Enforcing Agent Communication Laws
by means of a Reflective Framework

Antonella Di Stefano
Corrado Santoro
Dipart. di Ing. Informatica e Telecomunicazioni
Universita di Catania
Viale A. Doria, 6 - 95125 - Catania, Italy

{adistefa,csanto} @diit.unict.it

ABSTRACT

Agent Coordination Contexts (ACCs) have been proposed as vir-
tual environments where agents live and interact. In thisway, as ina
human society, interactions may be subject to conventions and laws
depending on their context. This is obtained by a suitable ACC that
embeds the communication laws relevant to a specific application
and checks whether they are fulfilled as interactions take place.

Context modeling, while representing a communication aspect
relevant for all the agents of an application, is a crosscutting con-
cern with respect to the design of the activities of each agent. In
this paper, we propose an approach allowing a separate design and
implementation of, respectively, behaviour and the interaction as-
pects constituting the context. Once the latter have been formalised
in a specification consisting of communication laws, a tool gener-
ates the necessary management and checking code from the spec-
ification. Moreover, we automate the way laws are enforced on
agent communication by suitably re-directing any interaction be-
tween agents, so as to ensure it respects the constraints specified
by the laws, and take the actions some laws may request, before
it actually takes place. Re-direction is accomplished by means of
computational reflection, which transparently changes the meaning
of the communication primitives normally used by agents program-
mers.

Categories and Subject Descriptors
D.2 [Softwar€]: Software Engineering

General Terms
Design

Keywords

Agents, Communication, Software Engineering, Computational Re-
flection

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC' 04 March 14-17, 2004, Nicosia, Cyprus

Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

Giuseppe Pappalardo
Emiliano Tramontana
Dipartimento di Matematica e Informatica
Universita di Catania
Viale A. Doria, 6 - 95125 - Catania, Italy

{pappalardo,tramontanay@dmi.unict.it

In the design and development of multi-agent systems, commu-
nication and coordination among agents represent key issues [23,
8, 7, 3, 24]. As a consequence, agent communication languages
(ACLs for short) have been the subject of intense research and de-
bate in recent years [25, 19, 15, 18, 17, 2]. ACLs specify a com-
mon syntax and semantics for messages exchanged, in order to al-
low a full comprehension of messages uttered by agents in terms
of sender intentions/desires, information exchanged, symbols used,
etc.

In this area, the current trend is to study human societies (and
in particular interaction models), trying to port the concepts and
models thus identified to the world of intelligent agents [21, 4, 6].
To this aim, Agent Coordination Contexts (ACCs) [11, 12, 22, 9]
have been proposed as virtual environments where agents belong-
ing to the same multi-agent application live and interact. In an
ACC, as in a human society, interactions are subject to conventions
and laws depending on the context where they take place. There-
fore, an ACC is meant to embed the communication laws relevant
to a specific multi-agent application, and constrain each interaction
to occur in accordance with those laws.

In designing a multi-agent application, the context, and in par-
ticular communication rules, is a concern that can be considered
largely independent of the behaviour of the individual agents in-
volved. Modelled contexts or significant parts thereof, if suitably
general, could be common to several multi-agent applications (which
provides opportunities for reuse). On the other hand, the same
agent (model) could be useful within different contexts. The dis-
tinction between agent behaviour and context is particularly useful
in “open” multi-agent systems, where a participant agent could dy-
namically join the system after startup: in this case, the developer
of the agent does not know in advance which context the agent will
find itself in.

These ideas are the basis of the software engineering methodol-
ogy for multi-agent systems proposed in [29, 28]: since the agent
model and the behaviour of coordination media (i.e. context mod-
eling) are separate concepts (see Figure 1), they can be dealt with
by different programmers and at different times. One could even
envisage the co-existence of two distinct roles within a multi-agent
application design effort: an “agent designer/programmer”, who
has the task of implementing agent behaviour, and an “ACC design-
er/programmer”, who specifies and implements the communication
rules.

In summary, context modeling is essentially a crosscutting con-
cern with respect to the design of individual agents’ activities, and
pertains to communication aspects involving the agents of an ap-

Requirements
Statements
Roles Model Interactions Model Social Laws Analysis
Agent Model Services Moddl Behaviowrof | b eign
Coordination Media|

Figure 1: Agent Software Oriented Engineering

plication (see Figure 2). An agent developer should not need to
understand, specify, or even be aware of, rules constraining inter-
agent communication.

In this light, we could imagine that existing agent platforms should
provide suitable mechanisms, and possibly tools, to allow agent
and context to be separately implemented. In fact, widely known
agent programming platforms (such as [1, 16]) do not provide any
support for contexts; and even the few agent frameworks that do
so [12, 13], by means of additional libraries, end up forcing agent
programmers to embed context rules within agents, rather than ac-
tually allowing a separate design. The reader can appreciate the
advantages of the approach described in section 4 by comparing it
to the current development practices illustrated in section 3.

Although, as argued above, developing agents and communica-
tion rules should in general be independent activities, it is never-
theless unavoidable that in some cases rules may have an impact on
agents. E.g., it might be necessary for agents to be aware of com-
munication rules, so as to decide when to enter/exit a context. In
any case, the proposed approach is flexible enough that the degree
of context awareness appropriate for agents can be easily chosen
by designers.

To this aim, we propose an infrastructure allowing a separate
design and implementation of behaviour and interaction aspects for
a multi-agent application. This is accomplished by using reflective
techniques that glue these aspects together at runtime. In this work,
we concentrate on the interaction aspect, proposing a solution that
helps automating the relevant development process.

Once communication laws have been expressed by a set of spec-
ifications (in particular we use the context and rule model in [12,
13]), no further information is needed to translate such a set into
executable code. Thus, as a first step, we propose a translation soft-
ware system that takes as input a set of specifications for communi-
cation laws and autonomously generates an object-oriented library,
in the appropriate programming language. This library is used to
support agent communication so as to make them interact under
given communication constraints.

As a second step, in order to facilitate the work of agent pro-
grammers, we propose to automate the way communication laws
are enforced on agent interactions. For this purpose, our approach
is able to detect, and interfere with, any interaction between agents
so as to enforce the desired constraints and rules at run-time, be-
fore interactions take place. This is achieved by means of com-
putational reflection [20], whereby an invocation of an operation
provided by an agent can be intercepted, by an appropriate soft-
ware layer, before it actually arrives to the destination agent. In
this way, the semantics of communication primitives available in
the agent platform can be effectively changed. The enhancement
of this approach is represented by the assurance of the automatic

j2]
Agent A B AgentB Agent C
5 &
2 <
T 3 2
k-] ho]
s E o
88 % .
oD O o .
<< =B Interaction Model
< > Interaction Protocols
V V V Communication Rules

Multi—Agent Application

Figure 2: Concerns of a Multi-Agent Application

satisfaction of communication rules by all agents.

The automatic enforcement of communication laws provides two
advantages: (a) the agent programmer is not asked to take such laws
into account in the code s/he writes; (b) agents cannot escape the
rules enforcement, whatever their programmer’s intentions.

This paper is structured as follows. Section 2 introduces the no-
tion of context for communicating agents. Section 3 sketches the
current development process for a multi-agent system. Section 4
describes the reflective architecture proposed as a solution for pro-
viding contexts to agents. Finally, conclusions are drawn in Sec-
tion 5.

2. AGENT COORDINATION CONTEXTS

The Agent Coordination Context (ACC) concept aims at mod-
elling communication in a multi-agent application, getting inspira-
tion from human society. For this purpose, it has been proposed [11,
12,13]:

(a) to extend the ACL speech act model [19, 17] in order to take
into account some useful notions suggested by human inter-
action, and

(b) to make agent communication take place in the presence of
a context, prescribing relations among, and actions upon, se-
lected characteristics of speech acts.

These objectives can be addressed as described in the following two
subsections, respectively.

2.1 Extending standard ACL speech acts

A way to pursue goal (a) is to introduce additional fields into
ACL messages. A multi-agent interaction instance is considered
to be characterised by several aspects: the communicating agents,
which may play different roles; the information exchanged, encap-
sulated in a logical message; and the channel, i.e. the communi-
cation medium through which information is exchanged. On this
basis, the standard ACL message format is modified by introduc-
ing the following information:

e Sender role, in addition to sender identity.

e The possibility to address receivers by name and/or by role.
This is achieved by specifying a predicate p(-), which, tak-
ing a generic agent as parameter, is true if the message is for
that agent.

e The channel characteristics which mainly model the tem-
poral relationship between the act of message delivery (to a
receiver) and the presence of the receiver (in the application

context)®. We say that the channel provides on-time inter-
action if, at delivery time, the receiver is inside that context
(for example, each verbal communication, in a space where
people are able to hear, features this characteristic). On the
contrary, channels providing deferred interactions are those
where the receiver is not inside the context when the mes-
sage is ready to be delivered, but can be reached at a later
time (mailboxes, written notes, posters, showcases are kinds
of deferred channels). Temporal relationship is modeled by
using an additional ACL message field, called delivery mode
t.m, Which can take the values ontime or deferred.

e A set of agents called virtual receivers, which are able to
hear a transiting message, even if the latter is not explicitly
addressed to them. Indeed, based on the observation of the
human world, we notice that, unless an interaction is strictly
private, communications occurring in a social context can be
heard by other people even if the message is not directly ad-
dressed to them. This is a very important aspect of com-
munication since it is a possible carrier of new unexpected
interactions. To this aim, real receivers, which are explic-
itly addressed by the sender, are distinguished from virtual
receivers, i.e. all the agents that can hear a message on a
channel. The presence of virtual receivers depends on the
privacy imposed by the sender on the interaction and on the
constraints on delivery capability imposed by the channel.
Virtual receivers are described by another predicate v, (-).

With the above introduced extensions, an ACL speech act can be
denoted as:

m =< 1Nm, < On, Or >,pm(~),vm(v),tm,wm,Am,um > (1)

Here n,, is the performative name (i.e. inform, ask, query, etc.),
o and o, respectively the name and the role of the sender agent,
pm (+) the predicate for real receivers, v, (-) the predicate for vir-
tual receivers, t,, the delivery mode, w,, the ontology, A, the con-
tent language and ..., the message content?.

2.2 Introducing context in agent communica-
tion

Making agent communication context-aware poses both concep-
tual and practical issues: the precise description of contexts, and
their practical realisation within a specific development framework,
respectively. While these could be deeply intertwined in a naive
approach to the problem, they can be clearly distinguished as pol-
icy and mechanism aspects, respectively. There are therefore well-
known benefits in pursuing approaches that keep them as separate
as possible. In this light, context is better described as abstractly
as possible, in a formalism neutral with respect to particular imple-
mentation languages, possibly based on a suitable logic.

A context is expressed by a set of rules governing interactions
(occurring in that context). Formally, given the message model de-
scribed in Section 2.1, rules aim at capturing target and constraints

'Here, we consider only the temporal relationship since, in our
opinion, it is one of the most important characteristics of chan-
nels. Indeed, the concept of channel in the human world is more
complex and is also related to physical constraints posed by the en-
vironments. For example, a channel such as a phone line is needed
if two interacting parts are not in the same physical place. How-
ever, not all human world constraints fit an agent environment; as a
result modeling agent channels, starting from human channels, re-
quires a more in-depth analysis which will be the aim of our future
work.

20ther ACL message fields (such as “reply-with” or “in-reply-to”)
are not modeled since they are not sensitive for our analysis.

of the communication laws holding within a social multi-agent ac-
tivity. For this purpose, each rule specifies how to handle each mes-
sage through suitable filtering and filling functions. Thus, a context
can ensure that interactions provide receivers with acceptable and
meaningful information, since each message sent can be filtered as
desired, and filled with suitable default values, whenever a manda-
tory field has not been fully specified by the sender. E.g., a rule
could specify that, if the sender omitted to choose a delivery mode
for a message, this should be set to ontime.

To catch the said aspects a rule r is expressed by the following
pac-expression (precondition-assignment-constraint) [11, 12, 13]:

r == precondition = assignment | constraint 2)

where the pre-condition is a predicate on one or more message
fields, which if true triggers the execution of the assignment or the
checking of the constraint. The constraint is a predicate that speci-
fies how a message meeting the pre-condition has to be formed, and
is used to model the filtering function. The assignment serves to set
a message field to a value if the pre-condition is met, thus model-
ing the filling function. Interactions in a multi-agent application
are constrained by a set of rules r1, 72, ..., r,,, formed as in (2), and
are allowed only if all the rules are met. As an example, we spec-
ify two rules expressing respectively that each message destined to
agent Alice must be in Prolog (as the content language), and that
each message in LISP must have a deferred delivery mode:
1 def pm (Alice) = A\, = Prolog
T def Am = LISP = t,, = deferred

Assignment is denoted by the “left-arrow” operator, as field «
new_val. For example, we can model that each message in LISP
has to be delivered ontime (by default):

r3 def (Am = LISP) A (tm is nil) = tm — ontime

From an architectural and practical point of view, since rules
must be checked during message exchange, a communication in-
frastructure is needed at runtime to support communication, so as
to check and enforce the rules defining the context. A proposal for
this infrastructure is the aim of Section 4.

3. CURRENT DEVELOPMENT PRACTICES

To better appreciate the advantages of our automated-reflective
approach, which will be described in Section 4, let us sketch how
a set of communication rules, specified as discussed in Section 2
could be tackled “by hand” within a multi-agent application devel-
opment

First, an “ACC programmer” would translate specified rules into
a library suitable for the target agent platform. Agent programmers
would now include appropriate invocations to the noted library, so
that agent interaction complies with the desired laws. As an ex-
ample, to discuss how this inclusion can be accomplished, let us
suppose we adopt an agent platform with the following character-
istics:

e the agent platform is developed in an object-oriented lan-
guage (such as Java) [1, 16];

e each agent is encapsulated in an Agent class, provided by
the platform itself;

e the Agent class provides two methods, e.g. send() and
recei ve(), to exchange messages.

We note that two main approaches exist for the agent develop-
ment process when using ACCs: (i) using objects that represent
context and rules, offering the needed access methods, or (ii) im-
plementing rule checking in a Rul eAwar eAgent abstract class
(subclass of Agent) that embeds rule checking and is used to rep-
resent all the agents of the application.

The first approach (i), an example of which is reported in Fig-
ure 3a, amounts to designing and implementing a library that offers
classes such as Cont ext and Rul e, which represent abstractions
respectively for ACCs and the relevant communication rules (this
approach is used specifically in [13], but its general principles are
the basis for other ACC proposals such as [7]).

Class Cont ext implements the methods to enter the ACC and

communicate through it, by means of e.g. methodsj oi n(),send()

and recei ve() . Class Rul e provides a Cont ext object with
the ability to instantiate a new rule implementing a pac-expression,
and is intended to process ACL messages, whose validity is checked
with respect to the new rule.

Although approach (i) is well suited for realising ACCs, it im-
plies that applications originally implemented without recourse to
ACCs need to be rewritten in order to use the classes support-
ing ACCs. This could imply changing many lines of code (e.g.
all the calls to method send() would have to be changed into

ct x. send() asin Figure 3a, moreover a call to Cont ext . j oi n()

has to be added, etc.).

public class MyAgent extends Agent {
voi d agent Behavi our () {
/1 join to the context of the application named ’e-auction’
Context ctx = Context.join ("e-auction");

/1 send a message through the context
ctx.send (new ACLMessage (...));

/1 receive a message sent through the context
ACLMessage m = ctx.receive ();

@)

public class Rul eAwar eAgent extends Agent {
voi d appl yRul es (ACLMessage m)
throws Rul eViol ati onException {
if (mgetPerformative().equals("inform') &&
I' m get Language() . equal s("LI SP"))
throws new Rul eViol ati onException("rule 1");
if (mgetPerformative().equals("ask-if")) {
m addRecei ver (
"anot her - agent @ci so.iit.unict.it:1099/JADE");
}

}
void send (ACLMessage m) throws Exception {
appl yRul es(m);
super.send(n);
}
}

(b)

Figure 3: Two approaches for engineering context aware agents

As to the second development approach (ii) noted above, itamounts

to writing a class Rul eAwar eAgent (see Figure 3b) that extends
Agent and will be used as a super-class for all agents having to
communicate through an ACC with given rules. The programmer
of Rul eAwar eAgent should implement a send() method per-
forming rule checking, by means e.g. of a series of “if”, before
sending the message (see appl yRul es() in Figure 3b). In this
case, the design and implementation of agent behaviour is kept rel-

atively separated from the design of ACCs. However, if an existing
non-ACC based application has to be transformed into an ACC-
based one, the original source code would have to be rewritten, at
least to change the name of the ancestor class of each agent class.

In both cases (i) and (ii), agent programmers must be to a cer-
tain extent aware of rules and take care of rule checking by suitably
modifying agent code. Moreover, should rules change (due to new
application requirements), this awareness will force agent program-
mers to perform a re-engineering process for agents in order to take
into account the necessary changes. Thus, the interaction aspect,
which is basically crosscutting, induces changes to all the agents as
it was just another agent-specific concern (such as behaviour, men-
tal states, etc.). This represents an evident contradiction to the view
we expressed in Section 1 (see Figure 2).

4. A REFLECTIVE ARCHITECTURE TO
ENFORCE COMMUNICATION LAWS

4.1 Outline of the Proposed Development Pro-
cess

For the design and implementation of a multi-agent application
that bases agent interaction on the concept of ACC and rules, we
propose a software engineering method based on the following guide-
lines:

1. As discussed in the Introduction, two distinct figures of de-
signer are envisaged, i.e. an ACC designer and an agent de-
signer.

2. The ACC designer is entrusted with the task of establish-
ing interaction protocols and communication rules, provid-
ing them through a suitable specification language (cf. Sec-
tion 2).

3. The agent designer takes care of agent behavioural aspects
and implements them by means of a Java-based agent plat-
form [1, 16]. S/he need not be aware of the presence of an
ACC and its rules, but must only be ready to handle a possi-
ble exception thrown by the underlying ACC support when a
message sent violates a communication constraint. The agent
designer is not forced to change any line of its code, should
new application requirements cause communication rules to
be added, removed or changed.3

4. A tool, called ACC Builder, targeted for the agent platform
employed, generates the code needed to implement commu-
nication rules. It should be noted that the ACC Builder is
only needed before the application runs. The classes imple-
menting the ACC rules are transparently integrated into the
agents’ code, by changing selected bytecode parts, either at
load-time or permanently (i.e. by changing the class files).
This does not require source code to be manually modified

3For those cases where, as mentioned in the Introduction, the agent
programmer actually needs to be aware of the presence of a context,
a possible strategy is for the ACC support to provide information
about rules violated within the exception raised in this event, and
for the agent programmer to analyse this information and take the
desired measures in the exception handling code. Alternatively, the
agent programmer could use special messages intended to inform
the ACC of specific needs the agent may have in interacting with
other agents; in response to such requests, the ACC would check
whether they are inconsistent with its set of rules, and if so de-
cide whether to reject the request, or accept it relaxing the rules
involved.

and is made possible by computational reflection, which al-
lows all the limitations dealt with in Section 3 to be over-
come.

4.2 Computational Reflection

A reflective software system consists of a part that performs
some computation and another part that reasons about and influ-
ences the first part by inspecting it and intercepting its operations [20].
Usually reflective systems are represented as two-level systems,
where a baselevel implements an application and the metalevel mon-
itors and controls the application.

One of the most widespread reflective models for object-oriented
systems is the metaobject model, whereby a metalevel class can be
associated with a baselevel class, to allow instances of the met-
alevel class, called metaobjects, to intercept operations performed
on objects instances of the baselevel class [20, 14].

As reported in the literature, reflective systems have been used
aiming at the provision of additional functionalities, such as syn-
chronisation [27], distribution [10], fault-tolerance [26], etc.

Among reflective language extensions allowing the implemen-
tation of these systems, we have selected for the investigation re-
ported the Javassist library [5], which is based on Java.

4.3 The Reflective Software Architecture

The reflective software architecture that allows communication
laws to be enforced in an environment where agents interact con-
sists of a baselevel, containing agents, and a metalevel, controlling
all the communications between agents.

Agents developed within current object-oriented agent platforms
(e.g. Jade [1]) consist of interacting classes, each implementing
parts of an agent. In order to implement an agent, a sub-class of
the Agent class of the platform is defined. Agents collaborate
with each other by sending messages.

Using the proposed architecture, agents are not forced to be aware
of communication contexts; however, upon invocation of the stan-
dard send primitive, their messages are effectively regulated by the
actual context. Invocation of a send, implemented at the baselevel
by the agent framework, is in fact handled by the metalevel in or-
der to enforce the rules of the actual communication context. As a
benefit of the reflective approach, this is completely transparent to
agents.

The metalevel that we propose consists of two classes: Conmruni cat i

that captures the messages exchanged; and Cont ext , containing
the context name, the (references to) agents that joined that context,
the role of each agent in the context, and the rules that messages
sent by agents must respect, as well as the actions that rules can
generate when messages are checked.

4.3.1 CommunicationMO

Class Communi cat i onMOis developed as a metaobject class
intended to be associated with class Agent of the baselevel agent
framework. This association makes it possible to intercept all the
messages that agents wish to send. Depending on the reflective
language extension used it is possible to selectively trap methods.
This avoids to introduce unnecessary jumps to the metalevel and
performance overhead*. Whenever a method call is intercepted by
Conmruni cat i onM, it checks which one of the communication
primitives (such as send() or recei ve()) has been invoked.
Then, the appropriate context is retrieved and the rules of that con-
text are processed to verify the message. When these rules hold,

“The reflective language extension we have used, Javassist, allow a
certain degree of configuration, so that it would be possible to trap
just certain methods of a class.

the message is actually delivered (see Figure 4).

Conmuni cat i onMD is designed to be a general metaobject
class so as to be associated with any agent framework and act on
the interaction primitives that the framework provides to agents.
It detects at runtime agents communicating and stores their names
and messages into the active Cont ext object.

public class MyAgent extends Agent {
voi d agent Behavi our () {

/1 send a message
try {

send(new ACLMessage(...));
} catch (Exceptione) { ... }

/1 the exception can be raised by both the agent
/1 platform (baselevel) and the ACC (metalevel)
}
}

/1 Baselevel class Agent will be associated with
/1 metalevel class CommunicationMO

public class Communi cati onMO extends Metaobject {

/1 trapMethodcall automatically receives control when
/1 a method of the associated baselevel class is invoked
public Object trapMethodcall(int id, Object[] args)
throws Throwabl e {
/1 check if a message is going to be sent
if (getMethodNane(id).conpareTo("send")) {
/1 get the agent identifier
Obj ect agld = get Object();
/1 retrieve the agent context
Cont ext ctx = Context.get(agld);
if (ctx == null) {
/1 or make the agent join the defaul context
Context ctx = Context.join(agld, "default");

/1 process the rules of the context for the message to be sent
ct x. appl yRul es(args); // argsisthe argument of the
/1 trapped method, i.e. send(...)

/1 control gets here when the intercepted method is not send() or
/1 applyRules() does not raise an exception

/1 trapMethodcall of Metaobject invokes the intercepted method
/1 of the associated baselevel class, i.e. send(...) of class Agent
return super.trapMethodcal I (id, args);

}

dnMD

Figure 4: Metaobject that allows redefinition of communication
primitives

4.3.2 Context

Class Cont ext is a metalevel class responsible to check a mes-
sage and perform some activities on it. Checks consist in analysing
whether sender, receiver, structure and arguments of a message sat-
isfy the communication constraints imposed by rules. The activities
performed on a message are based on a repository of rules and in-
clude: throwing an exception, if a rule is violated; transforming it;
filling it with other arguments; changing its receiver field; sending
a copy to other receivers, etc.

For this purpose, class Cont ext provides method appl yRul es()
that, taking as parameter an object representing the message to be
exchanged, checks the latter with respect to the defined rules and
performs the needed actions.

4.4 Generating Context Classes

As reported in Section 4.1, in our approach the ACC Builder tool
automatically generates metalevel classes Commruni cat i onMOand

Cont ext . ACC Builder operates by processing a text file which
specifies context characteristics and rules, and generates the source
code of the metalevel classes to be glued with the multi-agent ap-
plication. The context specification language employed is XML-
based. A sample fragment of a specification file is shown in fig-
ure 5. A full context specification provides the following informa-
tion:

<Agent Pl at f or m» JADE </ Agent Pl at f or n»
<Cont ext > Auction </ Context >
<Agent Rol e> Bi dder </ Agent Rol e>
<Agent Rol e> Aucti oneer </ Agent Rol e>
<Agent Rol e> Guest </ Agent Rol e>
<Conmmuni cat i onRul e>
unknown(Agent Rol) => Agent Rol e = Guest
</ Communi cati onRul e>
<Conmmuni cat i onRul e>

sender. Agent Rol e == Aucti oneer and
recei ver. Agent Rol e == Bi dder
=> nessage. content == OpenAuction
or nmessage.content == C oseAuction
</ Communi cati onRul e>
</ Cont ext >

Figure 5: Context specification file

e Type of agent platform used to build the multi-agent appli-
cation, this is needed to generate suitable metalevel classes
which have to be associated to the existing baselevel classes
of the platform.

e Context name.

o Identifiers of participating agents and their role in the con-
text®.

e Predicates definition for receivers, expressed as first-order
logic expressions.

e Communication rules, expressed as first-order logic expres-
sions.

Once metalevel classes have been generated by the ACC Builder,
the association between Conmuni cat i onMOand Agent is per-
formed by using Javassist. At load time, when the class Agent is
loaded by the JVM, its bytecode is modified by inserting the appro-
priate jumps to the metaobject Cormuni cat i onMO. Whenever
instance objects of class Agent are executed, control is re-directed
to the associated Communi cat i onMOmetaobject.

Javassist also allows permanent modification of the bytecode of
class Agent (by changing its class file). This alternative approach
is better followed when the magnitude of use of the defined context
is large.

5. CONCLUSIONS

In this paper we have proposed an approach for engineering a
multi-agent application that allows separate development of com-
munication and behavioural concerns. Communication concerns
are taken care of by providing the definition of an Agent Coordina-
tion Context, which specifies a set of rules governing agent interac-
tions within a certain multi-agent application. Since agent commu-
nication aspects are crosscutting with respect to agent behaviour,

51f the application is open, there may be agents, unknown at de-
sign time, which, at runtime, want to participate in the application.
In this case, unknown agents are mapped to a special role, called
guest.

we have proposed to clearly separate them by a development ap-
proach based on a reflective architecture.

We have also proposed a tool, called ACC Builder, that auto-
mates the development process of a multi-agent application by gen-
erating the code needed to enforce at runtime communication rules,
starting from a specification. In a prototype implementation devel-
oped, the ACC Builder generates the code for the JADE platform
starting from a set of rules specified in a restricted Prolog-like lan-
guage. Tests performed with this prototype have shown the validity
of the proposed approach. Future work planned include an expan-
sion of the rule specification language to represent all requirements
that may arise in an agent communication environment.

As a further extension of the work presented, we plan to deal
with scenarios requiring agents to be ultimately aware of the con-
text they will operate in (e.g. because they should organise their
work accordingly, or for security reasons, so that an agent can
keep some messages private even in contexts that would broadcast
them). In such cases, we envisage that a configuration phase would
be performed, e.g. when agents are deployed, to insert them into a
specific ACC whose rules have been made publicly available. In
this way, we manage to cater for different ACCs, depending on the
deployment scenarios, and yet to retain the approach advocated in
this work, i.e. that no a priori knowledge of ACCs should be re-
quired for the development of agents.

6. REFERENCES

[1] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi
agent systems with a FIPA compliant agent framework.
Software — Practice And Experience, 31:103-128, 2001.

[2] Bologna, Italy. First Intl. ACM Joint Conference on
Autonomous Agents and Multi-Agent Systems, July 15-19
2002.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile-Agent
Coordination Models for Internet Applications. IEEE
Computer, 33(2), February 2000.

[4] C. Castelfranchi, F. Dignum, C. Jonker, and J. Treur.
Deliberate normative agents: Principles and architecture. In
Proc. of The Sixth International Workshop on Agent
Theories, Architectures, and Languages (ATAL-99),
Orlando, FL, 1999.

[5] S. Chiba. Load-time Structural Reflection in Java. In
Proceedings of the ECOOP 2000, volume 1850 of Lecture
Notes in Computer Science, 2000.

[6] R. Conte and C. Castelfranchi. Cognitive and Social Action.
UCL Press., 1995.

[7]1 M. Cremonini, A. Omicini, and F. Zambonelli. Coordination
and access control in open distributed agent systems: The
TuCSoN approach. In A. Porto and G.-C. Roman, editors,
Coordination Languages and Models, volume 1906 of
LNCS, pages 99-114. Springer-Verlag, 2000.

[8] R. De Nicola, G. L. Ferrari, and R. Pugliese. KLAIM: A
Kernel Language for Agents Interaction and Mobility. IEEE
Transaction on Software Engineering, 24 - No. 5, 1998.

[9] E. Denti, A. Omicini, and A. Ricci. Coordination tools for
MAS development and deployment. Applied Artificial
Intelligence, 16(9/10):721-752, Oct./Dec. 2002. Special
Issue: Engineering Agent Systems — Best of “From Agent
Theory to Agent Implementation (AT2AlI-3)”.

[10] A. Di Stefano, G. Pappalardo, and E. Tramontana.
Introducing Distribution into Applications: a Reflective
Approach for Transparency and Dynamic Fine-Grained
Object Allocation. In Proceedings of the Seventh IEEE

Symposium on Computers and Communications (ISCC’02),
Taormina, Italy, 2002.

[11] A. Di Stefano and C. Santoro. Coordinating mobile agents
by means of communicators. In A. Omicini and M. Viroli,
editors, WOA 2001 — Dagli oggetti agli agenti: tendenze
evolutive dei sistemi software, Modena, Italy, Sept. 4-5 2001.
Pitagora Editrice Bologna.

[12] A. Di Stefano and C. Santoro. Modeling Multi-Agent
Communication Contexts. In First Intl. ACM Joint
Conference on Autonomous Agents and Multi-Agent Systems
[2].

[13] A. Di Stefano and C. Santoro. Integrating Agent
Communication Contexts in JADE. Telecom Italia Journal
EXP, Sept. 2003.

[14] J. Ferber. Computational Reflection in Class Based Object
Oriented Languages. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’89), volume 24 of Sigplan Notices,
pages 317-326, New York, NY, 1989.

[15] T. Fininand Y. Labour. A Proposal for a New KQML
Specification. Technical Report TR-CS-97-03, Computer
Science and Electrical Engineering Dept., Univ. of
Maryland., 1997.

[16] FIPA-OS Home Page. http://fipa-os.sourceforge.net.

[17] Foundation for Intelligent Physical Agents. FIPA-ACL
Specification, available at
http://www:.fipa.org/specs/fipa00061/.

[18] Y. Labrou, T. Finin, and J. Mayfield. KQML as an Agent
Communication Language. In J. Bradshaw et al., editor,
Software Agents. AAAI Press, Cambrigde, Mass., 1997.

[19] Y. Labrou, T. Finin, and Y. Peng. Agent Communication
Languages: the Current Landscape. IEEE Intelligent
Systems, March-April 1999.

[20] P. Maes. Concepts and Experiments in Computational
Reflection. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’87), volume 22 (12) of Sigplan
Notices, pages 147-155, Orlando, FA, 1987.

[21] T. Malsch. Naming the Unnamable: Socionics or the
Sociological Turn of/to Distributed Artificial Intelligence.
Journal of Autonomous Agents and Multi-Agent Systems,
4(3):155-186, September 2001.

[22] A. Omicini. Towards a notion of agent coordination context.
In D. C. Marinescu and C. Lee, editors, Process
Coordination and Ubiquitous Computing, chapter 12, pages
187-200. CRC Press, Oct. 2002.

[23] G. Papadopoulos and F. Arbab. Coordination models and
languages. In Advances in Computer, volume 46. Academic
Press, 1998.

[24] A.Ricci, E. Denti, and A. Omicini. Agent coordination
infrastructures for virtual enterprises and workflow
management. In M. Klusch and F. Zambonelli, editors,
Cooperative Information Agents V, volume 2182 of LNCS,
pages 235-246. Springer-Verlag, 2001. 5th International
Workshop (CIA 2001), Modena, Italy, 6-8 Sept. 2001.
Proceedings.

[25] M. P. Singh. Agent Communication Languages: Rethinking
the Principles. IEEE Computer, 31(12):40-47, December
1998.

[26] R.J. Stroud and Z. Wu. Using Metaobject Protocols to
Satisfy Non-Functional Requirements. In C. Zimmermann,

[27]

[28]

[29]

editor, Advances in Object-Oriented Metalevel Architectures
and Reflection. CRC Press, 1996.

E. Tramontana. Managing Evolution Using Cooperative
Designs and a Reflective Architecture. In W. Cazzola, R. J.
Stroud, and F. Tisato, editors, Reflection and Software
Engineering, volume 1826 of Lecture Notes in Computer
Science, pages 59-78. Springer-Verlag, June 2000.

M. Wooldridge, N. Jennings, and D. Kinny. The Gaia
Methodology for Agent-Oriented Analysis and Design.
Journal of Autonomous Agents and Multi-Agent Systems,
3(3), 2000.

F. Zambonelli, N. Jennings, A. Omicini, and M. Wooldridge.
Agent-oriented software engineering for Internet
applications. In A. Omicini, F. Zambonelli, M. Klusch, and
R. Tolksdorf, editors, Coordination of Internet Agents:
Models, Technologies, and Applications, chapter 13, pages
326-346. Springer-Verlag, Mar. 2001.

