
”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 255

Looking for Class Records in the 3x+1 Problem
by means of the COMETA Grid Infrastructure

Giuseppe Scollo

Abstract—The design of a parallel algorithm for the subject
search on the Cometa Grid is presented. Known optimization
techniques of the basic algorithm are supplemented with novel
ones. These, and especially the higher performance enabled by the
64-bit architecture, outperform current implementations on 32-
bit machines by a rough 5 speed-up factor. This work introduces
the basic algorithm, its optimization techniques and their mathe-
matical underpinnings. The most novel aspect of this contribution
relates to the optimal integration of a new optimization technique,
called Acceleration, which shortens the delay computation time,
with known ones, such as Head cut-off, that stop delay computa-
tion at an early stage, under appropriate conditions. Seemingly,
these two kinds of techniques work on orthogonal aspects of the
computation, since Acceleration decreases the delay computation
time for any given trajectory, whereas Head cut-off decreases the
number of trajectories whose delay is eventually computed. So,
one might expect that optimal integration of these techniques
ought to result from their combination with parameter values
that are respectively optimal for each technique considered in
isolation. At a closer look, however, this expectation proves ill-
founded, because of actual interference between the techniques
in question. A key idea to obtain near-optimal integration of
Acceleration with Head cut-off is that of appropriately smoothing
the former in order to prevent the loss of information that would
harm the effectiveness of the latter. This is exposed in detail in this
work, together with time performance statistics out of a 5-month
search that has more than doubled the size of the search space
explored so far. The software is open source, written in standard
C++, but for a few scripts, mostly meant for job monitoring
and control on the Cometa Grid, and is going to be made freely
available on the PI2S2 Web in the GRID CT Wiki.

Index Terms—Collatz problem, class record, algorithm opti-
mization, parallel search, optimization interference.

I. INTRODUCTION

THE 3x+1 problem, also known as the Collatz problem,
and under several other names, concerns the behavior of

the iterates of the function which takes odd integers x to 3x+1
and even integers x to x

2 . The 3x+1 Conjecture asserts that,
starting from any positive integer x, repeated iteration of this
function eventually produces the value 1; or, in other words,
that it has the 1 → 4 → 2 → 1 cycle as (unique) attractor.

The 3x+1 problem is comprised of two distinct, separate
questions:

1) existence of eventually periodic reductions with a non-
trivial period (the aforementioned cycle being the trivial
one),

2) existence of reductions which would not be eventually
periodic.

G. Scollo is with the Department of Mathematics and Computer Science,
University of Catania, Catania, Italy, and with Consorzio COMETA, Catania,
Italy (e-mail: scollo@dmi.unict.it)

The Conjecture says that both questions have a negative
answer. The proof of both conjectures has turned out to be aw-
fully hard to find, in that it is affected by all difficulties which
one may expect from a purported chaotic behaviour of 3x+1
reductions. Paul Erdös held the view that “Mathematics is not
yet ready for such problems”. We refer the interested reader
to [1] for a detailed, historical account of the 3x+1 problem,
together with a comprehensive annotated bibliography on this
problem and its several extensions and generalizations, that is
maintained by the same author on arXiv [2], [3].

The present work does not aim at solving the 3x+1
problem—a positive answer is rather assumed. Subject of
interest here is the dynamical behaviour of the 3x+1 iteration,
and especially the computational challenge which arises when
one classifies the eventually periodic 3x+1 trajectories by
their finite transient length, also referred to as the delay of
a trajectory, and aims at finding minimal elements of delay
classes, referred to as class records. More precise definitions
of these and related concepts are as follows. Let f denote the
subject function, and fn its n-fold iterate, then the following
definitions refer to the (discrete) dynamics of iterated f :
• trajectory at (origin) x : the infinite sequence x=f0x,
f1x, f2x, . . . ;

• delay of (trajectory at) x : the smallestn such that fnx=1;
• delay class d : the set of those x which have delay d;
• class record (CR): the smallest member of a delay class;
• delay record (DR): an x such that every y <x has a lower

delay.
A couple of remarks are in place:
• every delay class is populated (2d is the largest member

of delay class d), so a CR exists in every delay class;
• every DR is a CR (by the definitions of these concepts),

but the converse does not hold (for example, 5 is the CR
of delay class 5, but it is not a DR, since 3 has delay 7;
the latter happens to be a DR).

The computational challenge posed by the CR search is not
just the trivial consequence of the fact that it will never end,
since not only the search space is infinite but also the search
target, that is the set of CR’s, is infinite. It rather consists of
a twofold aspect of the CR distribution:

1) exponential decay of their average density;
2) logarithmic growth of the average delay of trajectories.
The design of efficient, parallel algorithms for CR search is

addressed in [4], in connection with algorithms and program
optimization techniques for computing peak statistics of 3x+1
trajectories. A case of special interest is their concept of
“composite polynomial” or Vermeulen polynomial, whereby

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 256

several steps in a 3x+1 trajectory are computed by a single
expression, paying attention to guarantee that intermediate
computation values never exceed the final value. This is indeed
one of the ideas implemented in the parallel search program
running on the Cometa Grid, but our novel contribution con-
sists of an inductive definition of those polynomials, missing in
the cited work, that enables their generation at preprocessing
time.

The rest of this paper is organized as follows. The mo-
tivations for running the parallel CR search on the Cometa
Grid are exposed in Section II, while the basic parallel
structure of the search algorithm is presented in Section III.
The main technical content of the paper is put in Section
IV, which deals with the optimization techniques adopted to
get execution speed-up. Performance figures relating to the
explored search space are reported in Section V, together
with a brief discussion of performance testing experiments
aimed at empirical identification of optimal parameter values
for the aforementioned optimization techniques. The current
state of the search and the most significant results so far
obtained are summarized in Section VI. Finally, Section VII
gives an outline of future research perspectives and draws brief
conclusions from this experience.

II. DISTRIBUTED SEARCH OF CLASS RECORDS

A distributed CR search effort has been set up since quite
a few years by [5], who maintains a website with results
and status of the ongoing progress of that endeavour. This
has produced 2016 Class Records so far, exploring the search
space up to 60200·1012.

The present contribution arises as a follow-up of that effort,
and is primarily aimed at expanding the current rate of search
space exploration thanks to the computational power made
available by the Cometa Grid infrastructure, supplemented by
novel optimization techniques which are adjoined to those
already implemented in the software run by the aforemen-
tioned distributed search. Additional motivation for running
the parallel CR search on the Cometa Grid comes out of the
following facts.
• As of today, in order to join the 3x+1 distributed search

one is required to install a piece of software on a 32-bit
machine equipped with a proprietary operating system.
The author mostly works with a free one, and making
the other one available for such a job actually entails the
impossibility to use the machine for the daily work duties
in the meantime (because of a dual boot installation).
And, it’s no short time (of the order of 19 days, according
to the impact estimation on the 3x+1 search page [6]).

• The piece of software in question implements an exciting
series of beautiful tricks and optimizations to speed-up
the search, the most effective of which actually come
from clever exploitation of mathematical properties of
the subject function, see the enlightening technical details
in [7], for instance. However, for efficiency reasons the
software is written in C, with parts in 32-bit vendor-
specific assembler, which is of little use in a Grid of
64-bit machines.

• The efficiency gain afforded by trading off high-level
readability, in favour of low-level execution speed-up,
amounts to a factor of 5, according to the aforementioned
technical account. However, high-level algorithms are
more easily amenable to analysis and further improve-
ment, and the speed-up that may be obtained that way
is. . . unpredictable! So, maybe lower, maybe not. This
may offer some motivation to push the exercise beyond
its currently known limits.

• Programming methodology is of professional interest to
the author, paying attention to both efficiency and clarity
of design. In a parallel execution context, the aim at
finding optimal blends of both qualities becomes just a
bit more challenging.

III. BASIC ALGORITHM AND DAG PARALLELIZATION

The obvious approach to parallel search in the problem at
hand enjoys the simple structure of a Directed Acyclic Graph
(DAG) of parallel processes illustrated in Fig. 1, where no
interaction between concurrent processes is required—just a
little care in the merge of their outcomes does the job.

CR<M U

P(I)
1

CRC(I)
1

CRC(I)
k

CR<N

P(I)
k. . .

. . .

Fig. 1. DAG structure of CR parallel search

Each parallel process explores a given interval Ik of the
search space, referred to as its search slice, and yields a set of
CR candidates (CRC) in that slice, that consists of the lowest
elements in delay classes that happen to be populated in the
explored slice. Thus, if all CR’s below a given integer M
are known, the new CR’s above M and below N >M can
be determined by partitioning this search interval into any
convenient number of slices, then running the parallel search
processes on them, and finally selecting the best (i.e. lowest)
CRC found for each delay class that is not populated by any
number below M .

It is apparent that the algorithm depends neither on the size
of the search interval nor on the slice size, which are just
parameters of its execution. This fact may be conveniently
exploited to effectively manage the fairly frequent case that
some of the running processes fail to complete their search,
e.g. because of hardware or system failures at the Grid
computing elements (CE) hosting them. Most often the Grid
management system is able to re-allocate such processes (jobs,
in Grid terminology) to another available CE, but this entails
a restart of the computation (since no use is made of the Grid
checkpointing services). When a process failure is detected
at a time when most of the other processes have completed
their search, the Grid re-allocation mechanism would entail
doubling the total waiting time for the parallel search comple-
tion. This can be avoided by cancelling the restarted job and
then conveniently subslicing its missing slice and launching a
parallel search on it, thus by straightforward exploitation of a
space-time tradeoff.

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 257

IV. OPTIMIZATION TECHNIQUES

The computational engine of the CR search algorithm is the
delay computation function, which, for a given positive integer
x, yields its delay. The execution speed of this function is
performance critical, hence it is reasonable to take it as main
focus of optimization efforts. These give rise to two major
classes of optimization techniques:
• algorithm optimization
• program optimization
Algorithm optimization techniques do not depend on the

particular programming language chosen to implement the al-
gorithm, and generally deliver the most significant contribution
to execution speed-up. Effective programming techniques may
add on this, albeit usually by a lower factor; several such
“tricks” are implemented in the current version of the CR
search program running on the Cometa Grid infrastructure, but
they are not presented here, as the focus of the present paper is
on algorithm optimization. The main techniques of this class
adopted in the subject case study are presented below.

A. Sieving

The fastest computation is that which . . . need not run (it
only takes the time needed to decide that it need not run). In
the problem at hand, such a case occurs more often than not,
because of coalescence of trajectories, that is, their joining at
some common point. Coalescence analysis lowers the number
of trajectories that need actual delay computation by a near 6
factor, because of two main facts it brings to light:
• even CR’s and CR’s that are ≡ 2 (mod 3), respectively

are (1-step) predecessors and (2-step) successors of CR’s,
so they are easily derived from other known CR’s, hence
their delay need not be computed by the parallel search
processes;

• CR’s always fall outside certain congruence classes (see
below), hence positive integers in these classes, too, need
not be considered by the parallel search.

Sieving is precisely the technique whereby positive integers
on which the delay computation function is to be invoked
are first checked against filtering criteria, such as those which
follow from the aforementioned facts. The first of them is a
straightforward consequence of the CR definition, whereas the
second one needs a little more elaborated coalescence analysis.
This is best seen in a simple case first, and then characterized
generally.

As a basic example, it is easy to show that no CR falls in the
congruence class 5 (mod 8), except for the number 5 (which
is a CR), because, for all n> 0, the trajectories of 8n+5 and
that of 8n+4 coalesce at 6n+4 after the same number of steps
(3, in this case), hence they belong to the same delay class,
and therefore 8n+5 may never be a CR.

The coalescence situation just seen generalizes to congru-
ence classes (2k−2 + (k mod 2)(2k−1 - 1) (mod 2k), for k > 2.
A check against this formula, together with the check for
even or ≡ 2 (mod 3) numbers, would yield an exact factor
6 reduction of the number of positive integers passing the
check, but would be computationally expensive, and actually

inefficient because the fraction of sieved out integers rapidly
decreases with increasing k. It is thus far more efficient to be
content with a finite, bounded approximation of the sieving
criterion, say up to k = 18, that can be efficiently implemented
by a pre-computed binary sieve.

B. Tail cut-off

An easy way of shortening the delay computation time is
that of factoring out the values yielded by the delay computa-
tion function for positive integers below a given threshold. All
trajectories leading to 1 (veritably all, thus) sooner or later fall
below 2t, for any given, fixed t. Delay computation may thus
get quicker by storing the delay values D(n) for all n< 2t,
and then adding D(n) to the partially computed delay of x as
soon as the trajectory starting at x reaches such an n.

The higher the value of the Tail cut-off parameter t, the
greater the computation time saving, provided t is not too
high. For, the storing of pre-computed delay values costs some
memory, of course; when the size of this grows beyond a limit
that depends on the available cache memory size, then fetching
the value of D(n) becomes slower, for it may entail a so-called
minor page fault, that is, a cache update. In the present case,
the choice of an optimal value for t also depends on other
optimization parameters, hence the discussion of this subject
is postponed until after the introduction of Acceleration and
smoothing.

The amount of memory needed for Tail cut-off may be
halved by only storing the values of D(n) for 2t−1≤n< 2t,
as it is done in the distributed search algorithm [7], or, as
it is done in the Cometa search algorithm, by only storing
the values of D(n) for all odd n< 2t. The latter proves more
convenient in the present case, for it is compatible with the
adoption of the Acceleration technique for delay computation,
that is introduced later below.

C. Head Cut-Off

Among the delay computations which do start, because the
trajectory starting point passes the Sieving check, the fastest
ones are those which . . . need not finish. This is determined
by using available data about Delay Records (DR), according
to the following reasoning.

Let us say that two DR’s are consecutive if there is no DR
in between them. Let now x1<x2 be a pair of consecutive
DR’s; then x<x2 =⇒ D(x)≤D(x1), by DR definition. One
may use this fact to stop delay computation of “hopeless”
trajectories ahead of time, where a trajectory is hopeless if
it becomes evident that it cannot be that of a CR. This is
determined as follows.

Assume all CR’s below M are known, and let u be the low-
est delay class whose CR is not below M . Then x≥M may
only be a CR if its delay is at least u. Now, if the trajectory of
x falls below x2 after d steps, then D(x)≤ d+D(x1), hence
if d+D(x1)<u, then x cannot be a CR—its trajectory is
hopeless. Equivalently, this is detected whenever the trajectory
of x falls below x2 after d<u –D(x1) steps. The higher DR
in the pair is thus a threshold against which the value reached
by the trajectory is compared, whereas the delay of the lower

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 258

DR in the pair, together with u determine until when, in terms
of steps from the starting point, the comparison is applicable.

The combined action of Head cut-off and Tail cut-off
is illustrated by the staircase-shaped sequence of thresholds
in Fig. 2, where the lowest threshold is that of Tail cut-
off, whereas the preceding ones refer to Head cut-off. If a
trajectory reaches the Tail cut-off threshold with no previous
crossing of the staircase, then the delay computation completes
successfully and the function yields the computed delay value,
otherwise the computation stops at an earlier stage.

2
t

x
2

2
y

u − D(x)
1 1

u − D(y) d

x

X

Fig. 2. Head and Tail cut-off of 3x+1 trajectories

An interesting virtue of the Head cut-off technique is that it
inherently features progressive self-optimization of the search
algorithm, in two respects. First, the progress of the CR search
eventually leads to discovery of the CR for the lowest delay
class with unknown CR; this event enables one to raise the
value of u, thereby getting a higher cut-off rate (the staircase
in the picture gets a horizontal stretching). Second, albeit less
frequently, the progressive rise of u eventually enables the
admission of a new, higher pair of consecutive DR’s, thereby
getting earlier cut-offs (the staircase is extended on the left by
a new, topmost threshold).

131 DR’s are known to date, but not all 130 pairs of
consecutive DR’s prove useful to effective Head cut-off. In
the first place, the highest DR’s have higher delays than u,
which is the delay of the lowest delay class with unknown
CR, and thus yield a negative upper bound on d. Furthermore,
the Head cut-off test has a computational cost of its own,
whereby not all pairs of consecutive DR’s pay this off by an
actual performance gain.

Actually, in the present case, the effectiveness of the selec-
tion of consecutive DR pairs for Head cut-off is also affected
by the concurrent adoption of other optimization techniques,
viz. Acceleration and smoothing, which make parsimonious
sizing of the threshold sequence more cost-effective, as it is
argued later below.

In conclusion, careful selection of the most effective pairs
is a basically empirical task, also because the effectiveness
of any given selection of DR pairs for Head cut-off varies
with the search interval at hand. Intervals currently searched
by the Cometa Grid lie in the neighbourhood of 257, and a
sequence of seven pairs of consecutive DR’s is employed for
Head cut-off, see Section V below.

D. Acceleration

A small acceleration of delay computation comes from
replacing the function f with T , defined as f on the even
numbers, whereas for odd x one has

Tx = 3x+1
2 = x+ dx

2 e (1)

Clearly, if the T -trajectory from x to 1 has O applications of
this rule and E applications of the halving rule, then

D(x) = 2O + E (2)

The interest in T comes from the existence of a permutation
of the residues (mod 2k), defined by the k-prefix of the so-
called parity vector of T -trajectories, viz. the binary sequence
v(x) = (vi(x) |i ∈ N) defined by

vi(x) = (T ix) mod 2 (3)

The k-prefix of v(x) only depends on x mod 2k, hence so
does the selection of the applicable rule in the first k steps of
the T -trajectory starting at x. Thus one may define 2k distinct
k-step composites of T , and decide which applies to x by only
looking at x mod 2k. It takes little effort to see that all such
composites are linear functions of x. For odd x, which is the
case of interest here, let

r = bx
2 c mod 2k−1 (4)

It is computationally convenient to express T -derivatives of
x as follows, because intermediate computation values never
exceed the final value:

T kx = 3t1(k,r)b x
2k c+ t0(k, r) (5)

where t1(k, r) is the number of applications of rule 1 in the
first k steps of the T -trajectory starting at x whenever equation
4 holds, and for 0 ≤ r < 2k−1, t1(k, r), t0(k, r) are defined
by induction on k as follows:

k = 1 :
t1(1, 0) = 0 (6)
t0(1, 0) = 2 (7)

k > 0 : for 0 ≤ r < 2k−1, let r′ = r + 2k−1 :
if t0(k, r) ≡ 1 (mod 2)

then
t1(k + 1, r) = t1(k, r) + 1 (8)

t0(k + 1, r) = t0(k, r) + t0(k,r)+1
2 (9)

t1(k + 1, r′) = t1(k, r) (10)

t0(k + 1, r′) = 3t1(k,r)+t0(k,r)
2 (11)

else
t1(k + 1, r) = t1(k, r) (12)

t0(k + 1, r) = t0(k,r)
2 (13)

t1(k + 1, r′) = t1(k, r) + 1 (14)

t0(k + 1, r′) = 3(3t1(k,r)+t0(k,r))+1
2 (15)

fi

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 259

An efficient implementation of this technique consists in
fixing an optimal value for the acceleration parameter k, and
then storing the pre-computed values of t0(k, r) and t1(k, r)
in 2k-sized arrays, as well as the few needed powers of 2
and 3 in constant arrays, so that the value of T kx may be
computed at runtime just by quick table look-up, using the
value of r as index to the arrays in question, and by the few
simple operations thereafter involved in the computation of
T kx by means of Equation 5.

The value of r also determines the delay increment δk(r) to
be ascribed to a k-accelerated delay computation step. Another
2k-sized array to store this is not needed, though, since it may
be simply computed as follows:

δk(r) = k + t1(k, r) (16)

An upper bound to the value of k comes from the machine
word size, but for a 64-bit architecture the optimal value for
k is usually well below that, as it is determined by the cache
size, and may be easily determined by empirical testing. In
the present Cometa implementation of the algorithm, k = 14
proves optimal. Furthermore, just as it happens with ordinary
mechanical vehicles, truly optimal driving through the ups
and downs of the subject trajectories needs brakes besides
acceleration, as we are going to see.

E. Interference and smoothing

Head cut-off and Acceleration improve the time perfor-
mance of the algorithm by acting on orthogonal aspects of
the computation; the former drastically decreases the num-
ber of trajectories whose delay is eventually computed, the
latter decreases the delay computation time for any given
trajectory. So, one might expect that optimal integration of
these techniques ought to result from their combination with
parameter values that are respectively optimal for each of
them considered in isolation. At a closer look, however, this
expectation proves ill-founded, because of actual interference
between the techniques in question. Fig. 3 illustrates the
problem, which arises whenever the trajectory gets across the
Head cut-off threshold in between the start and target points
of an accelerated computation step, both of which stay above
the threshold. Clearly, in such cases the cut-off opportunity
is missed, hence the computation goes ahead—hopeless albeit
fast.

x
2

1
u − D(x) d

x

Fig. 3. Interference of Acceleration on Head cut-off

Basically, the problem arises owing to the loss of informa-
tion brought by Acceleration; one may recover that much of
this which is needed in order not to harm the effectiveness of
Head cut-off, by suitably smoothing the Acceleration mecha-
nism. The idea is to shorten the Acceleration extent for those

composites which may cause interference, and only when the
start point of the accelerated step is close enough to the Head
cut-off threshold. In the smoothened variant, the Acceleration
parameter k is to be taken as the maximum value that the
acceleration extent may take, rather than as a fixed one—as it
happens in the unsmoothened variant.

A fine grain discrimination between those composites that
may interfere with Head cut-off, and those which may never
do so, is a basic smoothing tool. The discrimination criterion
is whether or not does the “local” trajectory, that is in between
the start and end points of an accelerated step, ever fall below
the step starting point x. This only depends on x mod 2k,
hence, for odd x, on the value of the r index as specified
in the previous section. Static discrimination is thus feasible.
Note that the present discussion also applies to Tail cut-off,
therefore we shall use the generic “cut-off threshold” term to
refer to both cases.

The next aspect of effective smoothing is a decision criterion
about when, precisely, should one consider the start point of an
accelerated step to lie “close enough” to the cut-off threshold
as to apply smoothing. This is a somewhat more complicated
question, since the answer depends not only on the r index
but also on some “distance” between the local trajectory and
the cut-off threshold. Equation 5, together with the subsequent
inductive definition of its parameters help the effective solution
of this question, as follows.

Let h be the number of halvings that occur in the local
trajectory from a start point x, of which only the r index
as given by Equation 4 need be known, to a chosen local
minimum point in it below the start point (the choice of
the local minimum, when more than one exist in the local
trajectory, will be discussed in a short while; for the time
being, assume that there is a criterion to make such a choice).
Thus, h only depends on r, hence so does t1(h, r) as in
Equation 5, with h substituted for k.

The definition of T entails Thx> 3t1(h,r) x
2h , so one may

check this lower bound against the cut-off threshold, and
thereby consider the local trajectory to be close enough to
that threshold, say ϑ, whenever 3t1(h,r) x

2h ≤ϑ. This may be
rewritten as the condition

x≤ 2hϑ

3t1(h,r)
(17)

where the expression at the right hand side only depends on
r and the cut-off threshold ϑ. It may thus be pre-computed
and coded into an array of constants, to speed-up the runtime
check. Some care is needed in the implementation of this
mechanism, for these constants need two 64-bit words, hence
the subject expression is to be evaluated in 2-word arithmetic.

Finally, a minor yet interesting design choice arises about
the shortening of the acceleration extent when the local
trajectory of unsmoothened acceleration features more than
one local minimum points below the start point. Two options
naturally surface: either strong smoothing, which means short-
ening to the first local minimum below the start point, or weak
smoothing, that is, shortening to the lowest such minimum.
The former favours Head cut-off (no loss of potentially useful
information), the latter favours Acceleration. The difference in

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 260

terms of performance is likely to be hardly significant, yet the
question is to be settled. The present algorithm features weak
smoothing, according to the following analysis.

Assume the local trajectory features a local minimum below
the start point, and a subsequent lowest minimum point. If
both of them fall below the cut-off threshold, then there is no
performance difference between the two smoothing options,
whereas if both of them fall above the cut-off point, then
weak smoothing affords the obvious performance gain of
saving a computation step. Assume now that only one of the
two aforementioned minimum points falls below the cut-off
threshold. This may happen in two distinct ways. First, the
former point lies above the cut-off threshold whereas the latter
falls below it. In this case, the loss of information by weak
smoothing is harmless, since the cut-off takes place at the
lowest minimum anyway. The performance gain is again that
of saving a computation step to reach this point. In the second
case weak smoothing incurs in a performance penalty; this
happens because strong smoothing stops the accelerated step at
the first local minimum, but the additional delay between this
and the lowest minimum (that where weak smoothing would
put the stop) causes an edge fall-out of the (Head) cut-off
threshold itself, with loss of the cut-off opportunity. Such a
case thus seems to be rare, because of the limited extent of
acceleration, which entails that the situation just described is to
happen in a very narrow region around Head cut-off edges—
which are not that many, by the way.

V. PERFORMANCE FIGURES

The contribution by Tail cut-off to performance becomes
lower and lower with the upward shift of search intervals,
since the fraction of trajectories that manage to reach the
lowest threshold becomes smaller and smaller, and it is of
no significance at the current search level, which just reached
257. Tail cut-off cannot be disposed of, though, because it
plays a useful role to ensure correctness of delay computation
in the presence of Acceleration. As a matter of fact, careless
application of the latter technique to a very low number might
yield an excessive delay increment, corresponding to the case
where the multi-step trajectory of the accelerated derivation
step would go through the bottom number 1 more than once.
Tail cut-off prevents this from possibly happening, provided its
threshold is set to an adequately high value. With smoothing,
the situation is a bit different. Strong smoothing provides an
alternative solution to the problem, hence Tail cut-off could
be disposed of. With weak smoothing, on the contrary, the
problem persists, hence Tail cut-off is kept in. If k is the
Acceleration factor (i.e., the maximum number of halving
steps in an accelerated computation step), then the safety Tail
cut-off boundary is 2k−3 (only delays of odd numbers are
stored in the tail). The lowering of the Tail cut-off boundary
to the minimum needed for safe Acceleration frees cache
memory, which may be utilized to get computation speed-up
by an optimal combination of higher Acceleration factor and
coarser Head cut-off, that is, smaller set of cut-off points. Why
does the latter yield speed-up may be explained as follows.

The by far most memory-hungry data structures are those
for acceleration smoothing; with acceleration factor k, if w is

the number of head cut-off points, then two arrays of constants
are needed, each of size 2k−1×(w+1) entries (since the tail
cut-off point is also to be taken into account), respectively
holding the lower and upper word of 2-word constants for the
smoothing check expressed by condition 17. Reducing the size
of the cut-off set thus delivers speed-up because it saves cache
memory. The following 7-sized cut-off set, with k = 14, has
emerged as optimal from extensive experimentation:

{1958, 1919, 1874, 1662, 1443, 1255, 1050}

where each cut-off point is actually represented by the delay of
the lower DR in the pair of consecutive DR’s that determines
the cut-off point, as already explained.

The very near-to-linear progression of the optimal cut-off
point delays is quite striking. The relatively closer distance of
the highest points can be explained by their being fairly close
to the current search numbers—a kind of “optical distortion”,
so to say. In the (very) long run, it is natural to expect the
two highest points to get replaced by the 2090 DR, and later
supplemented by the 2254 DR, both fairly aligned with the
linear progression of the previous five DR delays in the set.

Table I summarizes the outcomes of a performance testing
experiment, made with a search slice of size 234 placed near
3×255. For some of the listed values of the cut-off set size w, a
choice of various cut-off sets of that size were tested, and the
performance figure reported is the best outcome out of that
choice. Each row in the table refers to a fixed value of the
Acceleration factor k. Performance figures are the measured
CPU time in seconds, rounded up to the next integer. Scaled
up to a 244-size search slice, which is the current typical
size in the Cometa search, the optimal (k,w) combination
measure from this experiment yields an expected CPU time
of approximately 69 hours.

TABLE I
SAMPLE PERFORMANCE FIGURES

k \ w 16 15 11 9 8 7 6

13 273 255 253 253 253 250 262
14 278 292 260 257 250 243 254
15 335 473 283 280 256 246 255

Current search intervals, however, have reached 257, and the
average CPU time measured is higher than that. Parallel search
intervals of size 249 are currently explored, and for each of
them the average CPU time spent by the 32 processes explor-
ing its 244-size slices is recorded. Over the latest 41 search
intervals completed, these average values lie in the range of 85
to 103 hours. Although well above the expected, these values
are still significantly below those measured before running
the experiment, typically above 130 hours, with Acceleration
factor 10 and a set of 16 cut-off points.

Table II summarizes measured statistics, viz. average CPU
time and standard deviation ranges, from the 3x+1 CR search
carried out in the Cometa Grid to date. The following con-
ventions are adopted. Each row refers to a group of parallel
search intervals processed by the same program version and
with the same optimization parameter values. The program

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 261

version is displayed in the first column, for later reference. The
subsequent two columns tell which intervals do the statistics
refer to, as follows. Each parallel search interval s lies in
search space [2a, 2a+1[, with a displayed in the first of
the two columns. Two search spaces are considered, each
partitioned into 128 equally sized search intervals, thus of size
248 for a= 55, whereas of size 249 for a= 56. Parallel search
intervals are numbered starting with 0, and these identification
number ranges are displayed in the second of the two columns.
Regardless of the difference in interval size, the statistics refer
to the same slice size in both search spaces, that is 244. The
average CPU time and its standard deviation are measured, in
seconds, over the slices of each interval, and their ranges are
reported in the fourth and fifth column, respectively.

TABLE II
CPU TIME PERFORMANCE STATISTICS

v a s average s.d.

1.14 55 72–80 [569952–576030] [56–1744]
2.01 55 81–90 [572932–586710] [94–2299]
2.02 55 91–127 [541567–570129] [196–2437]
3.01 56 0–3 [530877–531419] [521–733]
3.02 56 4–40 [445088–476148] [398–3465]
6.01 56 41–48 [288959–342423] [7050–43040]
6.02 56 49–86 [310918–449557] [15308–167909]
6.03 56 87–127 [304797–369236] [20203–69636]

The progressive self-optimization afforded by Head cut-off
is apparent in the downward trend of the average CPU time
statistics, from each version to the next one. This is best
appreciated if it is taken into account that, for each group
of parallel search intervals sharing the same program version,
the average CPU time actually features an upward trend, with
the upward shift of search intervals; proper comparison of its
values for different, adjacent groups should relate its highest
value in the lower group with its lowest value in the higher
group. This is also apparent from the following case.

Most program versions referred to in Table II only differ
in their Head cut-off parameter values, most often just the u
parameter value, that is the delay of the lowest delay class with
unknown CR. In one case it happened that the same parallel
search interval was explored twice, by different program
versions; viz. search interval 4 for a= 56 was explored with
program versions 3.01 and 3.02, which differ both by the value
of the u parameter (1964 vs. 1985) and by the introduction
of a new, topmost Head cut-off point (with delay 1958 for
the lower DR in the new pair), that nearly doubled the highest
Head cut-off threshold. Table III lists the CPU time data by the
two program versions, for all 32 slices in the subject interval.

A major performance breakthrough, visible in Table II, is
brought by the version switch from 3.02 to 6.01. This was pre-
ceded by extensive performance testing, of which the sample
performance figures reported in Table I are an outcome out of
many. Besides algorithm optimization, program optimization
techniques were deployed. However, the performance gain
obtained in terms of average CPU time is accompanied with
an increase of its standard deviation by an order of magnitude.
This poses a serious management problem, for a low-variance

TABLE III
CPU TIME BY DIFFERENT PROGRAM VERSIONS

slice v. 3.01 v. 3.02

56/4/00 531385 443589
56/4/01 531573 445001
56/4/02 531360 444016
56/4/03 531187 444668
56/4/04 531577 443721
56/4/05 531253 444551
56/4/06 532025 443778
56/4/07 531321 443921
56/4/08 531214 445401
56/4/09 532452 444108
56/4/10 532710 444306
56/4/11 532672 445743
56/4/12 533140 446347
56/4/13 532595 444971
56/4/14 532893 445274
56/4/15 533559 444745
56/4/16 532555 445647
56/4/17 532387 444211
56/4/18 532481 444729
56/4/19 532438 444380
56/4/20 532468 444905
56/4/21 533638 445218
56/4/22 532413 445549
56/4/23 532946 446429
56/4/24 532229 445786
56/4/25 532388 446885
56/4/26 532547 445735
56/4/27 532369 446192
56/4/28 532894 445847
56/4/29 532642 445716
56/4/30 532309 445841
56/4/31 532334 445616

distribution of job execution times proves much easier to
handle than a high-variance one. In practice, the risk is that one
has got to trade off job management time for CPU time, which
is not necessarily an optimal state of affairs. Research is under
way [9] to explore means of, at least partially, automating the
job management task in such conditions.

VI. STATE OF THE SEARCH AND RESULTS

The CR search up to 257 has been just completed while
polishing this paper. The CR search by the Cometa Grid started
on 25 september 2007, from 255 + 72 · 248, that is where the
distributed search [6] had arrived at, at the time. As of today,
after five months, the explored search space has thus been
more than doubled. Here is a summary of the search outcomes.

51 new CR’s have been found, listed in Table IV together
with their discovery dates. Commas are inserted in the CR
values in Table IV, to improve readability. Notes in the
rightmost column apply to a few of these CR’s. Two of them
also are Delay Records, and one of these is even a Strength
Record (SR), which is a very rare occurrence; indeed, this is
the fifth nontrivial SR known to date, see [5] for the definition

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 262

of this concept. Finally, three CR’s are marked as “surprise!”,
meaning that each of them is lower than the best candidate
known, for that delay class, until the CR discovery.

VII. FUTURE PERSPECTIVES AND CONCLUSIONS

With the CR finding for delay class 1988, all CR’s with
delay below 2000 have been found. The current lowest delay
class with unknown CR is 2009, and the best candidate known
for it to date is 154721,874239,208551, not very far away from
current search intervals. Thus, another small self-optimization
instance of the CR search algorithm is in sight. It will be
small because of the subsequent lowest class with unknown
CR is 2017, with 181276,570919,731903 as best candidate
(pretty farther away); so, unless some surprise would show
up, it will take a while before further self-optimization, and in
the meantime performance is expected to gradually get worse.

In the medium-long term, a program optimization challenge
is in sight. The current implementation of the CR search
algorithm exploits the fact that, for numbers below 259, peak
values in their trajectories are guaranteed to stay within the
representability boundaries of two 64-bit words, see [8] for de-
tails, hence 2-word arithmetic suffices. The challenge consists
of checking numbers above 259 for possible need of trajectory
computation by 3-word arithmetic, and then computing that
way. Recent findings, reported by the same cited source, may
enable one to raise the 259 boundary up to 261. This would
defer the challenge from medium to long term.

Finally, the last (but not least!) motivation mentioned in
Section II sets the ground for the concluding remark out of
this experience. While the algorithm implementation has been
extensively tested, and its mathematical background firmly
established, its documentation is not yet sufficiently complete
to allow one to publish the software, especially for educational
purposes. This is of utmost importance, however. The present
paper is a first step in this direction, and progress toward this
goal is planned for the near future.

ACKNOWLEDGMENTS

This work makes use of results produced by the
PI2S2 Project managed by the Consorzio COMETA, a
project co-funded by the Italian Ministry of University
and Research (MIUR) within the Programma Operativo
Nazionale “Ricerca Scientifica, Sviluppo Tecnologico, Alta
Formazione” (PON 2000-2006). More information is available
at http://www.pi2s2.it and http://www.consorzio-cometa.it.

REFERENCES

[1] J. Lagarias, The 3x+1 problem and its generalizations, Amer. Math.
Monthly 92 (1985) 3–23,
http://www.cecm.sfu.ca/organics/papers/lagarias.

[2] J. Lagarias, The 3x+1 Problem: An annotated bibliography (1963–2000),
preprint on arXiv, v. 9, http://arxiv.org/abs/math/0309224v9.

[3] J. Lagarias, The 3x+1 Problem: An Annotated Bibliography, II (2001-),
preprint on arXiv, v. 2, http://arxiv.org/abs/math/0608208v2.

[4] G.T. Leavens and M. Vermeulen, 3x+1 search programs, Computers Math.
Applic. 24:11 (1992) 79–99.

[5] E. Roosendaal, On the 3x+1 problem, http://www.ericr.nl/wondrous.
[6] E. Roosendaal, The 3x+1 class record search,

http://www.ericr.nl/wondrous/search.html.

[7] E. Roosendaal, Technical details,
http://www.ericr.nl/wondrous/techpage.html.

[8] E. Roosendaal, 3x+1 Path Records,
http://www.ericr.nl/wondrous/pathrecs.html.

[9] A. Sortino, Metodi di controllo dei job nelle griglie computazionali,
Graduation Thesis, University of Catania, CdL Informatica Applicata
(2008).

”GRID OPEN DAYS AT THE UNIVERSITY OF PALERMO”, PALERMO (ITALY), 6-7 DECEMBER 2007 263

TABLE IV
CLASS RECORDS BY THE COMETA SEARCH

date delay CR note

26/09/2007 2036 57464,478811,199374
30/09/2007 1974 58895,046121,751303
03/10/2007 2005 59962,029694,389913
06/10/2007 2049 60538,710187,930201
06/10/2007 1925 60614,485209,289967
14/10/2007 2018 61364,655839,889179
14/10/2007 1987 62098,509011,513287
06/11/2007 2031 64647,538662,599297
10/11/2007 1969 65925,324859,522411
10/11/2007 2000 67457,283406,188652
16/11/2007 2044 68106,048961,421476
16/11/2007 2013 69035,237819,875326
25/11/2007 1951 69520,368888,759751
25/11/2007 2088 70178,545269,601727
25/11/2007 2057 71749,582444,954311
25/11/2007 1982 72035,683012,370407
29/11/2007 1995 72230,523319,648959 surprise!
30/11/2007 2026 72728,480995,424210
01/12/2007 1964 74165,990466,962713
08/12/2007 2008 77664,642547,359743
09/12/2007 2083 79243,106410,450031
09/12/2007 2052 80718,280250,573601
24/12/2007 2021 81819,541119,852238
28/12/2007 1990 82798,012015,351049
28/12/2007 2065 85036,542156,982887
28/12/2007 2034 86196,718216,799062
01/01/2008 2003 89537,042605,047835
01/01/2008 1985 90712,689753,202855
01/01/2008 2047 90808,065281,895300
06/01/2008 2016 91687,036586,197659 surprise!
07/01/2008 2091 93571,393692,802302 DR #130
09/01/2008 2060 95666,109926,605759
10/01/2008 2029 96971,307993,898946
14/01/2008 2055 103144,236075,381231
14/01/2008 2011 103147,916159,472367
14/01/2008 2254 104899,295810,901231 DR #131, SR #5
14/01/2008 2086 105267,817904,402591
15/01/2008 2024 109092,721493,136316
04/02/2008 2068 111123,844639,969023 surprise!
10/02/2008 2006 116496,963821,039615
17/02/2008 2081 118864,659615,675047
17/02/2008 1988 120950,253004,270473
17/02/2008 2050 121077,420375,860401
18/02/2008 2019 122729,311679,778358
18/02/2008 2094 124761,858257,069737
20/02/2008 2063 127554,813235,474331
22/02/2008 2032 129080,227221,222247
25/02/2008 2107 131436,360962,180463
26/02/2008 2014 135001,531283,304447
26/02/2008 2089 140357,090539,203454
26/02/2008 2058 142798,650831,013915

