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Abstract. Although Java reduces the time to market of embedded sys-
tems, for some contexts developers are still forced to consider, beside
application concerns, checks and handling activities for anomalous con-
ditions that can occur on hardware devices. Typically, applications and
handling of anomalous conditions are unrelated, and developers should
be provided with means to treat them separately. Reflective systems
have been successfully used to separate different concerns. However, spe-
cial care is required when using them in embedded systems, due to the
run time overhead that they can cause. In this paper, we propose what
we call selective reflective behaviour, which aims at reducing the run
time overhead of reflective systems. An efficient implementation of this
behaviour is also proposed, which is suitable even for embedded Java sys-
tems. The paper also presents an example of a meta level that handles
anomalous conditions for the embedded systems in a production cell.

1 Introduction

In the context of embedded systems, the interest for Java technology contin-
uously increases, and today some embedded systems available include a JVM
for running Java applications. This approach allows a fast software engineering
process for increasingly complex functionalities that these systems are equipped
with.

Many Java features explain its diffusion in embedded systems [6]. The first
and the most important of these features is that Java limits the number of errors
when developing applications. This goal is achieved since it is a strongly typed
object-oriented language and by removing pointers. As a second feature, the
code developed for one platform can be easily transferred to others, without any
change, thanks to the portability of Java.

Although there are many projects that use Java in embedded systems, in-
serting a full JVM in a small device where there is not much memory nor high
CPU performance is complicated, and different approaches have been followed
to cope with these shortcomings. Sun Microsystems experienced that a standard
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JVM was inadequate and developed several Java API subsets to be adopted
for embedded systems [11]. These subsets are: Personal Java for big embedded
systems, J2ME (Java 2 Micro Edition) for embedded systems and KVM (Kilo
Virtual Machine) for very small embedded systems. Sun Microsystems also de-
veloped a special CPU, named PicoJava [12], which is able to execute only Java
bytecode (without interpretation). A very efficient alternative is to compile Java
applications into native code with a tool such as gcj [5], allowing them to execute
without a JVM1. However, gcj does not support Java run time class loading.

Many embedded systems work in an environment where the same operations
execute continuously, except for a fault or other sporadic operations that alter
natural execution. This is frequent in control systems and in other devices used
e.g. in a production cell for aided manufacturing where there are only a few
operations to do, however there could be many exceptional situations. Since there
are many possible faults, the code for handling faults may be bigger than the code
for normal operations. This code could even be bigger than the available memory.
Moreover, inserting into an application every check for exceptional events makes
the application code more intricate and long. We propose a reflective approach to
reduce the memory used by Java applications for embedded systems and avoid
mixing application related and fault handling concerns into a class. Reflection
overcomes these problems, since it allows the code handling faults to be separated
from application classes, so that each can be loaded selectively, only when needed.

With a reflective approach, developers can structure systems by means of two
levels [8,4] (see section 2.1), one for the application and another one for concerns
such as faults handling [10], distribution [3], sinchronisation [14], etc. In our
approach, we separate applications from the code handling faults related with
hardware, such as memory overflow, wrong positions of robotic arms, overheated
physical devices, etc. This fault handling code can be considered independent of
application concerns and can be developed separately. Moreover, reflection allows
applications for embedded systems to be customised with new functionalities or
with the handling of exceptional conditions (either with an ad-hoc portion of
code, developed by the application designer, or with code that normally equips
embedded systems). As a further contribution we describe a novel reflective
mechanism, called Selective Reflective Behaviour, that we have developed to
reduce the overhead caused by reflective systems. This is especially useful for
embedded systems where CPUs are usually not very powerful, so their time
should not be wasted. By selectively trapping control from the application, the
overhead of reflective systems is paid only when some fault occurs. As explained
in section 5, this overhead amounts to two methods invocations (one is used to
determine which class can solve the fault and another to recover the state by
performing some operations) and a class loading (when the fault happens for the
first time).

1 This is helpful when real time features need to be inserted into the application since
it is only the operating system that handles them. This is a better solution than
submitting bytecode to the JVM where an additional scheduler is used.
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Fig. 1. Meta Object model

This paper is structured as follows. Next section introduces reflection and
proposes a new approach for reducing its overhead. Section 3 describes the pos-
sible work of a meta level for embedded systems. Section 4 expresses how we
have implemented a modified JVM supporting reflection. Section 5 shows a case
study that we have developed using our modified JVM. Finally, section 6 draws
some conclusions.

2 Supporting Reflection Efficiently

2.1 Reflection

Reflection is a programming paradigm whereby a system contains structures al-
lowing to observe and control itself [8,4]. A reflective system can be represented
by two levels: base level and meta level. The base level usually consists of an
application, whereas the meta level holds the code that enriches (in some way)
the application. The behaviour of object-oriented systems can be observed and
controlled by means of interception and inspection of methods and fields. Inter-
ception is the mechanism used by reflective systems to capture control when e.g.
methods of an object are invoked or fields are accessed. Inspection is the ability
to check the state and structure of objects and classes. The twofold ability of
intercepting and inspecting is called reification [1].

Reflection can be characterised by several models. In the Meta Object model,
which is the one we use, application objects are associated with meta level ob-
jects, which are object instances of a special class called Meta Object or of its
subclasses (see Fig. 1) able to intercept messages and so gain control before the
associated application objects [8,4].

Some reflective Java extensions (e.g. Javassist [2], Kava [15]) use bytecode
manipulation, either off-line or at load-time, to insert some statements into ap-
plication classes and so allowing control to jump to the meta level when some
operations are performed (e.g. a method of a class is invoked, an object is in-
stantiated, etc.). These implementations impose a certain amount of performance
degradation due to the handling of the meta level (bytecode manipulation, in-
stantiation of meta objects, jumps to the meta level, etc.). When a meta object
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has been associated with an object, it intercepts the operations performed on
the object, causing control to jump to the meta level. As a consequence, inter-
ception slows execution down and especially when, due to system conditions,
jumping to the meta level is useless this is considered an important drawback.
This overhead would be reduced if jumps to the meta level were only performed
when the work of the meta level was considered useful.

2.2 The Selective Reflective Behaviour

As said before, in the Meta Object model, messages sent to an application object
are intercepted and redirected to the associated meta object. Then messages go
from this meta object to an application object (the one invoked originally or
another one) or to an appropriate meta level object. Passing control to several
objects introduces some overhead.

A solution that we propose to limit this kind of overhead for reflective sys-
tems is what we call Selective Reflective Behaviour, which allows checking some
conditions before trapping control to the meta level. We have achieved this se-
lective reflective behaviour by modifying the version 1.2.2 of the Sun JVM2 (see
Fig. 2). The JVM is then able to decide when it is the case to enable intercep-
tion, thus limiting the number of jumps to the meta level and so the overhead
of reflective systems. This makes it possible to use reflective systems even in
embedded environments, where CPU time cannot be wasted.

This selective reflective behaviour is useful for any reflective system, since it
provides designers with means to set the degree by which interceptions have to
be performed. As explained in the following section, designers communicate to
the JVM when to intercept events by means of a file or a class annotation.

For embedded systems, we propose to use the meta level to handle hardware
faults, thus, in normal conditions, the jump to the meta level is unnecessary. In
2 An alternative implementation that we have produced to achieve this selective be-

haviour only modifies a JIT and is based on OpenJIT [9].
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this case, having a selective reflective behaviour is very useful, since in normal
conditions the JVM only invokes base level methods, avoiding the jump to the
meta level. This reduces the overhead by one method call and the reflective
system can be considered efficient for embedded systems. On the other hand,
when some events move the system from its normal conditions, jumps to the
meta level are enabled by the JVM. As far as memory use is concerned, in our
approach application classes are smaller, since they do not implement any fault
handling, which is instead implemented as meta level classes. These latter classes
are only loaded into main memory when some fault has occurred and therefore
in normal conditions the amount of memory used diminishes.

When developing software for embedded systems using the proposed ap-
proach, we can distinguish an application and a system designer. The application
designer provides application classes implementing only those operations that
have to be performed at run time, assuming that the execution does not meet
anomalous conditions. The system designer provides the meta level classes im-
plementing activities, unrelated to one particular application, that are necessary
to detect anomalous conditions and to recover the system from such conditions.
The system designer therefore specifies the conditions (for system variables) for
which jumping to the meta level is necessary. The application designer can pro-
vide additional conditions (typically depending on application variables) that
when satisfied determine a jump to the meta level. Moreover, the application
designer can implement new meta level classes handling faults that were not
considered by the system designer.3

Our use of the reflective mechanism could appear similar to the exception
handling mechanism, since when a fault or other exceptional events occur the
JVM executes a code handling the exception, however there are at least two
main differences. The exception handling mechanism is used inside the appli-
cation code by means of a try-catch block, instead when using the reflection
mechanism the application code is not modified, and all the operations han-
dling exceptional events are inserted into the meta level, which is detached from
the application. Therefore, the reflective mechanism allows applications to be
customised without being intrusive. Moreover, the reflection mechanism allows
designing smaller classes, since the code handling exceptions is outside them and
thus application classes for normal conditions take less time to be loaded and a
smaller amount of memory once loaded. This is important for embedded systems
where performance and memory are limited.

3 The Reflective Behaviour for Embedded Systems

3.1 Work of the Meta Level

Within the proposed meta level, the first operation would be to understand
the conditions that caused interception. As Fig. 3 shows, this is achieved by
3 Details on the meta level classes and their connection with application classes can

be found in section 5.
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a Monitoring meta object that checks the trapped object operation, the state
of the application and hardware. The check aims at determining how the fault
has to be handled and so the object that should receive control to recover the
system. We expect the related class to be loaded by the JVM from the local file
system, however it can also be downloaded from the network. Once this class
is determined, an instance is created and control is passed to it. The mapping
between anomalous condition and handling class is controlled by meta object
Monitoring and a class library, on the basis of checks given by the meta level
designer and of additional conditions that the application designer provides.

As an example, let us suppose that in a production cell a robotic arm has
reached a bad position, then as soon as the JVM receives control, it detects
such a condition and sends control to the meta level. The recovering code is
implemented as meta level class RecoveryArm that meta object Monitoring
knows and to which control is passed.

3.2 Enabling Interception

The selective reflective mechanism is activated whenever the JVM detects some
anomalous condition. The description of the check that reveals anomalous con-
ditions is inserted inside the JVM, however the application programmer can
provide an additional check list, by means of a XML file. This file, located in the
directory where application classes are found, describes: the conditions for which
the meta level is allowed to trap control, the meta objects that are associated
with application classes, and the operations that meta objects should trap.

In the XML file, we use the tag <MetaClass> to specify the name of the
meta object class. The inner tag <BaseClass> allows the meta level class to be
associated with an application class. Analogously, the tag <Interception> is
used to specify which fields and methods have to be intercepted; and the tag
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<Condition> allows expressing the conditions that enable the meta level to trap
control from the application (section 5 shows an example of such a file).

Being the XML specification separated from application and meta level
classes, it can be easily modified to allow new connections between base level
and meta level classes.

4 Modifying the JVM

The JVM needs extra information to support the selective reflective behaviour,
in order to choose the appropriate object to give control to at run time. This
extra information is organised as a list of system variables or application fields,
together with the values to be checked when a switch to the meta level has to be
enabled. Such a list, called selective list, includes system variables known
by the modified JVM and information taken from a file.

As Fig. 4 shows, the selective list is part of a mapping data structure that
allows the JVM to know for each class the corresponding meta object and the
operations to be trapped. Such a structure consists of: an association vector
that contains the association between application classes and their meta object
classes; a list of operations that have to be intercepted; the selective list
containing those conditions that have to be true to allow interception.

Because of its internal functioning, the JVM performs the check that may
allow jumping to the meta level quickly. When an application carries out a field
access or a method invocation (see lines from 4 to 17 in listing 4), the JVM
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searches for the location of the object in heap memory. At this point verifying
the values of the fields enabling interception is very simple and fast. The list of
conditions is then retrieved and if one condition is verified the method invocation
is substituted (see lines from 25 to 33 in listing 4). This substitution is easily
performed since the JVM holds the references to application objects and meta
level objects. It is only necessary to prepare the parameters of the method that
is actually called4.

Moreover, values inside the hardware system (temperature sensors, contact
sensor, etc.), or originated from the processing hardware (e.g. memory busy),
are easily accessed by modifying some parts of the JVM. Generally, JVMs are
implemented in C or C++ and by exploiting the features of these low level
languages, they can be modified to achieve fast access to the state of some hard-
ware devices. On the other hand, as Fig. 2 shows, Java applications cannot see
the operating system nor the hardware directly and so access to the underlying
hardware would be slow and difficult (except when an application uses JNI [13]).

4.1 Benefits When Modifying the JVM

The implementation of the Selective Reflective Behaviour can be efficiently
achieved by either modifying the JVM or the JIT. We have produced a modified
JVM, since the small amount of memory and the low CPU performance available
in embedded systems makes it inadequate to use a JIT.

Some authors have proposed to use a JIT for embedded systems [7]. With
such an approach instead of modifying the whole JVM, it would be possible to
have a JIT that provides an application with the selective reflective behaviour.
This allows the JIT to be completely removed when unnecessary, just by setting
an environment variable, thus avoiding to perform any additional check for those
applications that need so. We have implemented a modified version of OpenJIT
that provides applications with selective reflective behaviour. However, we think
that it is better to integrate this into JVMs for PCs.

By modifying a JVM to include reflective abilities, some significant benefits
are achieved with respect to other approaches. Firstly, for the set up, the JVM
needs only to instantiate some structures handling references to meta level classes
and objects. The timeframe for such a set up is much smaller than the time
needed to modify a class bytecode, which has to be performed each time a class
is loaded (this approach is adopted by Kava and Javassist). Secondly, at runtime,
switching to the metalevel is very fast, since control goes to the JVM whenever
an application object invokes methods or access fields. Inside the JVM, executing
a check to pass control to the associated meta object is faster then having two
invocations (one for the application object and one for the meta object) as it
happens with Kava and Javassist.

Finally, an ad-hoc version of the JVM could be installed into embedded
systems to enrich them with a better support. Having a non-standard JVM
4 The meta level method intercepting the call has a different list of parameters than

the trapped method.
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Listings 1.1. Modifications to ExecuteJava

should not be considered as a problem for these systems, since it is not expected
to have a previous JVM installed with configured libraries, etc. nor to have
applications that could be harmed by the inserted features (since applications
for these embedded systems are known, compatibility tests can be run a priori).
Moreover, applications are developed without using any feature of the modified
JVM, in fact they are unaware of modifications, thus they would properly work
on any JVM, given that faults are handled in another way.
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5 Case Study

After that we have described how the selective reflective behaviour works, we
use it for a case study in order to show how it can help the development of
applications for embedded systems.

In modern factories there are assembly lines that are fully managed by robots.
Each robot could be considered as an embedded system with its operating sys-
tem and the application that controls its movements. The work of the robot
is repetitive but many faults can occur and a software portion should handle
them. The selective reflective behaviour is useful to simplify the development
and maintenance of this software portion, thanks to the separation it enables
between application and faults handling concerns.

Let us consider an application consisting of some classes that control the
robot actions. The method classes are developed without needing to check the
conditions of the environment or the application itself, instead this work is del-
egated to the meta level. In normal condition, i.e. when no problems occur to
position arms, etc., the meta level is disabled and the application executes as
expected. When these conditions change it is necessary to execute some code
that handles the abnormal state and avoids malfunctioning.

In our example application, class Actions is dedicated to position the robot
and includes methods: moveArm(), to control the arm movements; and change-
Position(), to move the robot inside the production cell. These methods use
two fields, armPos and robotPos, that hold the coordinates of arm and robot,
respectively.

To handle the problems arising in exceptional conditions, a meta level is
connected to the application. This meta level holds a class Monitoring that
obtains control from the JVM when an exceptional condition is recognised. The
Monitoring class checks the state conditions and forwards a request to a repos-
itory server specifying an identifier for the fault. The repository server returns a
class able to handle the fault (see Fig. 3).

Listing 5 shows class Monitoring. This class implements the MetaObject
interface that consists of two methods, trapField() and trapMethod(), which
respectively intercept field access and method invocation. Two parameters are
passed to trapField(), which identify the name of the field and the reference
to the object from which control has been trapped. Method trapMethod() has
two parameters, which determine the name of the trapped method and an array
of objects, whose first element is the trapped object. The other elements of this
array are the parameters passed to the original method.

To activate the selective reflective mechanism a file with the conditions to be
checked is written. As shown in listing 5, in this file there could be different types
of conditions enabling interception. Some conditions are used to check the arm
position (expressed by means of tag <range>), which is given by a value inside the
application class (specified by means of tag <nameF>). Other conditions refer to
the memory and the CPU workload (expressed by means of tags <memoryFree>
and <workload>, respectively). The first and second condition enable a field
access to be intercepted, since they are specified within tag <field>, whereas
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Listings 1.2. Meta level class Monitoring

the third condition enables intercepting a method call, since it is specified within
tag <method>.

When the application executes, if one condition is true, e.g. the CPU work-
load for the embedded system is over 30 processes in the run queue, the JVM
on invocation of method moveArm() enables the reflective behaviour and pro-
vides control to trapMethod() of the Monitoring meta object. This meta object
analyses the system conditions and invokes the Repository to obtain a class to
handle the fault. Then control returns to the application and the meta level is
disabled until a condition is true again.

6 Conclusions

The approach that allows reflection for embedded systems that we have proposed
here provides at least three benefits. Firstly, application classes are not forced
to include code to handle exceptional events, thus their development is easier
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Listings 1.3. XML configuration file

than that in traditional approaches. Secondly, when the application is moved
into a new environment, it does not need to be modified to insert the code
handling possible faults. This allows moving an application in a new system in
a shorter time, whereas with the traditional approach, applications have to be
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reengineered to insert checks. Thirdly, when a class handling a fault condition
has to be changed, only the repository needs to be updated and the embedded
system could execute without stopping. This simplifies updating an application
and minimises downtime of the system.

The engineering approach that we have proposed reduces the effort when
developing applications. We have achieved this by separating applications and
fault handling by means of a novel reflective model. This separation can be
considered similar to the one found in Aspect Oriented Programming, where
components (which in our case are application classes) and aspects (code han-
dling faults) are developed separately and then connected by an ad-hoc compiler
called weaver. However, for the requirements of embedded systems, we needed
to selectively enable at run time the code handling faults. This is not possible
to achieve by simply using aspects that are always active. Moreover, we have
lowered the memory used by the application by extracting faults handling from
classes. The reflective mechanism ensures that this holds at run time, whereas
what the run time condition of the memory is when using aspects depend on the
implementation choices of the weaver used.
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