

Uncertainty in Neural Networks, Out of Distribution Detection

Angelo Bosco STMicroelectronics - Artificial Intelligence Software & Tools Group Seminar at Catania University - June 13, 2024

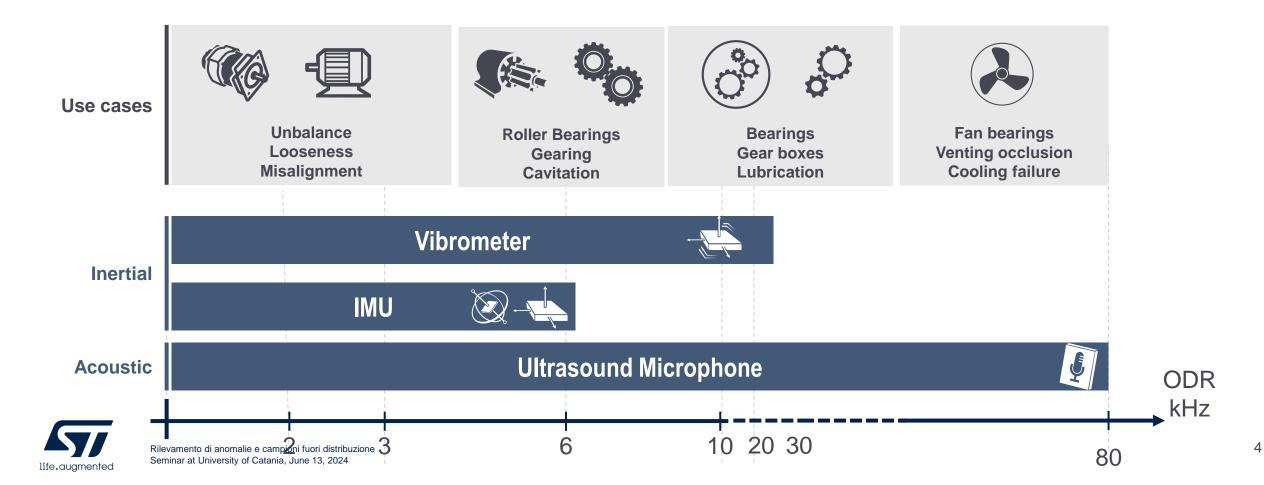
Introduction: Anomaly Detection

Dynamical Systems

Dynamical System	A system that evolves over time. It consists of: State space : which represents all the possible states of the system. State vectors can be high dimensional. Rule: that describes how the system's state changes with time.	 ★ - ★ 50
Time Scales of a DS	Rate at which significant changes occur within the system	, minutes, seconds, ms,
Fast Dynamics	Changes happen over short time intervals. In a mechanical system: vibrations or rapid oscillations.	
Slow Dynamics	Changes over long time intervals: gradual wear and tear of mechanical components.	(Inertial Measurement Unit) Choose appropriate acquisition settings

Choosing the appropriate sensor

• The appropriate (set of) sensor(s) must be chosen depending on the equipment being monitored, acquisition parameters depend on the system being monitored.



Accelerometer Settings

Accelerometer LSM6DSM (for smart phones with OIS / EIS and AR/VR systems)

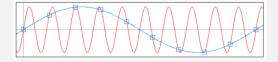
Key Settings ODR (Output Data Rate); Full Scale Range; Power Mode (Low, Normal, High Perf.)

ODR_FIFO_[3:0]	Configuration ⁽¹⁾
0000	FIFO disabled
0001	FIFO ODR is set to 12.5 Hz
0010	FIFO ODR is set to 26 Hz
0011	FIFO ODR is set to 52 Hz
0100	FIFO ODR is set to 104 Hz
0101	FIFO ODR is set to 208 Hz
0110	FIFO ODR is set to 416 Hz
0111	FIFO ODR is set to 833 Hz
1000	FIFO ODR is set to 1.66 kHz
1001	FIFO ODR is set to 3.33 kHz
1010	FIFO ODR is set to 6.66 kHz

the TIMER PEDO FIFO DRDY bit of FIFO CTRL2 (07h) are set to 0.

	LA_So	Linear acceleration sensitivity ⁽²⁾	FS = ±2 FS = ±4 FS = ±8 FS = ±16	0.061 0.122 0.244 0.488	mg/LSB
Full Scale	G_So	Angular rate sensitivity ⁽²⁾	FS = ±125 FS = ±250 FS = ±500	4.375 8.75 17.50	mdps/LSB
Range (FS)			FS = ±1000 FS = ±2000	35 70	

- ODR is the Sampling Rate of the accelerometer
- A digital signal must be sampled at least twice as its original bandwith (Nyquist Theorem).
- In industrial applications 2.56x is often used.

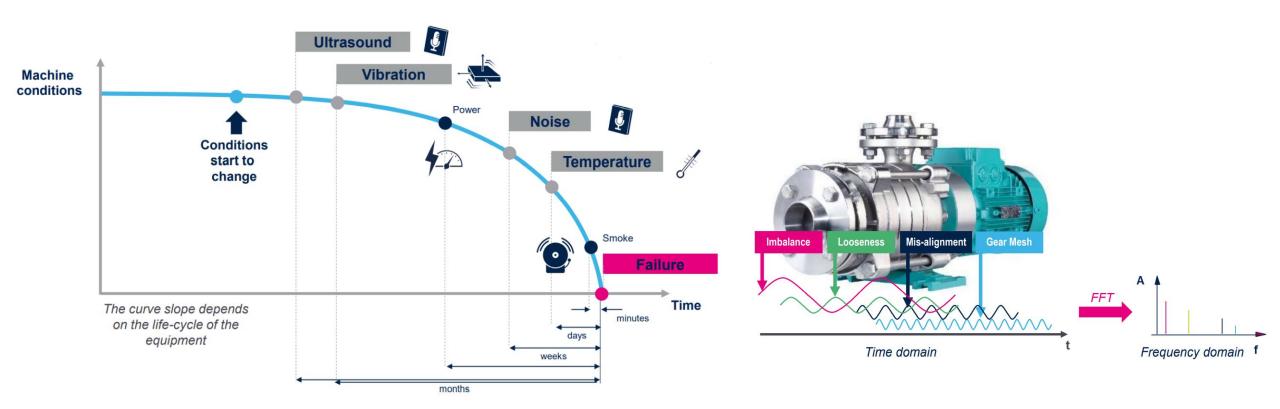


- Maximum range of acceleration it can measure in any given axis
- · expressed in units of 'g'

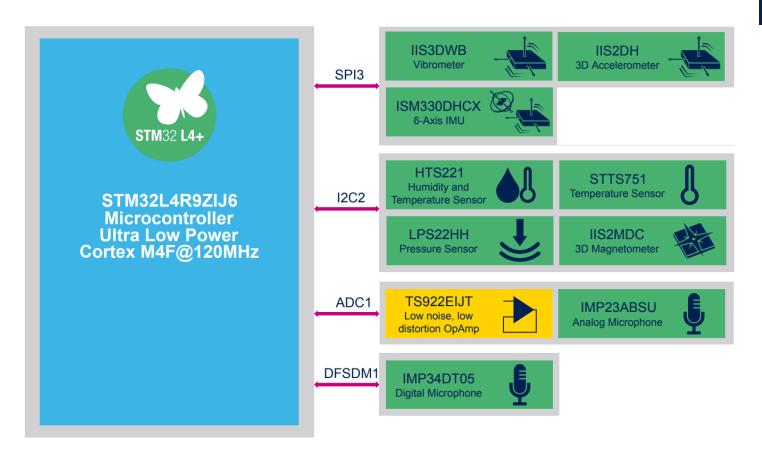
Increasing FS lowers the sensitivity; reduces signal clipping in case of strong accelerations

ODR

Machine Condition and Sensing



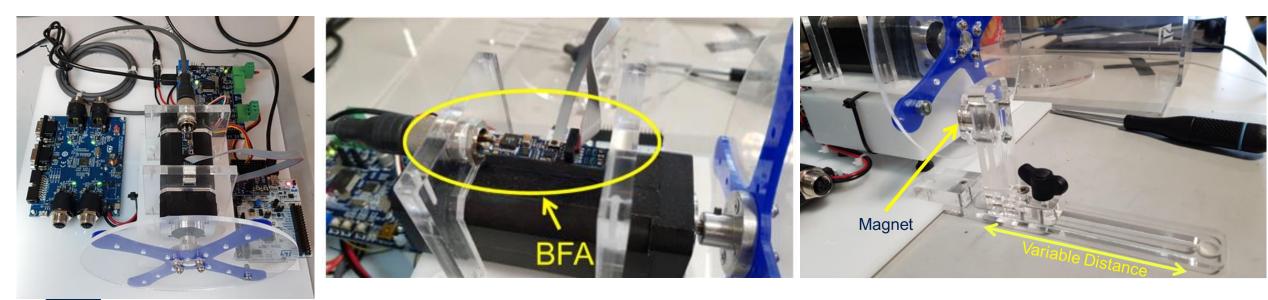
SensorTile Wireless Industrial Node



STEVAL-STWINKT1B - STWIN SensorTile Wireless Industrial Node development kit and reference design for industrial IoT applications - STMicroelectronics

Brief description of the use case: testbench

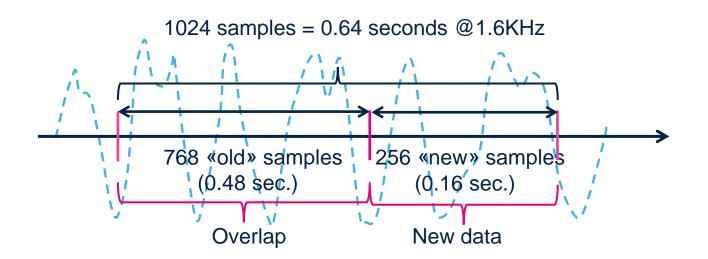
- Goal of the demo: detect anomalies on a motor by processing vibration data on an embedded device.
- Injected Anomalies:
 - Unbalancing (by inserting screws in the disc)
 - Misalignment (by using a magnet that can be positioned close to the disc)
- Testing Conditions and Acquisition Parameters:
 - 1800, 2160, 2520, 2880, 3240, 3600, 3960 RPMs (i.e. from 30Hz to 66Hz, step 6Hz)
 - Accelerometer ODR=1,6KHz ; high pass filter to remove DC
 - FFT 1024 points, overlap 75%, FFT averaging (9 averages per signature, Tacq = 1400ms)



STEVAL-BFA001V2B - Multi-sensor predictive maintenance kit with IO-Link stack v.1.1 - STMicroelectronics Rilevamento di anomalie e campioni fuori distribuzione Seminar at University of Catania, June 13, 2024

Overlapping Time Windows

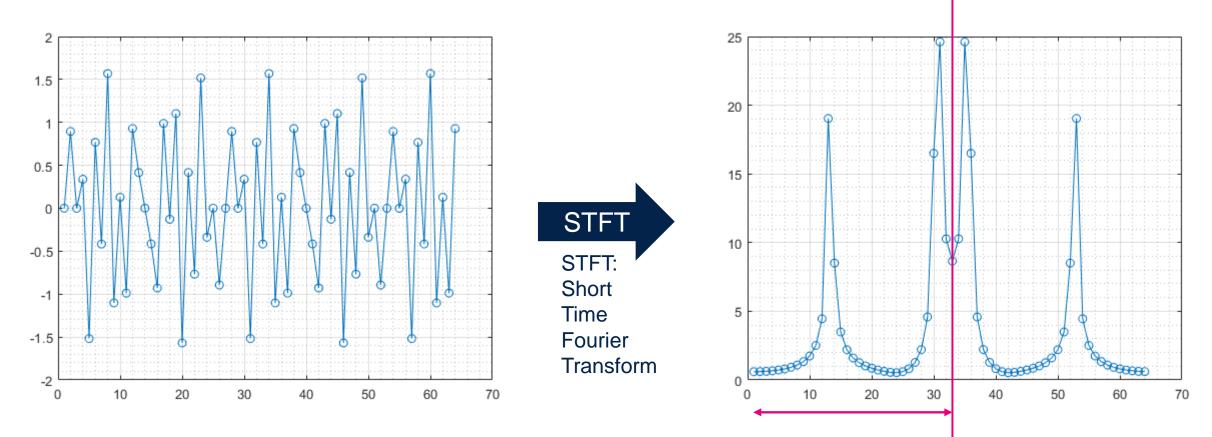
- A 3-axes accelerometer attached to a dynamical system records the evolution of motion over time and generates three 1D time series.
- One to 3 processing time windows with 1024 samples each and with overlapping.
- Length is power of 2 to allow efficient FFT.



To further reduce noise, N noise signatures are averaged, e.g. N=8

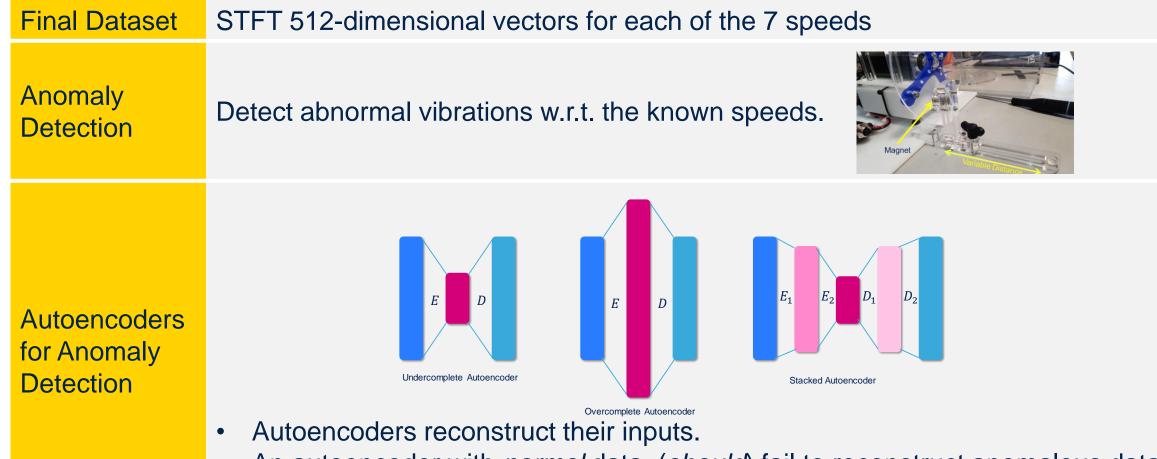
Short Time Fourier Transform

• We want to discover the frequencies of the signals that compose our time domain signal S:



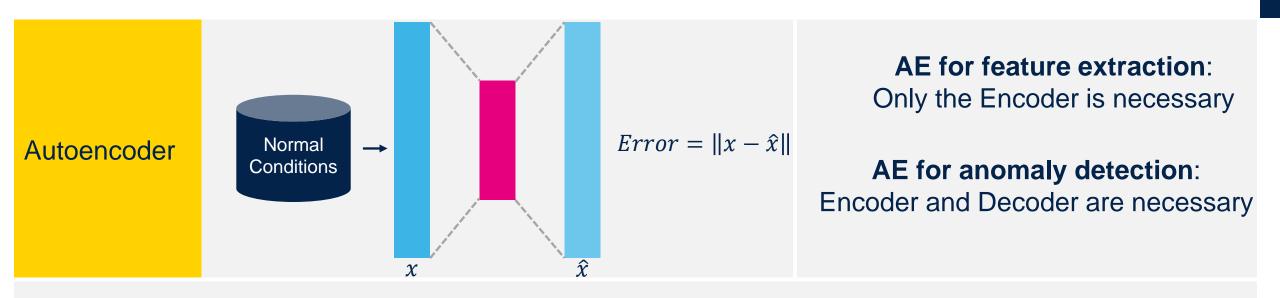
FFT is symmetric, we only use the first half when training a neural model

Autoencoders for Anomaly Detection



 An autoencoder with normal data, (should) fail to reconstruct anomalous data because it has not seen it during the training phase.

Autoencoders for Anomaly Detection



- Train the Autoencoder on normal data only. No need to acquire anomalous data.
- Compute the difference between the decoded vector \hat{x} and the original input x according to a chosen metric
- If the reconstruction error *E* is «high» then:
 - The autoencoder received anomalous data that it is not able to reconstruct \rightarrow Raise Anomaly Flag

Anomaly Detection using Autoencoder Reconstrucion Error



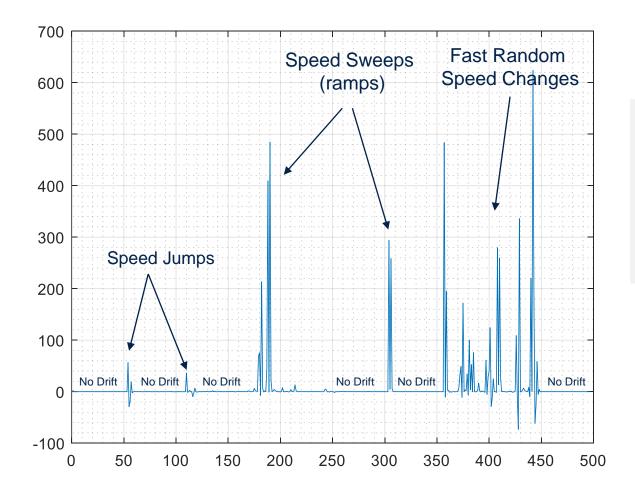
7 motor speeds, C1,...C7, ranging from 1800RPM to 3960RPM

Reconstruction Error of the autoencoder when input data contain anomalies (disc unbalancing).

Possible threshold for detecting anomalies (in this example there is a wide gap between normal and anomalous conditions).

Reconstruction Error of the autoencoder when input data is normal (no disc unbalancing).

Drift Detector

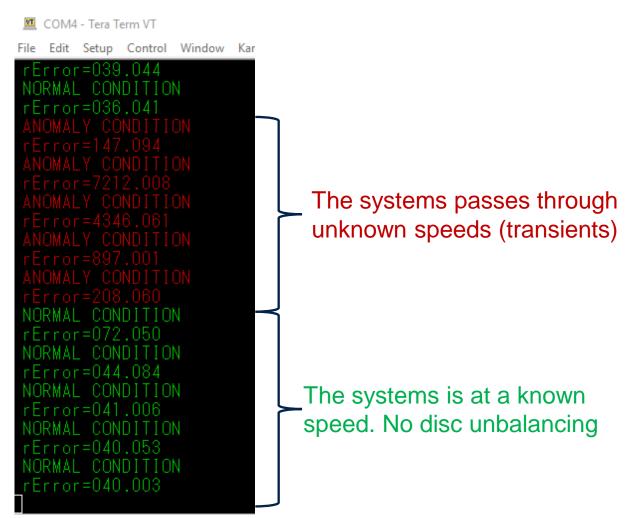


If the autoencoder is not trained with transients that occur during drift, it will signal them as anomalies.

Anomaly Detection Demo

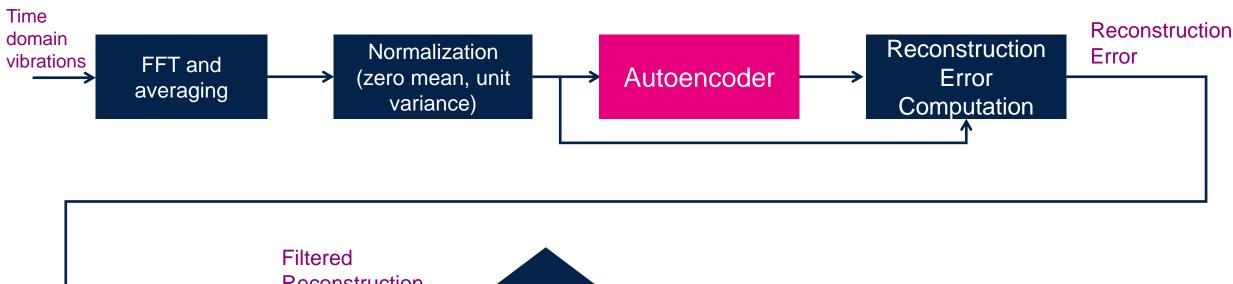
**************************************	s *
Accelerometer parameters are: HpfCut =3 Acc_Odr=1660 FifoOdr=1660	Acc_Fs =2
MotionSP parameters: size=1024 tau=50 wind=1 tacq=1400	ov1=75

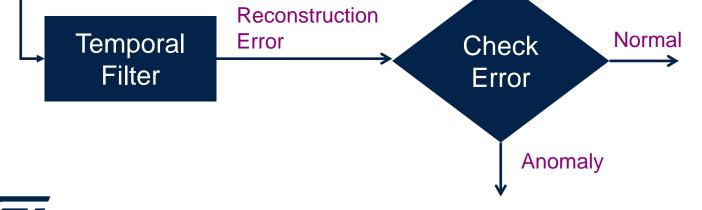
Accelerometer settings



Anomaly Detector output during a speed sweep

Brief description of the use case: processing pipeline





Uncertainty and Out of Distribution Detection in Deep Neural Networks

Introduction

- Deep Neural Networks (DNNs) can make incorrect and overconfident predictions.
- This is a problem when DNNs must be deployed in real-world safety-critical applications, such as

Autonomous Driving

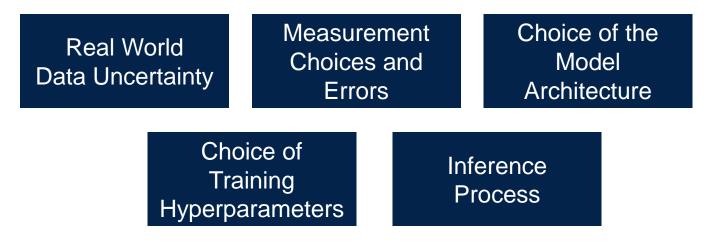
Medical Diagnosis

Predictive Maintenance

• Let us explore why

Let's start with an example

Sources of Uncertainty



Predictive Uncertainty

Aleatoric and Epistemic Uncertainty

	Root Cause	Can be reduced?
Aleatoric Uncertainty	Intrinsic Randomness in the data generation process (e.g. sensor noise, stochastic processes)	Not possible even acquiring new data
Epistemic Uncertainty	Data scarcity, weak model	Yes: by increasing quality/quantity of the data and/or by refining the model \longrightarrow

	Even with enough data and a good model, you still face the OOD problem.
Out of Distribution	 Why? Because of new semantic classes, anomalies, data drift, extrapolation regime, adversarial samples,

Uncertainty - Data Acquisition Process

How does uncertainty propagate from the real world to a prediction y*?

Each x is not a perfect representation of the corresponding ω

- Variability of the Real World
- Error and Noise in Measurement
 Systems

We choose a domain in which samples *x* are acquired. Multimodal is also possible.

 $x|\omega \sim p_{x|\omega}$ Data Space

 $y|\omega \sim p_{y|\omega}$ Label Space

Data Acquisition Process Real World Variability

- Real-world conditions constantly change, leading to distribution shift.
- The current environment no longer aligns with the data known to the DNN.
- This makes DNNs less reliable/accurate when dealing with new, unseen scenarios.

Discrete domain shifts

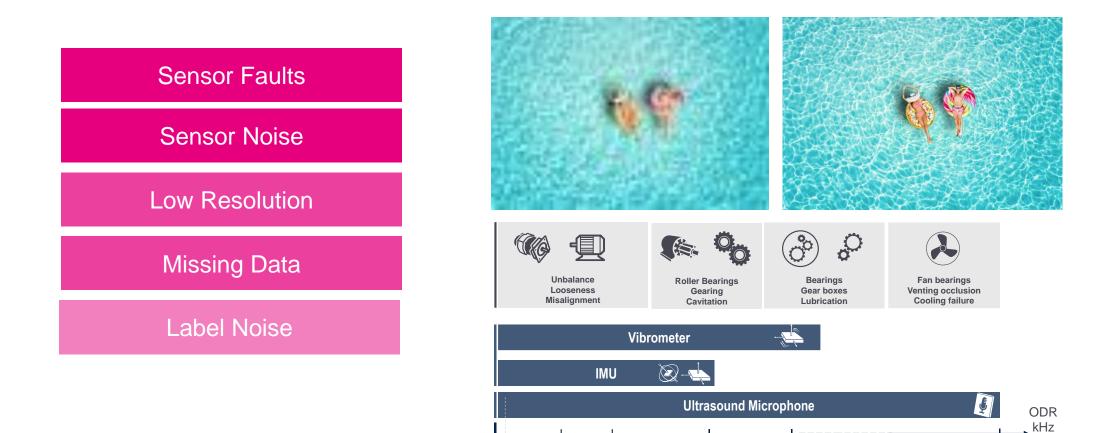
Source: [2206.08367] SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation (arxiv.org)

Unknown variations of known classes

Data Acquisition Process Measurement Errors

10 20 30

Combination of: hardware faults, complex real world domain, weak/bad acquisition choices:



2

3

6

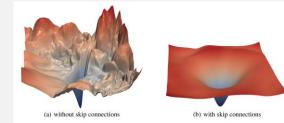
Uncertainty - Architecture of the Model : DNN Training

f_{θ} (# layers, # params θ ,) is trained on finite set of (x, y) pairs D
Stochastic Process depends on a random variable θ (weights):
$\theta D, f \sim p_{\theta D, f}$

applied on unseen samples $x^* \neq x_i$: $f_{\theta}(x^*) = y^*$ is y^* right, wrong or n.a.?

highly non linear leads to different local minima f_{θ^*} , yielding different models

Source: <u>Visualizing the Loss Landscape of</u> Neural Nets (neurips.cc)



Rilevamento di anomalie e campioni fuori distribuzione Seminar at University of Catania, June 13, 2024

Architecture of the DNN

TA

Inference

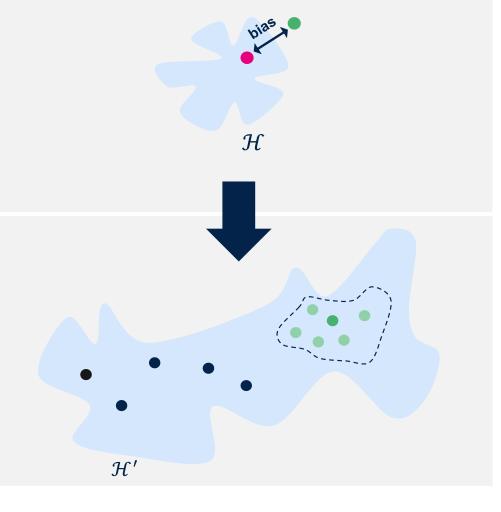
Loss Landscape

Uncertainty - Architecture of the Model : Bias and Variance Tradeoff

Small Model lower var

smaller hyphothesis space, higher bias, lower variance, \rightarrow risk of underfitting, lack of generalization, the model is too simple

Larger Model larger hyphotesis space, lower bias, higher variance (the model adapts to data and noise), → risk of overfitting



Uncertainty - Architecture of the Model: Bias and Variance Tradeoff

 $Total Error = Bias^2 + Variance + Irreducible Error$

Error introduced by approximating a real-world problem, using by overly simple model

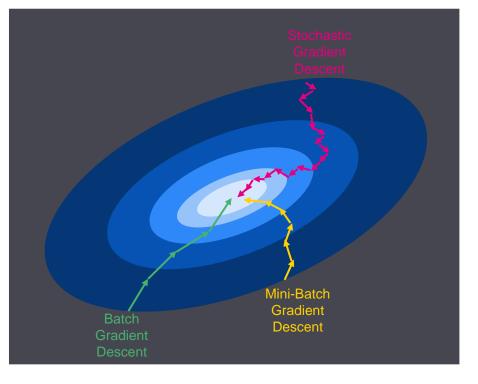
Error that cannot be reduced by any model. It's inherent in the problem itself and represents the noise or the randomness in the data.

Error introduced by the model's complexity. A model with high variance has too high "capacitance", it performs well on the training data but not on unseen data. It overfits: "memorizes" the training data, potentially fitting also random noise.

Uncertainty – DNN Training: Gradient Descent

Batch Gradient Descent	The entire training set is shown to the optimizer before triggering a backpropagation step (i.e. update of the weights)
Mini-Batch Gradient Descent	The training set is divided into smaller subsets (mini-batches). A backpropagation step is triggered every time a mini-batch has been shown to the optimizer. Trade-off between Batch and Stochastic Gradient Descent.
Stochastic Gradient	The size of the mini-batches is reduced to 1 . A backpropagation step is triggered every time a

hes is reduced to **1**. A triggered every time a **new sample** is shown to the optimizer.



Descent

Uncertainty - DNN Training Training is a Stochastic Process

Architectural Hyperparameters	 Convolutional Network, MLP, Skip Connections, Activation Functions, Number of neurons, #filters Hyperparameters either manually chosen, or automatically determined via grid search,
Training Hyperparameters	 Weights Initialization, Loss Function, Loss Regularization Terms, Batch Size, Learning Rate, Number of Epochs, Stopping Criteria,
Input Data	 Balanced or unbalanced dataset and related weighting coefficients Data Augmentation Dropout,
Consequences	 Different hyperparameters choices lead to different model accuracies/uncertainty. Unbalanced training sets skew the classifier if appropriate compensation is not applied (e.g. SMOTE: Synthetic Minority Over-sampling Technique).

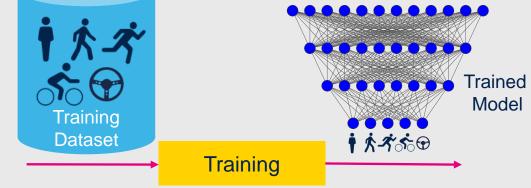
Uncertainty – DNN Training & Inference Unknown Data

Unknown Data	 In classification tasks, a DNN trained on samples from domain P, could receive as input samples from an unknown domain N, or <i>uncovered subspaces</i> of P
Source of Uncertainty in case of Unknown Data	In this case the source of uncertainty does not lie in the data acquisition process
How does this data look like?	 Unknown data might resemble too much noise on a sensor or complete failure, but actually it is not: Pure noise is not the only definition of OOD. Samples that form novel classes wrt training data are also OOD. Anomalies are OOD.

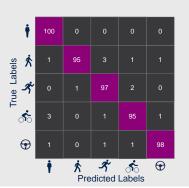
How do we detect this?

Closed Set vs Open Set Classification

Closed Set Classification Discriminate between a given set of classes

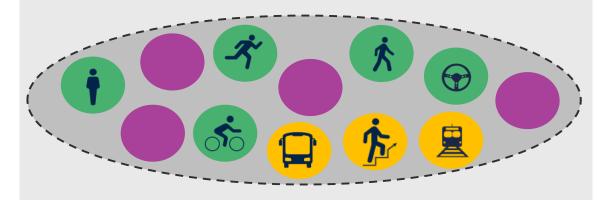


Standard Evaluation Protocol: Confusion Matrix



Open Set Classification

Discriminate classes in a larger space we do not know about

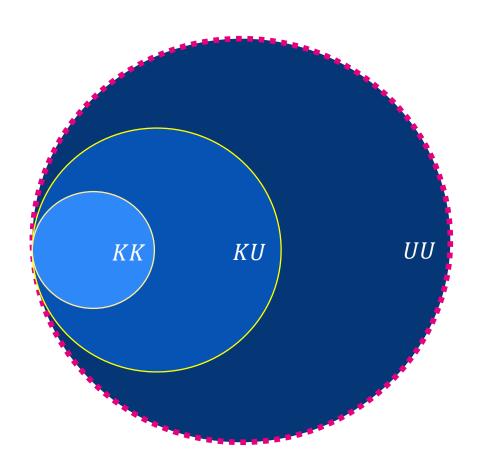


Known Known : In-Distribution

Unknown Unknown : Out-of-Distribution

Known Unknown : labeled OOD Samples

Openness Measure of a Classification Task



$$O^* = 1 - \sqrt{\frac{KK + KU}{KK + KU + UU}}$$
 [Battaglino et al. 2016]

In the AED use case:

$$KK = 4, UU = 46, KU = 0$$

 $O^* = 1 - \sqrt{\frac{4+0}{4+0+46}} = 1 - \sqrt{\frac{4}{50}} = 1 - 0,28 = 0,72$

In training we can use data from KK and KU UU>0 only in openset classification (UU is used at test time only)

Original formulation:

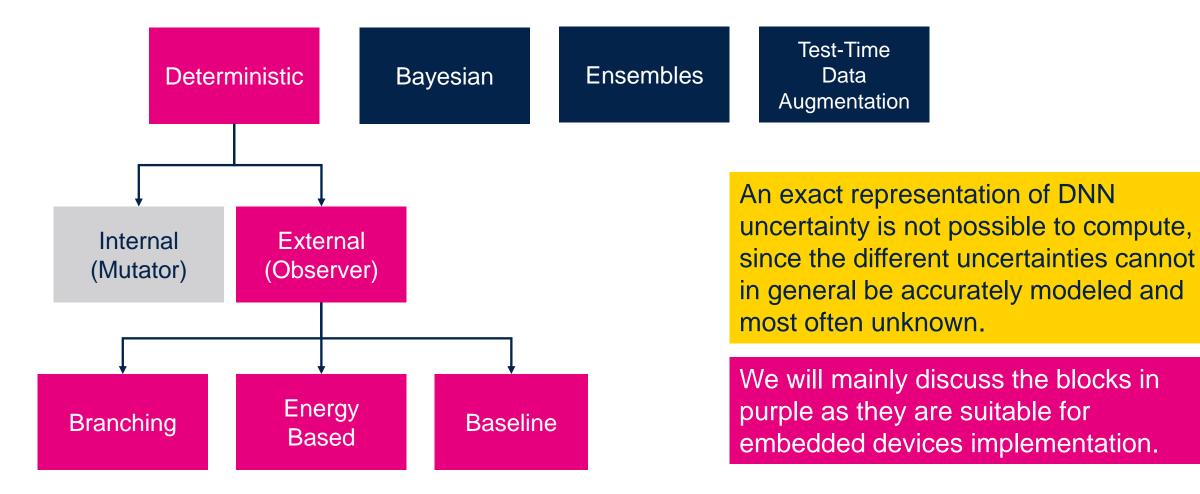
$$O^* = 1 - \sqrt{\frac{2 \times T_{Tr}}{T_{Tr} + T_{Te}}} \quad \text{[Scheirer et al. 2012]}$$

• In general, the higher the openness, the more difficult for the classifier to be «always» accurate and reliable.

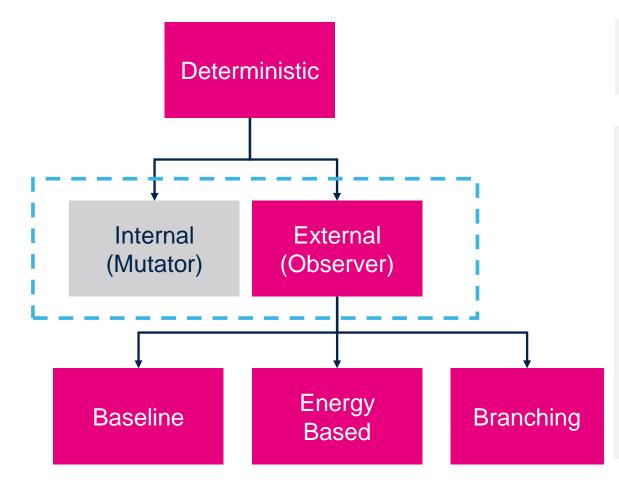
- This is a rough estimate that does not take into account the model, nor the complexity of the classes
- In the standard case, the classifier accuracy is estimated in a Closed Set scenario.

Rileva Semin

Uncertainty Estimation



Single Deterministic Methods (SDM)

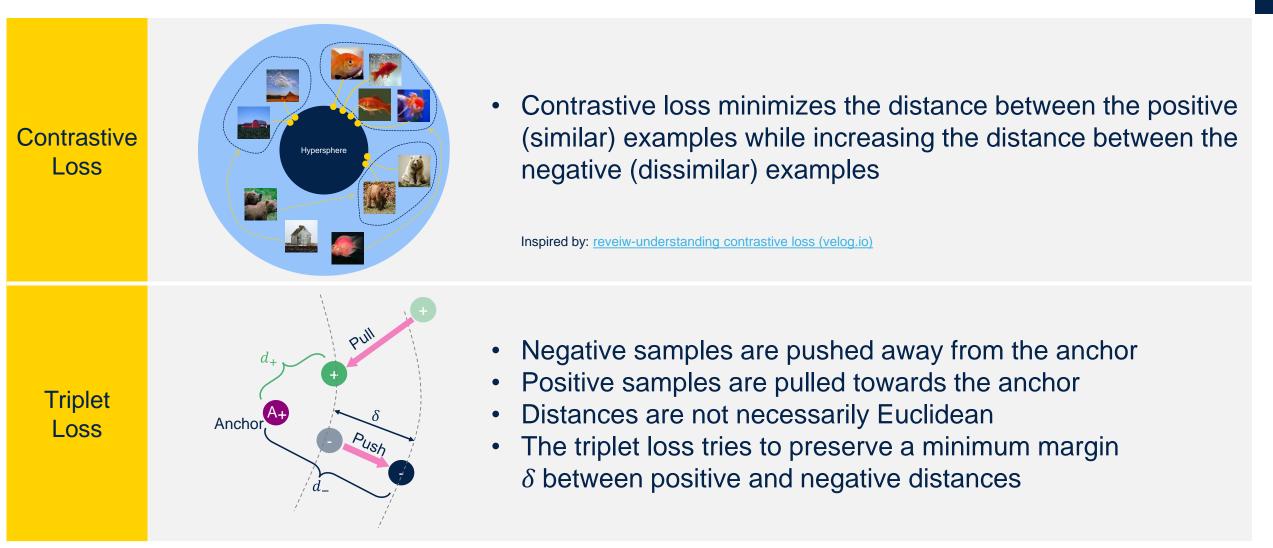


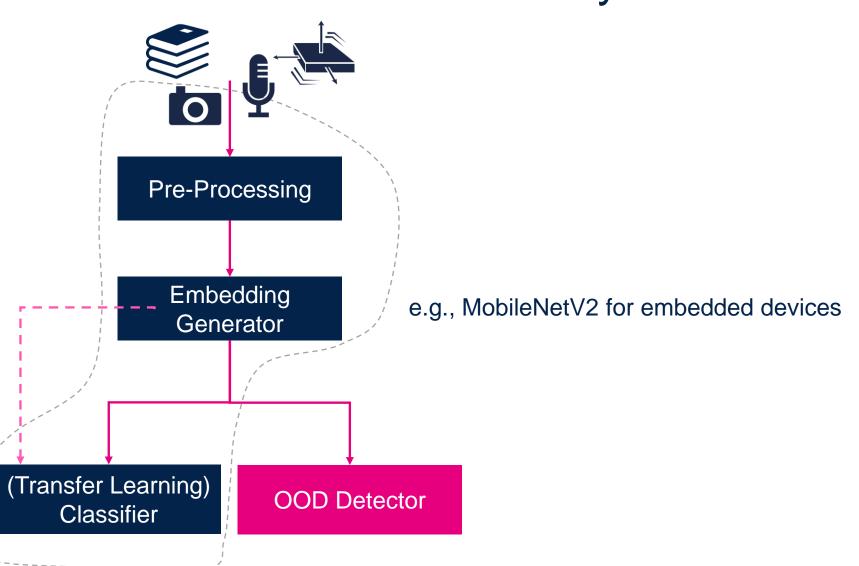
• DNNs parameters θ are fixed, inference is deterministic.

SDMs are broadly categorized in two approaches:

- A single network is explicitly modeled and trained in order to «handle» uncertainties (Internal Approach, Mutator Approach)
- Additional components in order to give an uncertainty estimate on the prediction of a network (External Approach, Observer Approach)

Internal Uncertainty Estimation





External Uncertainty Estimation

Rilevamento di anomalie e campioni fuori distribuzione Seminar at University of Catania, June 13, 2024

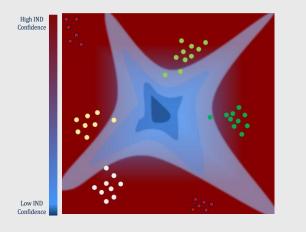
life.augmented

Internal vs External Methods

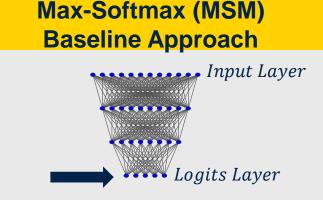
	Internal Methods	External Methods
Description	Requires ad-hoc training.Single inference.No external components.	 The network performs a single inference. An additional component estimates uncertainty
Computational Complexity	 Usually relies on modification of the loss 	 Depends on the complexity of the additional component
Can be applied on pre-trained networks	No	Yes
Separate prediction and uncertainty estimation	No	Yes
Requires negative data	Depends	Depends

Max-Softmax Baseline Approach for OOD Detection

Overconfidence Issue



- NNs learned decision boundaries are reliable for indistribution data only.
- The network could "fail silently" with high confidence on OOD data.



 Given logits z_i, softmax computes uncalibrated probabilities p_i:

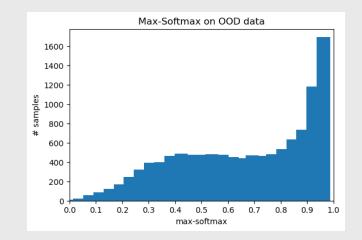
$$p_{i} = \frac{\exp(z_{i}/T)}{\sum_{j=1}^{L} \exp(z_{j}/T)},$$

$$T \ge 1, i = 1, \dots, \#classes$$

such that $\sum_{i} p_{i} = 1$

• T increases the sensitivity to low probability candidates.

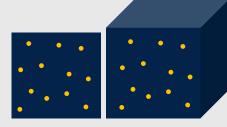
MSM on OOD Data



Ambient vs Embedding Space

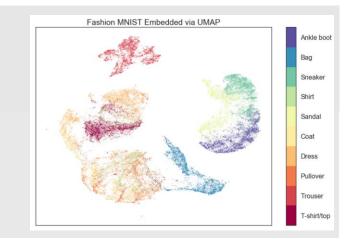
Ambient Space

- High Dimensional
- Redundant Dimensions
- Sparsity Dominates
- Distance metrics lose meaning



Embedding Space

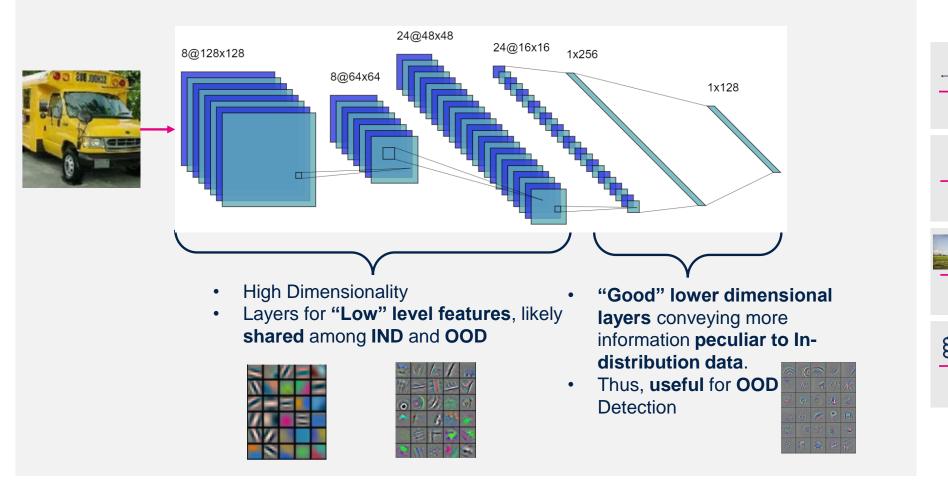
- "Compact" data representation
- "Less" Redundant Dimensions
- "Less" Sparse
- "HQ" embeddings



2

1

Deep Feature Vectors are Embeddings



Backbone

Generator)

Backbone

Backbone

Backbone

. 11111.

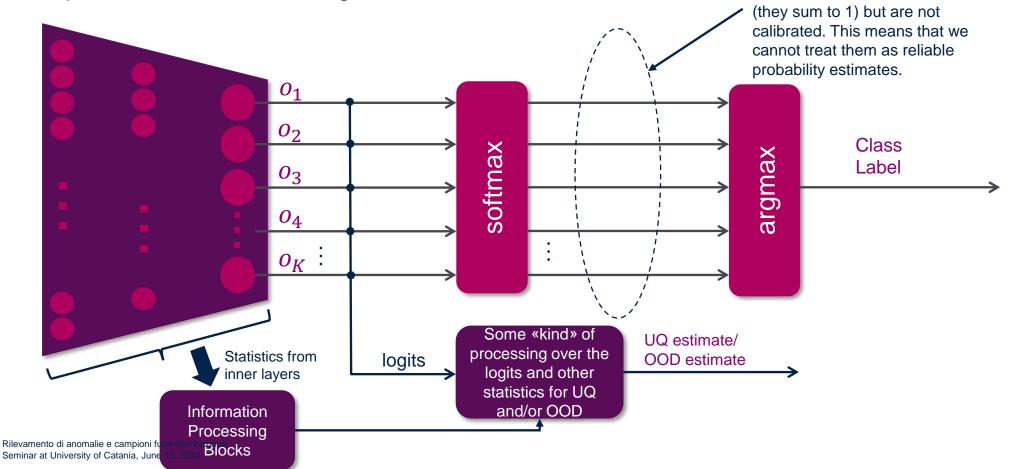
FFT

Pre-Proc

Pre-Proc

Uncertainty Quantification – Baseline (External Uncertainty Estimation Method)

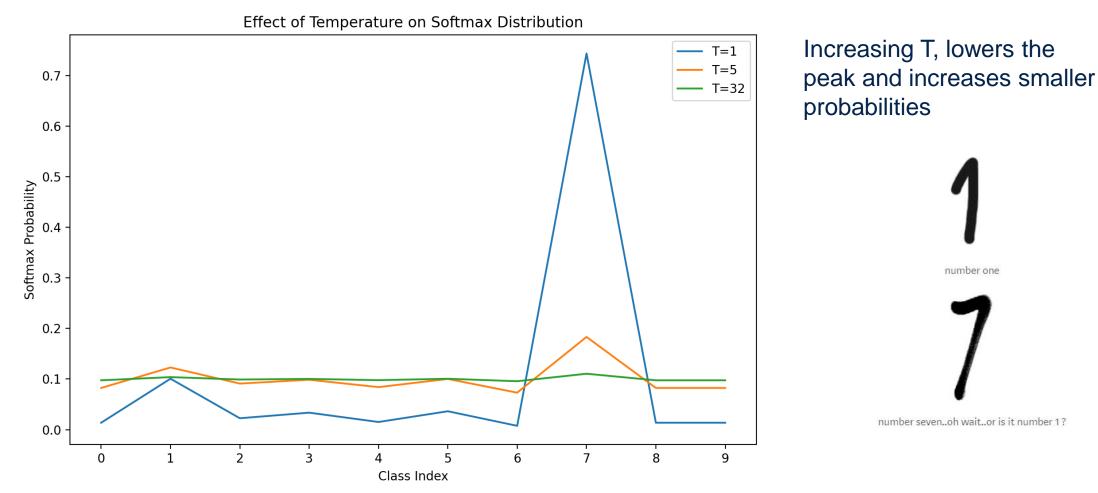
 A baseline approach for UQ is to analyze the activation outputs before the softmax layer : if unnormalized scores are *relatively small* for all classes, you are likely observing a novel class not presented in the training data.



Uncertainty Quantification – Baseline Softmax and Temperature Scaling

Softmax	In a classification problem with N classes, softmax normalizes a not normalized embedding vector into normalized vector of N real numbers such that it sums to 1.				
Standard Softmax	$p(i \mathbf{z}) = \frac{e^{z_c}}{\sum_{j=1}^{L} e^{z_j}},$ $j = 1, \dots, N$	Softmax with Temperature Parameter	$p(i \mathbf{z}) = \frac{e^{\frac{Z_i}{T}}}{\sum_{j=1}^{L} e^{\frac{Z_j}{T}}},$ $j = 1, \dots, N$		
Softmax with Temperature Parameter	• Increasing the temperature T yields smoothed probability distributions, converging				
	 The temperature increases the sensitivity to low probability candidates. 				

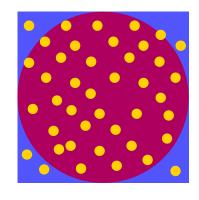
Softmax with higher Temperature

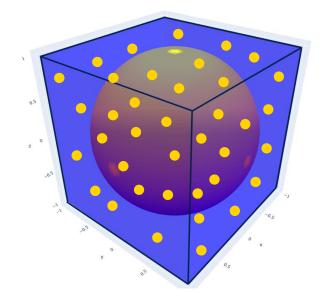


Energy Based Models for OOD

Energy Based	Based on Gibbs (Boltzmann) distribution of statistical physics.			
Models	A physical system tends to go			
(EBMs)	towards state(s) of minimum energy.			
Energy for	It is possible to derive the mathematical formulation from the Gibbs distribution to the Energy associated to a ML system (e.g., a neural network).			
OOD Detection	$E(\mathbf{x}) = -\log \sum_{i=1}^{L} e^{z_i} \substack{z_i \text{ is the i-th logit of the embedding} \\ \text{vector produced by the classifier}}$			
Energy	We expect low energy for in-distribution sample and high energy for OOD samples $\int_{0}^{1} \int_{0}^{1} \int_{$			

HD Spaces are Counterintuitive





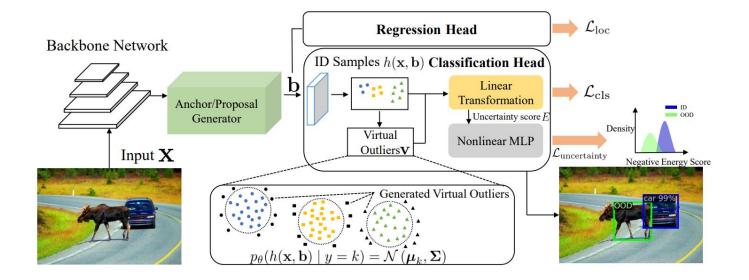
The volume in HD spaces increases exponentially as we add dimensions, and data becomes sparse.

A HD space is **mostly** "**empty**", most of the points that could be sampled lie close to the boundary of the space.

In a unit hypercube, almost all of the volume is near the edges, thus data points are likely to be found near the surface of the volume.

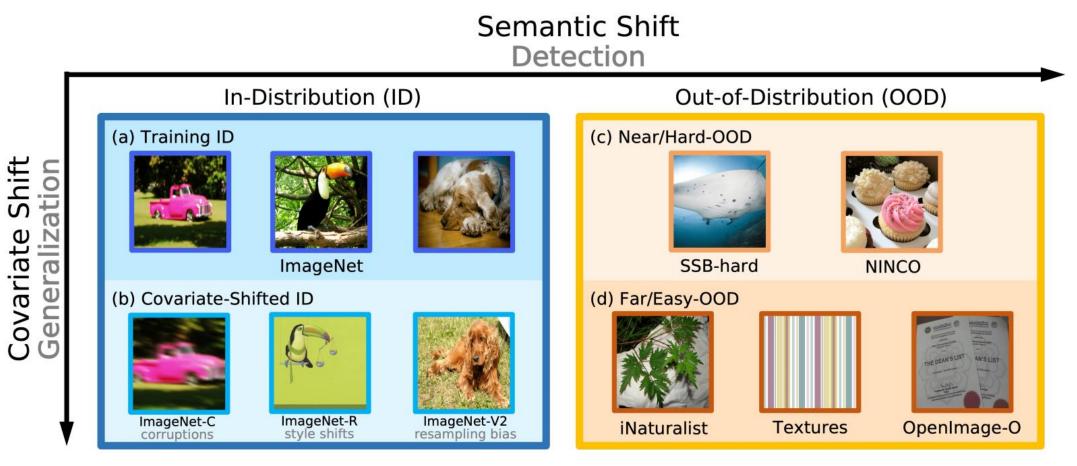
Distance Metrics tend to lose their meaning, as all samples are almost equidistant from each other.

Virtual Outlier Synthesis (in the latent space)



 [2202.01197] VOS: Learning What You Don't Know by Virtual Outlier Synthesis (arxiv.org)

Covariate Shift – Semantic Shift Near and Far OOD



life.gugmented

[2306.09301] OpenOOD v1.5: Enhanced Benchmark for Out-of-Distribution Detection (arxiv.org) CC BY 4.0Deed

Probability Distributions & Uncertainty

In-Distribution	At inference time, the test distribution has the same distribution of the training data		
Data	$P_{test}(x, y) = P_{train}(x, y)$		
OOD Data /	At inference time, the test distribution has different distribution w.r.t. the training data		
Anomalies	$P_{test}(x, y) \neq P_{train}(x, y)$		
Covariate	Distribution of p(x) changes (samples from different or shifted domain), while p(y x) remains constant:		
Shift	$P_{test}(x) \neq P_{train}(x)$ The distribution of the data changes, $P_{test}(y x)$, but the label remains the same		
Label Shift	Distribution of labels $p(y)$ changes while $p(x y)$ remains constant		

Rilevamento di anomalie e campioni fuori distribuzione Seminar at University of Catania, June 13, 2024

life.augmented

OOD Benchmarking

		NEAR-OOD	FAR-OOD
MNIST	10-class handwriting digit dataset that contains 60k images	near-OOD includes NOTMNIST, FashionMNIST	Texture, CIFAR-10, TinyImageNet, Places- 365
CIFAR-10	10 classes of natural images	CIFAR-100, TinyImageNet,	MNIST, FashionMNIST
CIFAR-100	100 classes of natural images	CIFAR-10, TinyImageNet	MNIST, FashionMNIST, Texture, Places365
ImageNet-1K	1000 classes of natural images	iNaturalist, ImageNet-O, OpenImage-O	Texture, xMNIST, SVHN

FPR@95 is the false positive rate when the true positive rate is set to 95%. Lower scores indicate better performance.

life.augmented

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

