Extending Applications using Reflective Assistant Agents

Antonella Di Stefano!

Giuseppe Pappalardo?

Corrado Santoro’

Emiliano Tramontana?
! Dipartimento di Ingegneria Informatica e delle Telecomunicazioni
2Dipartimento di Matematica e Informatica
Universita di Catania, Viale A. Doria, 6 - 95125 Catania, Italy
{adistefa,csanto} @diit.unict.it,{ pappalardo,tramontana} @dmi.unict.it

Abstract

Assistant agents are software systems that help users
during their activities by carrying out some task as a re-
action to the events of their environment. This paper pro-
poses a software architecture that allows assistant agents to
extend applications by autonomously giving users sugges-
tions and activating useful application functionalities. The
connection between applications and assistant agents is re-
alised by means of computational reflection, which allows
applications to evolve essentially without changes to their
source code. The proposed approach is general in that it
does not depend on a specific application nor platform. Its
application is demonstrated by two examples of reflective
assistant agents for a web browser, supporting data presen-
tation and e-shopping respectively.

Keywords: Computational reflection, Agent technol-
ogy, Component-based software development, Object-
oriented technology, Software architecture, Electronic com-
merce, Internet and web-based systems.

1 Introduction

Even using the most common applications (such as word
processors, electronic sheets, web browsers, etc.), users face
a considerable amount of data and functionalities. In or-
der to simplify their work, it may be helpful to manipulate
some data before presentation to them or to suggest or acti-
vate certain application functionalities at a convenient time.
For example, data could be manipulated, in accordance with
user-determined criteria, so that a selection of incoming e-
mails, or the highlighting of parts of a web page, is per-
formed. Likewise, a word processor could format the text
and suggest synonyms as the text is typed. Such activi-
ties, which extend the functionalities of applications, can
be provided by assistant agents. These are software sys-
tems that carry out an autonomous activity, can recognise

their environment and perform inferences to determine their
behaviour [5, 28]. Thanks to their basic characteristics—
autonomy, reactivity and proactiveness [27]—agents are
particularly suited to build software assistants: reactivity is
used to trigger assistance tasks when the user performs cer-
tain operations, autonomy allows agents to establish/decide
whether a user action needs assistance, and proactiveness
can be used to adapt the assistant’s behaviour to the evo-
lution of user abilities or new assistance requirements. For
this reasons, several works [9, 14, 15, 16, 19] make a wide
use of agent technology for software assistants.

Some existing programs, like the Microsoft Office Suite,
already provide an assistant agent capable of giving sug-
gestions on what action the user could take and explaining
program operation. Nevertheless, such an application must
be aware of the existence of the assistant, and implement
both the policy and the mechanisms whereby the assistant
is triggered; what is left for the latter to do, then, is merely
the task of interacting with the user [21]. This arrange-
ment increases the complexity and size of the application,
whose design is strongly and possibly adversely affected by
its close relationship with the desired assistance functional-
ities. As for the assistant, its scope for adaptation to user
needs or separate development is rather limited, since it is
only entrusted with user interface services.

In contrast, we advocate a software architecture that
completely isolates applications from the presence of assis-
tant agents: applications should not even know that assis-
tants exist, while these unobtrusively observe any activity
by the application and autonomously decide when to step
in. This approach simplifies the separate development and
evolution of both the application and the assistant agents.
The latter can be easily developed as plug-ins by third par-
ties, can provide wide range of services, which e.g. han-
dle data and activate functionalities, and can be trained by

10f course the user can predetermine the degree of alertness and extent
of intervention the assistants should exhibit.

users or learn to vary their behaviour adaptively. The sep-
aration between applications and assistants diminishes the
complexity of applications, by relieving them of the burden
to provide the services which have been delegated to the
assistants.

Moreover, the proposed separation allows a high degree
of modularity. To begin with, an application could be en-
dowed with multiple assistants, each providing a service
different from (albeit compatible with) the others. Further-
more, assuming an appropriate degree of interface standard-
ization, an assistant can be designed to serve a whole set
of applications rather than a specific one; e.g. the same
spelling assistant could aid various word processors and
spreadsheets.

Admittedly, the literature reports other solutions which
provide separation between assistant agents and appli-
cations, which can even (in some cases) be separately
implemented [9, 13, 14, 15, 16]. However, these ap-
proaches achieve integration by exploiting either OS ser-
vices (e.g. scripting services allowing the interception of
some GUI events only) or specific access points provided
by the application itself (e.g. scripting capabilities or net-
work protocols as in the case of web assistants). Neither
technology, however, allows for a full inspection of the ap-
plication, useful to build more effective assistant agents.

Our proposal, instead, overcomes these limitations since
it smoothly achieves integration between applications and
assistants by means of computational reflection. A reflec-
tive system is typically a two-level system whose first level,
called baselevel, implements some functionalities of inter-
est, and whose second level, called metalevel, observes
and possibly influences the behaviour of the baselevel [18].
A widespread reflective model is the metaobject model,
which associates certain objects at the baselevel with suit-
able metaobjects, viz. objects belonging to the metalevel;
thus, metaobjects are aimed at observing and controlling the
behaviour and state of the associated baselevel objects.

In the proposed reflective software architecture, the ap-
plication represents the baselevel, and the assistant agent(s)
represent the metalevel. An assistant agent is activated by
trapping activities carried out by the user of the application.
Since the baselevel need not be aware of the presence of
the metalevel, reflection gives a means to achieve separation
and a noticeable degree of independence of applications and
assistants both in the design and implementation phases;
this greatly simplifies development, reuse and evolution of
both applications and assistants [4]. Last but not least, re-
flective mechanisms allow applications to be extended even
when only their bytecode is available.

The outline of the paper is as follows. Section 2 presents
the model of an assistant agent. Section 3 describes the re-
flective software architecture integrating applications and
assistant agents. Section 4 presents two examples of re-

flective assistant agents. Section 5 discusses issues related
with the deployment of the reflective architecture. Section
6 analyses some related work. Finally, the authors’ conclu-
sions are presented in Section 7.

2 Model of an Assistant Agent

Figure 1 depicts the reference model of an assistant
agent. The environment where the agent acts is composed
of a user and an application. Note that in turn these also
interact with each other using the application GUI. In the
said environment, the assistant agent can be modeled by the
following components (these are the basic building blocks,
common to many assistant agents):

[EY

. Application Control Interface (in the following ACI),
2. Inference Engine,

3. Knowledge Base,

4. User/Agent Interface.

First of all, the agent must be able to communicate with the
application in a transparent way, i.e. without requiring user
intervention; hence the need for the ACI component within
the assistant agent. The ACI provides ways to “sense” and
“act on” the application without involving the user. Indeed,
the task of the ACI is twofold:

e to inspect the state of the application and intercept
what happens inside it, so that it is possible to track
user operations such as mouse movement, clicks or
double-clicks, menu choices, keytyping, etc.;

e to offer methods allowing the agent to perform oper-
ations on the application as though it were the user
her/himself.

Regarding the first item, since each user action has a pre-
cise meaning, when related to a particular application, the
task of the ACI is not only to simply capture events (such
as mouse-down, key-press, etc.), but also to understand the
context and semantics of that event inside the application.
For example, for a word processor, to click within a doc-
ument means the position of the cursor should be changed
unless the region clicked represents a link, in which case the
link should be opened.

Besides being able to sense and intervene on the applica-
tion, the agent must also be provided with an ability to rea-
son. Thus, the other main component of an assistant agent is
the Inference Engine. This is intended to give suggestions,
organise data and activate operations of the application to be
extended. Thus, the Engine is built taking into account the
functionalities of the application, and yet usually it is devel-
oped separately from it. Basically the Engine works on the

: _ Inference - - Knowledge f
E[User/Agentlnterface Engine Base] 3
Application
Control Interface

D E———
Application
GuI

User

Application

Figure 1. Reference model of an agent

basis of a set of rules which, starting from the current state
of the environment and current facts (stored in the Knowl-
edge Base), generates and stores new facts and/or triggers
suitable actions. The internal structure of the Inference En-
gine depends on the behavioural model used to implement
the agent. As reported in the literature, many schemes can
be used, such as purely reactive, hierarchical, BDI, etc. [27].

Finally, in order to provide suggestions, an assistant must
interact with the user through a proper User/Agent Inter-
face, which can be graphical or of another type (e.g. an au-
dio interface based on a speaker and a microphone).

2.1 Choosing an Implementation Methodology

The design and implementation of the components of an
assistant agent should be based on a general methodology.
Instead, solutions supported by specific technologies that
are application- or platform-dependent should be avoided,
as far as possible. For platform independence favors porta-
bility, while application independence permits the modular
use of the same assistant with different applications. Ac-
cordingly, the rule-based Inference Engine and the Knowl-
edge Base can be built using a production system such as
CLIPS [1], Jess [2] or CLOS. Of necessity, instead, the
User/Agent Interface is implemented using either the graph-
ical API provided by the operating system or a speech syn-
thesis and recognition package.?

For the ACI (or analogous components), instead, no
general methodology has been suggested so far in the lit-
erature on assistant agents; current approaches try to ex-
ploit the access points provided by either the operating sys-
tem/environment or the application to interface with. For
example, some web assistants [9] act as “proxies” placed
between the browser and the Web, thus intercepting user’s
navigation actions by recognizing HTTP requests. Other
approaches to build the ACI, for more general purpose ap-
plications, are based on OS scripting services [14, 10, 22]

2If platform independence is paramount in this realm too, the
User/Agent Interface can be implemented in Java.

2: trap T

3: reﬂect¢
metalevel

baselevel

1: foo()

Figure 2. Metaobject model

or on wrapping OS libraries [3] (for details, see Section 5).

The situation outlined above is unsatisfactory. In short,
when the ACI exploits specific access points provided
by the application, the solution devised is application-
dependent. On the other hand, when ACI design exploits
OS support, it is of necessity platform-dependent. In any
case, the lack of a generally valid solution forces designers
to undertake a new analysis effort each time an assistant has
to be developed for or integrated with an application.

Being based on reflection, our proposal, instead, is tied
neither to specific platform services nor to specific applica-
tions (these are only required to satisfy a reasonable set of
hypotheses discussed in Section 3.2). This approach is ad-
vantageous and original in the field of assistant agent design
and development.

3 A Reflective Architecture for Assistant
Agents

3.1 Reflection

A software system is reflective when it contains struc-
tures, representing some of its own aspects, which enable it
to observe and perform operations on itself [18]. Reflection
provides a principled means of accessing the implementa-
tion of a system. According to the metaobject model, some
objects of an application, belonging to the baselevel of a re-
flective system, are associated with metaobjects, which are
part of the metalevel. This association provides the metaob-
jects with the ability to inspect the state of the associated
objects, intercept invocations of their methods or changes
of state variables, etc.®, and hence to gain control before
baselevel operations. This allows activities to be performed
or conditions to be checked transparently, either before or
after executing the methods invoked at the baselevel.

As an example, Figure 2 shows a metaobject no that
traps invocations of the method f oo() of the associated
object o and then hands control to it. Thus, if the metaob-
ject is used, say, for debugging, it can print the name of the
method f oo(') invoked at the baselevel, either before or af-
ter the execution of f 0o() , without any change to the code

S3This twofold ability is called reification.

Assistant
Agent
metalevel
baselevel
user ——» | Application

Figure 3. Reflective architecture for agents

of the baselevel object. This shows that the added value of
the metalevel is delivered transparently. In the last decade
reflective systems have been proposed for transparently pro-
viding software systems with fault-tolerance [23], synchro-
nisation [24], distribution [20], etc.

To associate objects of the metalevel with objects of an
application, the source or bytecode of the application must
be available. Reflective languages such as OpenC++ [6],
OpenJava [8], etc. rely on inserting keywords into source
code to add reflective abilities. Then the resulting code is
transformed into executable code by a special pre-compiler.
Other reflective languages such as Kava [26] and Javas-
sist [7] allow objects to be associated with metaobjects by
simply changing selected parts of their bytecode and inject-
ing suitable control transfer mechanisms just before execu-
tion; thus, in this case, source code is not required.

3.2 The Architecture

The proposed reflective architecture consists of applica-
tions and an assistant agent, implemented at the baselevel
and metalevel, respectively (see Figure 3). The advantage
of using a reflective architecture is that applications are not
forced to be aware of any assistant agents that are collabo-
rating with them. This achieves separation of concerns [11]
and reduces the complexity of both application and assis-
tant. As a result, it is possible to extend the functionalities
of an application without modifying its code, thus greatly
simplifying its development, reuse and evolution.

To construct the reflective architecture, two goals have
to be attained: first, building the Inference Engine and the
rules that describe the agent’s behavior, and second, con-
necting this Engine with the application. The latter task is
entrusted to the ACI component, which relies for this pur-
pose on the reflective mechanisms described in Section 3.1.
To achieve such a connection, the target application and en-
vironment should satisfy the following hypotheses.

H1 The application consists of a collection of interacting
objects implemented in an object-oriented (OO) lan-
guage.

In such a context, the most popular reflective approach
is the metaobject model which, accordingly, is the one

adopted here.

H2 Depending on the language, the source or the byte-
code of the application is available, as required by the
adopted implementation of the metaobject model.

This enables the necessary hooks to be inserted to
capture operations (such as method invocations), thus
bringing control within the metalevel.

H3 Some knowledge of the application is available in or-
der to determine the objects and the methods that han-
dle the events of interest.

This provides the programmer with the architectural
knowledge necessary to decide how to apply the
agent’s reflective abilities to the application.

As noted in Section 2.1, the Inference Engine is first
developed in a suitable rule-based language (like Prolog,
CLOS, CLIPS, Jess, etc.). In the OO framework assumed,
the Inference Engine is then encapsulated within a class of
the OO language employed. This solves the problem of in-
terfacing the OO language used for the application with the
rule-based language. In practice, several classes can be em-
ployed to encapsulate each a different Inference Engine, in
order to activate that best suited for the type of event de-
tected and the context where the event is generated.

Given an application meeting the hypotheses H1, H2 and
H3, the steps which follow describe how the programmer
may approach the design of the ACI component connecting
the Inference Engine with the application (Figure 1).

Identifying a set of events (i.e. user actions) that should
trigger the assistant agent. These events are gener-
ated by the usual operations of the user on the applica-
tion. For example, an assistant agent for a web browser
could provide help when the user generates the follow-
ing events: opening a new page, typing a keyword in a
form, opening a dialog window, etc.

Understanding how the application handles the selected
events. Each event is related with some application
objects or some interaction between them. In this step,
the programmer should establish the correspondence
between the identified events and the methods of the
application that handle them. This correspondence is
obtained from the knowledge of the application code
or a part of it, as stated in hypothesis H3. This knowl-
edge can arise from various sources, e.g. from UML
diagrams or proper comments in the source code, or
from the analysis of the interaction between applica-
tions and well-known GUI libraries (such as AWT or
Swing for a Java application). In the latter case, the
knowledge can be obtained even when the source code
is unavailable, by using Java de-compilers [17] or byte-
code analysers [25].

At the end of this step, the objects involved with the
events identified in the previous step will have been
determined.

Connecting the application objects that handle the identi-
fied events with the assistant agent. To achieve this
connection, some metaobjects are associated with the
appropriate application objects. Metaobjects intercept
baselevel method invocations in order to capture events
generated by the application and bring control within
the metalevel. This allows some checks to be inserted
before the execution of baselevel methods, and gives a
means to start the operations of the Inference Engine.
Metaobjects can also carry out several additional tasks,
such as:

e recognising the context of the baselevel invoca-
tion, in order to pass the proper information to
the Inference Engine;

¢ handling the event intercepted, by themselves.

Tasks like the above mean that metaobjects are in-
volved with some computation and not simply trapping
each call and delegating all the necessary computation
to the Inference Engine. However, to avoid activat-
ing the Engine at every trap helps achieving better per-
formance, since deduction can be a computationally
costly activity.

Mapping the output of the Inference Engine onto actions
on the application. The Inference Engine may suggest
the activation of a functionality of the application as
a result of its deduction. This functionality is mapped
onto method invocations of appropriate application ob-
jects, which must be identified at this stage. Carry-
ing out this mapping is the responsibility of the same
metaobject that had trapped control from the base-
level and will, in due course, hand it back. In some
cases, the outcome of the Inference Engine can be hon-
oured by carrying out a change of some arguments of
the trapped method. For example, an assistant that
should highlight some keywords in a page could sim-
ply change the text colour by setting the proper argu-
ments of the method called to draw the text.

Of course, care must be taken when invoking opera-
tions of baselevel objects from the metalevel, for this
could interfere with the application in subtle ways [12].

Using the inspection capability available at the metalevel
in order to construct a set of structures encoding the
metalevel’s runtime knowledge of the baselevel appli-
cation. This should include at least the references to
some relevant application objects, in order to simplify
further accesses to them. Furthermore, the metalevel

can exploit its awareness of the state of the applica-
tion to decide upon an intervention policy that does
not interfere harmfully with current operations of the
application.

4 Example Applications
4.1 A Web Presentation Assistant

We have developed a Java prototype assistant agent that
interfaces with a web browser following the proposed re-
flective architecture. This assistant captures the keywords
which the user asks to be found in the current page, and
highlights those keywords when pages are displayed. Also,
the assistant proposes pages which it has autonomously
found and selected for their relevance to the keywords.

The application events that have to be detected are: (1)
displaying a page, and (2) typing (in the relevant text field)
a keyword to be found in the current page. To capture these
events we associate metaobjects with the relevant objects of
the application. Metaobjects are also responsible to connect
the activities of the Inference Engine with the web browser.
Figure 4 shows, using the UML notation, the reflective soft-
ware architecture employed for this case study.

After analysing the application, we find out that the ob-
jects that handle the events we are interested in are: object
: Di al ogBox, which is responsible for displaying a dialog
window that prompts for a keyword; and object : Text ,
which is responsible for drawing some text on the screen.
Thus, two metaobjects, : Di al ogMO and : Text MO are
associated with the latter two objects respectively. Note
that these metaobjects belong to different classes, since they
perform different operations once control is trapped at the
metalevel.

Application object : Di al ogBox is associated with
metaobject : Di al ogMDO, in such a way at run time control
is trapped at the metalevel whenever a method of the for-
mer object is invoked (see (1) in Figure 4). Once metaob-
ject : Di al ogMO gains control (2), it checks whether the
invocation and the context are those in which the assis-
tant should intervene, i.e. whether the dialog box is actu-
ally being used to type a keyword?. If the required condi-
tions are satisfied, control is passed to the Inference Engine
I nf erenceEngi ne (3).

Once the Inference Engine hands a result (4),
: Di al ogMO lets the application resume execution of the
method it had originally invoked (5). Meanwhile it passes
the keyword to metaobject : Text MO, which modifies the
aspect of displayed pages (6), and invokes a method of the
application object : Page in order to start a search of rele-

4This can be determined, for example, by inspecting the title attribute
of the object : Di al ogBox.

Assistant Agent

:InferenceEngine

—— 1 :KnowledgeBase

—>

3: activatE/V /4: result

6: update
TextMO

:DialogMO

5: reﬂecti

7: search
8: show

2: trapT

I inputLine()
—>

:DialogBox :Page

Application Control Interface

I reﬂecti

10: trapT

metalevel

baselevel

9: write()
il

‘Text

Web browser

Figure 4. Reflective architecture for a web browser and an assistant agent

vant pages (7). Later the interesting pages are shown to the
user (8).

When a new page is shown, methods of object : Text
are called to display some text (9), but metaobject
: Text MO traps control before the text is drawn on the
screen (10). This metaobject intervenes to highlight the pre-
viously defined keywords, by modifying the arguments of
the trapped method, or by calling other methods that change
the style of the text. Then the text is actually displayed.
Note that metaobject : Text MOhad been notified the rele-
vant keywords by metaobject : Di al ogMO.

4.2 A Web Assistant for E-Commerce

The previous example aimed at showing in some detail
how the proposed methodology can be applied. Many other
types of assistants can be built based on the proposed archi-
tecture.

As a further experiment, we have developed a Java pro-
totype of a web assistant for e-commerce that simplifies the
comparison of good offers found in the web. This assistant
analyses data of web pages as they are visited by the user,
and displays in a separate window more effective presen-
tations (e.g. overviews, price trends) of some user-selected
goods. Moreover, the extracted data (e.g. prices, product
names, availability, features) are transformed on-the-fly by
the assistant and stored into a database or spreadsheet for
further comparative analysis.

Two techniques are employed to allow the assistant to
extract data from the web pages visited. First, the user can
delegate the task of analysing HTML code to the assistant,
which exploits the intelligence of the Inference Engine. Al-
ternatively, the user himself can submit significant data to
the assistant, by simply marking the relevant text on the web
pages. Consistently with the adopted methodology, the lat-

ter user operation is captured by an appropriate metaobject.

5 Deployment

In principle, assistant agents conforming to the proposed
reflective architecture can be developed by any third party
that knows the application, in accordance with and up to the
hypotheses H1, H2 and H3 in Section 3.2.

In order to extend a C++ application (provided source
code is available), OpenC++ [6] can be used as a reflective
platform, and the Inference Engine can be implemented by
means of the CLIPS system [1], which is provided as a li-
brary that can be linked into C++ code.

Java applications can be extended, as in the examples
of Section 4, using a reflective language like Javassist [7]
for metaobjects, and the rule-based language Jess [2] for
the Inference Engine. In this case, metaobjects signal
the occurrence of an event by storing an appropriate fact
in the knowledge base (e.g. “(ok-click keyword-
sear ch-di al og) ”) by invokingthe assert () method
of the Inference Engine. Such a fact is then used by the
Jess engine to activate the programmed rules. On the other
hand, actions triggered by rule processing inside the Infer-
ence Engine (also leading to asserting or retracting facts)
are communicated to metaobjects through Jess “listeners™®.

When the application is developed in Java, the assis-
tant agent is bound to the application in a configuration
stage where bytecode is modified as appropriate in order
to associate metaobjects with objects. During configura-
tion the user selects the events s/he is interested in from a
pre-determined list. Each event of the list corresponds to a
metaobject and determines the objects that have to be made
reflective.

5Metalevel objects whose method is invoked automatically by Jess
when a specific fact is asserted or retracted.

For instance, with reference to the example of Sec-
tion 4.1, the user could choose to avoid searching pages re-
lated with the keywords typed in the : Di al ogBox. In this
case, instead of metaobject : Di al ogMO : Di al ogMOL
would be used, which only captures keywords (see (2) in
Figure 4) and communicates with the Inference Engine ((3)
and (4) in Figure 4).

As another example of configuration choices, the user
could associate : Di al ogMO with : For m objects, thus
gaining the ability to collect, highlight and search keywords
typed in any web form.

6 Related Work

As observed in Section 2.1 and highlighted in [15], the
literature reports no general methodology to connect assis-
tant agents with existing applications; each time, instead,
an ad-hoc solution has been devised. Most of the propos-
als make wide use of AppleScript/AppleEvents [14, 10],
thus requiring the application to be scriptable, i.e. externally
controllable by a program through a script, and recordable,
i.e. capable of reporting user actions to an external program
(for this terminology see [15, 10]).

Other approaches [13, 22] to the integration of assistant
agents are based on flexible multi-layered event handling
architectures. These require that applications be built using
the library implementing such an architecture.

The work [3] is based on “instrumented connectors”,
i.e. on changing the connections between applications and
the operating system by building code that wraps the OS
libraries. This transparently enables code extending appli-
cations to perceive user actions and interact with the ap-
plication proper. This approach is practicable, yet platform-
dependent and intrusive (since parts of the operating system
are changed). Moreover, it limits the possibility of extend-
ing applications since it does not allow object inspection
but only intercepts interactions between application mod-
ules and system libraries. As a consequence, only some
user actions can be detected.

NetChaser [9] provides user assistance for Internet ser-
vices. It performs web assistance (i.e. keyword classifica-
tion, prefetching of interesting pages, cache maintenance,
etc.) by acting as a “proxy” between the user’s browser and
the web, thus trying to recognize user’s interests by analyz-
ing each page in transit. Similarly, the IRC assistant in [16]
exploits the IRC protocol to interface with the application.
However, these approaches are valid only for that kind of
assistants and do not represent a general solution.

Finally, one of the most famous assistants, the Microsoft
Agent (MS-Agent [21]) widely used in the Microsoft Of-
fice Suite, is an ActiveX object that only provides methods
aimed at user interaction by means of animation and dialog
boxes. Therefore, it does not contain any reasoning abil-

ity, which must be provided by the application and cannot
be viewed as a proper “agent” [27]; rather, in our reference
architecture of Figure 1, it corresponds to the User/Agent
Interface component.

With respect to the cited works, the methodology
proposed in this paper is platform- and application-
independent. It does not require the application to be writ-
ten (or re-written) using specific libraries or providing ac-
cess points for scripting. Any object-oriented application
can be extended based only on the knowledge assumed with
the hypotheses H2 and H3 in Section 3.2.

7 Conclusions

In this paper we have presented an approach that allows
extending applications with assistant agents. The proposal
is general in the sense that it is not aimed to a particular
type of applications and does not impose on it any specific
design requirement or interfacing ability. The software ar-
chitecture proposed as a solution identifies the components
that constitute an assistant agent, and uses computational
reflection as a mechanism to connect assistant agents with
applications.

In our approach, the development of an assistant agent
can be clearly separated from that of applications, thus fa-
cilitating development, reuse and evolution of both. In par-
ticular, in order to enrich applications with new functional-
ities (which is an example of evolution), the latter can be
implemented as assistants and then integrated with the ap-
plications without changing their code. Assistants are de-
signed so that they can perform their tasks autonomously
from the application.

The performance penalty introduced by the assistant
consists of the cost for its computation and the cost of jump-
ing to the metalevel. We have lowered the former cost by
caching results of the inference engine, so avoiding that
each intercepted operation is handed to it; and by giving
the assistant ability to work asynchronously from the appli-
cation for costly operations, e.g. searching new web pages.
The cost of jumping to the metalevel has been reduced by
carefully choosing when interception has to be performed,
capturing the rendering of the whole web page to update it
(e.g. for changing colours of selected words) once for all is
much faster than capturing the rendering of each word.

As a future work, we plan to exploit our reflective soft-
ware architecture to build a multiple-agent system that pro-
vides assistance for an application by taking advantage of
the collaborative ability of specialised assistants.

References

[1] CLIPS: A Tool for Building Expert Systems. WWW,
2002. www.ghg.net/clips/CLIPS.html.

[2] JESS: The rule engine for Java Platform. WWW,
Sandia National Laboratories, (Livermore, CA, USA),
2002. herzberg.ca.sandia.gov/jess/.

[3] R. Balzer. Instrumenting, Monitoring, Debug-
ging Software Architectures. WWW, 1998.
www.isi.edu/software-sciences/papers/instrumenting-
software-architectures.doc.

[4] K. Bennett, S. Glover, X. Li, and S. Rank. Design-
ing Software for Change: Evolvable Architectures. In
Proceedings of the Workshop on Software Change and
Evolution (SCE’99), Los Angeles, CA, May 1999.

[5] Bradshaw, J., editor. Software Agents.
Press/The MIT Press, 1997.

AAAI

[6] S.Chiba. A Metaobject Protocol for C++. In Proceed-
ings of OOPSLA, pages 285-299, 1995.

[7] S. Chiba. Load-time Structural Reflection in Java. In
Proceedings of ECOOP, volume 1850 of LNCS, 2000.

[8] S. Chiba and M. Tatsubori. Yet Another
java.lang.Class. In Proceedings of the ECOOP
Workshop on Reflective Object-Oriented Program-
ming and Systems, Brussels, Belgium, 1998.

[9] A. Di Stefano and C. Santoro. NetChaser: Agent Sup-
port for Personal Mobility. IEEE Internet Computing,
4(2), March/April 2000.

[10] D. Goodman. Danny Goodman’s AppleScript Hand-
book. Random House, New York, 1994.

[11] W. L. Hursh and C. V. Lopes. Separation of Concerns.
Technical Report NU-CCS-95-03, Northeastern Uni-
versity, 1995,

[12] G. Kiczales, J. des Riviéres, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press, 1991.

[13] D. Koshie and B. Myers. A System-Wide Macro Fa-
cility based on Aggregate Events. In Cypher, A., ed-
itor, Watch What | Do: Programming by Demonstra-
tion. MIT Press, Cambridge, Mass., 1993.

[14] H. Lieberman. Letizia: An Agent That Assists Web
Browsing. In International Joint Conference on Arti-
ficial Intelligence, Montreal, August 1995.

[15] H. Lieberman. Integrating User Interface Agents with
Conventional Applications. Knowledge-Based Sys-
tems Journal, 11(1):15-24, Sept. 1998.

[16] H. Lieberman, P. Maes, and N. Van Dyke. Butter-
fly: A Conversation-Finding Agent for Internet Relay
Chat. In International Conference on Intelligent User
Interfaces, Los Angeles, January 1999.

[17] Linux Documentation Project. Java-decompilers-
HOWTO. WWW, 2002. www.linuxdoc.org.

[18] P. Maes. Concepts and Experiments in Computational
Reflection. In Proceedings of OOPSLA, volume 22
(12) of Sigplan Notices, Orlando, FA, 1987.

[19] P. Maes. Agents that Reduce Work and Information
Overload. In Bradshaw, J., editor, Software Agents.
AAAI Press/The MIT Press, 1997.

[20] J. McAffer. Meta-Level Programming with CodA. In
W. Olthoff, editor, Proceedings of ECOOP, volume
952 of LNCS, 1995.

[21] Microsoft Corporation. Microsoft Developer Network
Library, 2000.

[22] P. Piernot and M. Yvon. The Aide Project: An
Application-Independent Demonstrational Environ-
ment. In Cypher, A., editor, Watch What | Do: Pro-
gramming by Demonstration. MIT Press, Cambridge,
Mass., 1993.

[23] R.J. Stroud and Z. Wu. Using Metaobject Protocols to
Satisfy Non-Functional Requirements. In C. Zimmer-
mann, editor, Advances in Object-Oriented Metalevel
Architectures and Reflection. CRC Press, 1996.

[24] E. Tramontana. Managing Evolution Using Coopera-
tive Designs and a Reflective Architecture. In W. Caz-
zola, R. J. Stroud, and F. Tisato, editors, Reflection
and Software Engineering, volume 1826 of LNCS.
Springer-Verlag, 2000.

[25] R. J. Walker, G. C. Murphy, B. N. Freeman-Benson,
D. Wright, D. Swanson, and J. Isaak. Visualizing
Dynamic Software System Information through High-
Level Models. In Proceedings of OOPSLA, Vancou-
ver, Canada, 1998.

[26] I. Welch and R. J. Stroud. Kava - A Reflective Java
Based on Bytecode Rewriting. In W. Cazzola, R. J.
Stroud, and F. Tisato, editors, Reflection and Software
Engineering, volume 1826 of LNCS. Springer-Verlag,
2000.

[27] M. Wooldridge. Intelligent Agents. In Weiss, G., ed-
itor, Multiagent Systems. The MIT Press, Cambridge,
1999.

[28] M. Wooldridge and N. R. Jennings. Intelligent Agents:
Theory and Practice. The Knowledge Engineering Re-
view, 10(2):115-152, 1995.

