects is useful to decide where to redirect
method invocations. The copy of state variables is used
when relocating objects, in case of network failure.

4. Discussion

Within the proposed reflective framework for handling
distribution, objects constituting a software system are
clearly separated from, and independent of, distribution
concerns, which are addressed only by means of metalevel
objects. Separation and independence allow both functional
and distribution concerns to be developed and evolved with-
out interfering with each other.

Thus, the development of a distributed software system
is facilitated since it is achieved by separately developing
support for distribution and application. When the devel-
opment of an application is complete, it is then possible to
transform it into a distributed version simply by associating
metaobjects with objects, without any need to modify any
of these. The association provides ways to tailor a specific
allocation policy to the need of each class of the application.

The proposed reflective architecture can be expanded to
address more general needs for distribution than those we
have discussed here. For example, new types of intercep-
tors can be derived to decide the allocation according to
the other resources needed or specific constraints about an
object (i.e. network performance, geographic position, se-
curity issues, etc.). The task of choosing the appropriate

type of allocation policy, which is currently delegated to
the programmer, could be also supported by a tool that car-
ries out an analysis of the source code of classes and pro-
poses/decides association of objects and metaobjects.

In terms of performance, the overhead introduced by the
proposed software architecture is only that of jumping to
the metalevel. Other costs due to the operations activated
from the metalevel should not be considered as an overhead,
since they have to be paid anyway if distribution support is
desired. Regarding the cost of jumping to the metalevel,
in order to evaluate whether its introduction is sensible, we
have to compare it with the cost of the operations carried
out by a system implementing the same functionalities as
the baselevel and metalevel but without reflective mecha-
nisms (i.e. in a more efficient way). When the operations
of such a system are computationally costly or time con-
suming, as remote communication is, the cost of jumping
to the metalevel is only a small percentage, thus making the
overhead due to reflection not critical.

We are currently using the reflective version of Java,
Kava [17], to implement a more complex case study based
on the reflective software architecture presented in this
paper. With Kava, the association between objects and
metaobjects does not require modifying any source code,
but is specified by a configuration file. A transformer tool
is then invoked that modifies selected application bytecodes
to make objects reflective. As a result no injection takes
place of any statements into the entities addressing appli-
cation functionalities, thus achieving a strict separation of
concerns. Using OpenJava [15], instead, the programmer is
forced to add some keywords to the baselevel code, in or-
der to provide the connection with metaobjects. Moreover,
besides the metalevel classes, the metaprogrammer has to
write instructions that are used to translate the keywords in-
serted into baselevel classes. This activity is much more
complex than simply writing metalevel classes.

5. An Application to Web and E-Commerce

The proposed reflective methodology can be employed
for transparently customising or evolving the service of-
fered in reply to user requests by a web application. Typ-
ically, the Java Servlet technology is employed to develop
these applications, which therefore consist of various Java
classes, including some implementing the Ser vl et inter-
face [13]. Following our approach, the objects composing
the web application represent the baselevel; of these, only
objects instantiating servlet classes need to be associated
with suitable metaobjects, intended to handle issues such as
request balancing or service customisation. Thus, in keep-
ing with the philosophy of this paper, such concerns can be
dealt with transparently for the original web application.

Metaobjects of a class called | nt er cept or Request

are introduced to: (i) intercept and analyse incoming HTTP
requests before they are processed by servlet objects, and
(ii) decide where requests should be directed. For instance,
arequest coming from a specific country could be redirected
to the “nearest” or less loaded web server. It is also worth
noting how this scheme allows new servers to be seamlessly
integrated into existing server-side topology (possibly cen-
tralised one).

In the specific case of e-commerce web applications,
redirection can be useful to better satisfy user needs. E.g.
a request intended for a servlet can be intercepted by a
metaobject capable of detecting the place where the request
comes from and redirecting it in suitable ways. Requests
from a certain country could be redirected to a servlet that
handles the proper language and currency, or offers goods
that are easily shipped to, or appreciated in, that country.

Thus, additional servlets can be developed, each for a
specific scenario or need, independently from each other
and separately from the base web application. It is up to the
metaobject associated with a base servlet, upon intercept-
ing a request for it, to decide which of the available servlets
(base or additional) can best handle the request and redirect
it accordingly.

6. Related Work

CodA is an architecture that uses metalevel objects to al-
ter the behaviour of baselevel application objects in order to
provide a distributed computation model with remote refer-
ences, replication, migration. CodA defines a set of seven
small components: Send, Accept, Queue, Recei ve,
Pr ot ocol , Execut i on and St at e that are present for
all application objects. The components are used for an ob-
ject to, respectively, define how it handles outgoing mes-
sages; implement the interface for incoming messages; pro-
vide a queue for accepted but not yet received messages;
define the operations for receiving messages; map messages
and methods to execute; describe the processing resources
used for executing methods; and finally to define how a state
is stored and retrieved. A message sent from an object to
another object is handled at the metalevel by these seven
components that provide support for handling distribution
for objects that were not intended for a distributed environ-
ment [8].

Compared with our architecture, CodA has a similar aim,
however it deals mainly with communication issues (mes-
sage sending, acceptance execution, etc.), whereas our ar-
chitecture focuses on global management of distributed sys-
tems, such as the means to determine how to distribute ob-
jects and to adapt to a changing network. Furthermore we
focus on facilitating the way in which a centralised appli-
cation is transformed into a distributed one, making distri-
bution transparent to the application programmer. CodA in-

stead forces the application programmer to know the met-
alevel objects, since s/he has to explicitly call them.

The Correlate metaobject protocol offers a set of build-
ing blocks that represent reified information of the base-
level. Correlate defines two metalevels, each consisting of a
set of metalevel objects. A metalevel in Correlate is an au-
tonomous concurrent system that observes the baselevel and
acts when appropriate, for example handling interactions
between objects. The baselevel is seen as a set of passive
objects whose operations can be suspended. One metalevel
reifies baselevel objects and the other reifies baselevel inter-
actions. The first metalevel can be used to deal with phys-
ical distribution of objects by implementing a metaobject
that acts as a proxy for the real metaobject on the remote
host, so that a Correlate application can be transformed into
a distributed version [11].

Correlate provides support for distributed systems by us-
ing some metaobjects that behave as proxies to interconnect
objects on different hosts. For its implementation, Corre-
late requires the insertion of special keywords that extend
an existing language and specify structure and interactions
of objects. A translator transforms a Correlate program into
one that a standard compiler can handle. Correlate simpli-
fies the programming of distributed systems, only in that it
supports remote communication; however there is no sup-
port for facilitating the transformation of a centralised ap-
plication into a distributed one, since the programmer has to
specify how objects have to be distributed and which parts
of the baselevel need to be controlled by the metalevel. Fi-
nally, it does not provide any means to adapt to run time
changes of the network, nor to choose specific allocation
policies for classes.

An AL-1/D system consists of a compiler and a virtual
machine that interprets bytecode, running under a Unix-
based Operating System. AL-1/D is a distributed reflective
programming system that provides means for separating ap-
plication programs from the handling of remote message
sending, migration and allocation policies. It also uses for
the purpose of allocating objects [10], run time informa-
tion on the executing objects, such as the number of remote
messages. Like our approach, it favours reuse and evolution
of both application programs and allocation policies by en-
forcing a strict separation of concerns. However, it does not
take into account how to adapt the application to run time
network changes. Moreover, although allocation policies do
take into account run time information, by observing the be-
haviour of objects, they are not tailored to specific classes,
but one policy is adopted for all classes, since the metaob-
ject handling allocation is shared among all the objects.

7. Conclusions

This paper presented a reflective software architecture
that provides support for distribution by using metalevel
classes that control communication between objects, allo-
cate objects to hosts, enable checking at run time the access
to distributed objects and re-locating them. The reflective
architecture aims at favouring reuse, evolution, and incre-
mental development of software systems by following the
principle of separating concerns. Distribution issues are
addressed only by metalevel classes, which are separated
from, and independent of, the components addressing func-
tional concerns. A set of suitable allocation policies have
been encapsulated into metaobjects, each employed for the
specific needs or constraints of classes.

The proposed approach does not require any special
compiler or language, except for the reflective ability that
has to be provided.

As a future work we are investigating the means to make
the association between application objects and different
types of interceptors an automated task, driven by an anal-
ysis of application objects. Such an analysis can be per-
formed at run time but should not cause noticeable delays,
since computational costs can be fragmented and paid only
when necessary.

References

[1] S. Chiba. A Metaobject Protocol for C++. In Proceedings of
the Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 95), pages 285-299,
1995.

[2] S. Chiba. Load-time Structural Reflection in Java. In Pro-
ceedings of the ECOOP 2000, volume 1850 of Lecture Notes
in Computer Science, 2000.

[3] A. Corradi, L. Leonardi, and F. Zambonelli. High-Level Di-
rectives to Drive the Allocation of Parallel Object-Oriented
Applications. In Proceedings of the HIPS 97, Geneve,
Swiss, April 1997.

[4] A. Di Stefano, L. Lo Bello, and E. Tramontana. Factors
Affecting the Design of Load Balancing Algorithms in Dis-
tributed Systems. The Journal of Systems and Software. El-
sevier, 48:105-117, 1999.

[5] J. Ferber. Computational Reflection in Class Based Object
Oriented Languages. In Proceedings of the ACM Conference
on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA'89), volume 24 of Sgplan Notices,
pages 317-326, New York, N, 1989.

[6] W. L. Hirsh and C. V. Lopes. Separation of Concerns.
Technical Report NU-CCS-95-03, Northeastern University,
1995.

[7] P. Maes. Concepts and Experiments in Computational Re-
flection. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applica-
tions (OOPSLA'87), volume 22 (12) of Sgplan Notices,
pages 147-155, Orlando, FA, 1987.

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. McAffer. Meta-level Architecture Support for Distributed
Objects. In Proceedings of International Workshop on
Object-Crientation in Operating Systems (IWOOOS 95),
1995.

M. Nuttal. A brief survey of systems providing process
or object migration facilities. Operating Systems Review,
28(4), October 1994.

H. Okamura and Y. Ishikawa. Object location control using
meta-level programming. In Proceedings of the 8th Euro-
pean Conference on Object-Oriented Programming, volume
821 of Lecture Notes in Computer Science, pages 299-319.
Springer-Verlag, 1994.

B. Robben, W. Joosen, F. Matthijs, B. Vanhaute, and P. Ver-
baeten. A Metaobject Protocol for Correlate. In Proceed-
ings of the Workshop on Refkctive Object-Oriented Pro-
gramming Systems at the European Conference on Object-
Oriented Programming (ECOOP’ 98), 1998.

R. J. Stroud and Z. Wu. Using Metaobject Protocols to Sat-
isfy Non-Functional Requirements. In C. Zimmermann, ed-
itor, Advances in Object-Oriented Metalevel Architectures
and Refkction. CRC Press, 1996.

SUN Microsystems. Java Servlet Technology. WWW - In-
ternet publication, 2002. White paper. http://java.sun.com.
V. S. Sunderam. PVM: a framework for parallel dis-
tributed computing. Concurrency, Practice and Experience,
2(4):315-340, 1990.

M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. Open-
Java: A Class-Based Macro System for Java. In W. Cazzola,
R. J. Stroud, and F. Tisato, editors, Reflection and Software
Engineering, volume 1826 of Lecture Notes in Computer
Science. Springer-Verlag, June 2000.

E. Tramontana. Managing Evolution Using Cooperative De-
signs and a Reflective Architecture. In W. Cazzola, R. J.
Stroud, and F. Tisato, editors, Refection and Software En-
gineering, volume 1826 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, June 2000.

I. Welch and R. J. Stroud. Kava - A Reflective Java Based
on Bytecode Rewriting. In W. Cazzola, R. J. Stroud, and
F. Tisato, editors, Reflection and Software Engineering, vol-
ume 1826 of Lecture Notes in Computer Science. Springer-
Verlag, June 2000.

