



# SLAM

Antonio BUEMI System Research and Application





#### Agenda

- 1 Introduction to SLAM
- 2 SLAM building blocks
- 3 ORB-SLAM
- 4 Conclusion



#### Definition





## SLAM building blocks



Noise adds errors to the pose estimate and map.

The **Loop Detection (also called Place Recognition)** is the ability of the system to recognize the case in which one is passing in a place already visited.

The **Loop Closure** is the process of correcting the map using that information and the fact that the landmarks are supposed to be stationary

A mechanism to adjust the pose estimation is required.

Adjusting the camera pose also means **correcting the map**, so a strategy to do this is required, too.





## SLAM siblings

#### SfM VO **Struct from Motion Visual Odometry** Reconstructs 3D struct from a set of 2D images Estimate odometry computing differences in camera poses between two frame taken one after another 3D-Mod corresponding feature points moving camera NO odometry NO Loop Closure • NO computational constraints NO global mapping NO real-time Efficiency

#### SLAM tools: how to get depth information

#### Monocular camera



Single image

• comparing frames taken at different camera positions

Stereo camera



Left and right imagesCorrespondence between frame pairs + triangulation Depth camera



Depth information+RGB • time of flight

• the pattern density of the Infra Red light emitted by the camera. Lidar Light Detection and Ranging



Depth information

Laser



#### SLAM tools: descriptors







#### Feature based & Direct methods







## SLAM: not only visual

#### Monocular

#### **Stereo**

#### **Multimodal**





#### SLAM: where can we use Neural Networks?





# Deep SLAM: training



The **stereo** images used in the training phase allow to recover the scale information of the environment.

Note that this limits the generalization: the scenes used in the testing **must be similar** to ones used in training.

Ruihao Li, Sen Wang **DeepSLAM: A Robust Monocular SLAM System With Unsupervised Deep Learning** IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, April 2021



# Deep SLAM: testing



The testing framework takes **monocular** color images as input and produces depth maps, poses and point clouds as outputs by using Mapping-Net, Tracking-Net, and Loop-Net.

Ruihao Li, Sen Wang DeepSLAM: A Robust Monocular SLAM System With Unsupervised Deep Learning IEEE Transactions on Industrial Electronics, Vol. 68, No. 4, April 2021

![](_page_13_Picture_4.jpeg)

![](_page_14_Picture_0.jpeg)

#### **ORB-SLAM**

#### **ORB-SLAM2**

![](_page_15_Figure_1.jpeg)

![](_page_15_Picture_2.jpeg)

Raúl Mur-Artal and Juan D. Tardós ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017

#### ORB: oriented FAST and rotated BRIEF

- ORB is a fusion of FAST keypoints detector and BRIEF descriptors
- It is a free alternative to SIFT and SURF and it overcomes them in computation cost and performance

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_5.jpeg)

free

partial scale invariant

rotation invariant

![](_page_16_Picture_9.jpeg)

# STEREO-CAM board

- STEREO-CAM (mezzanine board) is a board designed in ST
- It contains:
  - No microcontroller
  - 96connector to be connected to any 96board
  - 2x VD56G3 OLGA80 (FoX NIR imaging sensor with HW Optical Flow accelerator)
  - 2x LSM6DSRXTR (3D accelerometer, 3D gyroscope)
  - 1x Ewok MZ Module V2
- Two 96boards are used (for drivers availability)
  - DragonBoard 410C
    - Qualcomm Snapdragon, 4 cores @ 1.4GHz
  - Avenger96 (STM32MP157)

![](_page_17_Picture_12.jpeg)

### From Version 1 to Version 2

Version 1 ORB-SLAM2 uses Oriented FAST+Rotated BRIEF.

Version 2 exploit the Optical Flow (Keypoints+MVs) retrieved by FoX

#### TRACKING

![](_page_18_Figure_4.jpeg)

![](_page_18_Picture_5.jpeg)

## **ORBSLAM2** and **ORBSLAM3**

#### **Initial pose** Track Local Map Frame **ORB** extraction Key **New KeyFrame** estimation from last KeyPoints + New LOCAL MAPPING descriptors + frame or decision **KeyFrame IMU** integration IMU relocalization matching insertion If the Map update tracking Automatic map is lost 🚦 initialization Relocalization **IMU** init IMU scale Place refinement Local Bundle **Full Bundle** Maps Map update Recognition Adjustment Adjustment merging FULL BUNDLE ADJUSTMENT LOOP CLOSURE & MAP MERGING

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

TRACKING

#### ORB-SLAM2 (standard) IN/OUT

![](_page_20_Picture_1.jpeg)

![](_page_20_Picture_2.jpeg)

#### **ORB-SLAM2 (OF-based) IN/OUT**

![](_page_21_Picture_1.jpeg)

life.augmented

#### Platforms 1/2

#### ORB-SLAM2+DragonBoard

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

#### Platforms 2/2

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_3.jpeg)

#### Results

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

3D points cloud+trajectory

![](_page_25_Picture_0.jpeg)

#### Conclusion

# Is SLAM solved?

Short answer: It depends on the application

![](_page_26_Picture_2.jpeg)

#### Context definition aspects

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

**Motion limits** 

#### Examples of solved cases

![](_page_28_Figure_1.jpeg)

![](_page_28_Picture_2.jpeg)

### Some open problem

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

# Future SLAM key requirements

![](_page_30_Picture_1.jpeg)

Robust performances

**Reliablility** Low failure rate for an extendend time in a broad range of environments

Automomy Fail-safe mechanism Self-tuning capabilities

**Flexibility** System parameters adaptivity to the scenario

![](_page_30_Picture_6.jpeg)

#### High-level understanding

**Geometry** beyond basic geometry reconstruction to understand the environment

Semantic Additional Artificial Intelligence modules

![](_page_30_Picture_10.jpeg)

Resource Awareness

Smart system Monitoring of the available sensing and computational resource to adjust accordingly the computational load

![](_page_30_Picture_13.jpeg)

**Selectivity** *Filter irrelevant sensor data, in order to support the task* 

Scalability Adaptive map representation whose complexity may vary depending on the task

![](_page_30_Picture_16.jpeg)

# Thank you

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

![](_page_31_Picture_2.jpeg)