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Edge AI/TinyML
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‘A Tsunami of TinyML Devices is Coming’
R. El-Ouazzane, STMicroelectronics
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Introduction to Artificial Intelligence (AI)
& Deep Learning
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White goods

Smart control

Self-driving Cars

Environment sensing

Smart Buildings

Energy saving

Personal electronics

Activity recognition

Drones

Flying & landing

Smart Industry

Predictive maintenance

Smart Home

Event detection

Smart Farming

Optimizing conditions

Personal Healthcare

Body measurements

AI is used today in almost every market segment

6

Robots

Collision detection



ST Confidential

What is AI?
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Any technique that enables 

computer to mimic human behavior

Subset of AI. Algorithms and 

methodologies that improve over 

time through learning from data

Subset of ML. Learning algorithms 

that derive meaning from a huge 

amount of data, by using a 

hierarchy of multiple layers that 

mimic the neural networks of the 

human brain1950 1960 1970 1980 1990 2000 2010 2020

Artificial Intelligence (AI)

Machine Learning (ML)

Deep Learning

Early Artificial 

Intelligence stirs excitement
Machine Learning 

begins to develop

Deep Learning breakthroughs 

drive AI boom

The evolution of AI
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Machine Learning: Why do we need it?
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Some examples from MNIST database
(Mixed standard institute for standard and technology)

An example of difficult program

• How to recognize the handwritten digits? 

• What makes all these numbers to be identifiable?

• Is there a pattern?

• What is it that makes a 2 to be identified as a 2?

When a complex task or problem 

involves a large amount of data and lots 

of variables, but no existing formula or 

equation can solve it
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Standard vs Machine Learning algorithm approach

9

Standard programming 

“A priori” approach

Machine Learning

“Empirical” approach

Design algorithm specific for 

the given problem

Log of Input Data 

to the system

Desired Output 

from the system

General ML model trained 

for the specific problem
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Tiny Machine Learning (TinyML) 
and its benefits



ST Confidential

Signals turning into data

Embedded applications will collect more data in the future

Growing demand for data-driven insights

Increasing use of sensors

Proliferation of IoT devices

11
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AI offers the best approach 
to process this growing amount of data

Machine learning algorithms to automatically 

learn patterns and relationships from data

Traditional approaches have limitations:

• when dealing with large datasets

• when the phenomena are too complex

AI-based data processing offers a more 

flexible and powerful approach to analyzing 

and making decisions from large data collections

Algorithms and predefined models to 

analyze data and make predictions or decisions

12
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The rise of edge AI

Power efficiency

Low-data / Low-power

Ultra-low latency

Real-time applications

Reduced data transmission

Generate meaningful information

Enhanced privacy and security

No data sharing in the cloud

01

10

Improved accuracy

analyze data from a wide range 

of sensors and sources

Industrial maintenance

Condition monitoring

Predictive maintenance

Control systems

From home heating systems 

to industrial machines

Internet of Things (IoT)

Smart cities, smart buildings, 

connected homes, and 

industrial automation

Edge AI benefits many application domains:

13
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Edge AI adoption is rapidly accelerating

Source: ST customer survey – December 2023

80% of customers who 

have not yet started are 

planning to launch an 

edge AI project in 2024

Edge AI

2020 2023

Edge AI

40%

5%

14
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TinyML use cases and examples
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ISPU for personal application

AI at the edge with ultralow power 6-axis IMU for consumer market
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Gait 

analysis

Pose 

estimation

Fall 

detection

Carry 

position

Active time Fitness 

activities

Activity 

recognition

Gesture 

recognition

And more…

A completely new level of capabilities and detection 

accuracy in human activity recognition applications:

• Consumer health

• Gesture recognition

• Activity recognition

• Motion tracking
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ISPU to approach the Industry 5.0

AI at the edge with ultralow power 6-axis IMU for industrial market
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Higher detection accuracy, always on monitoring in 

anomaly detection applications

• Home alarms

• Robotics

• Condition monitoring

A completely new level of capabilities and detection 

accuracy in asset tracking applications
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AI Solutions on STM32

AI extension for STM32CubeMX

to map pre-trained Neural 

Networks

STM32 Community with 

dedicated Neural Networks topic

and AI expert partners

Trainings, hands on, MOOCs and

partners videos

A full development ecosystem to create your AI application

Person presence 

detection

Food classification

People activity 

recognition

Audio scene classification

Condition-based 

monitoring

18

FP-AI-VISION1

FP-AI-SENSING1

FP-AI-NANOEDG1
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Automotive Edge AI Solutions

AI at the edge with Stellar E microcontroller

19

Better efficiency & maintenance

• Protecting critical functions

• Improving energy management

• Enabling predictive maintenance

A personalized driving experience

• optimize comfort and convenience

• power infotainment systems
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Neural Networks
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• Also referred to as Artificial Neural Networks.

• Inspired by human neural system.

• Human neuron has three main components

• Dendrites 

• Take inputs from other neurons in terms of electrical pulses.

•  Cell body

• Makes the inferences and decides the actions to take.

• Axon terminals

• Send the outputs to other neurons in terms of electrical pulses.

What are Neural Networks?

21
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• The heart of a neural network 

Artificial Neuron

22

Cell body

Activation function
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Artificial Neuron
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Cell body

Activation function

• The heart of a neural network 
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Artificial Neuron
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Cell body

Activation function

• The heart of a neural network 
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Artificial Neuron
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Cell body

Activation function

• The heart of a neural network 
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Artificial Neuron
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Cell body

Activation function

• The heart of a neural network 
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Artificial Neuron
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Cell body

Activation function

• The heart of a neural network 
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Artificial Neuron

28

Approximation 

of the expected 

output

Cell body

Activation function

• The heart of a neural network 
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• Notations

Neural Networks
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𝑥1

𝑥2

𝑥3

𝑥4

ℎ1
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ℎ2
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Hidden LayersInput Layer Output Layer
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Different types of Neural Networks

30

• Multi Layer Perceptrons

• Convolutional Neural Networks

• Recurrent Neural Networks
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Max Pooling Flattening

Convolutional Neural Network
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2D Convolutions

32

1 4

0 3

2 1

1 2

2 4

0 6

4

Bias = 2

1014

Input

2D kernel

convolved

feature
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3D Convolutions

33

Input image Convolutional Filters Feature Maps
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• Unit step

• Threshold

• Sigmoid Function

• Like a step function but smoother

• Best to predict probabilities

• Tan hyperbolic

• Stretched out version of the sigmoid function

• ReLU

• Computationally efficient

Most widely used activations

34

• Function choice depends on the 

characteristics of the data.

• For example Sigmoid Function 

works good for classification 

purposes, resulting in Faster 

training and  convergence.

• ReLU is good for approximation. 

As it is simple so always start 

from this if you don’t know the 

data characteristics. Helps 

against gradient vanishing

• We can also define custom 

activations.
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Learning hierarchical representations

• More than one stage of non-linear feature transformation

35

Low-level 

feature

Mid-level 

feature

High-level 

feature

Trainable 

classifier

Feature visualization on convolutional net on ImageNet [Zeiler & Fergus 2013] 
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Recurrent Neural Networks

• Convolutional neural networks have no internal state persistence

• Recurrent neural networks address this issue. They are networks with loops 

in them, allowing information to persist.

36

Unrolling recurrent neural network loops
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Training Neural Networks



ST Confidential

• In supervised learning an assumption 

is to have a relatively large labeled 

dataset.

• Feed all the samples as inputs to get 

an output. Called forward propagation 

or inference run outputs.

• At start the weights can be randomized 

or predefined depending on the 

applications scenario.

• The result ො𝑦 is compared with ground 

truth output 𝑦.

• The task is to make the output value ො𝑦
to be as close to 𝑦 as possible 

reducing the error expressed as Loss 

functions 𝐿( ෤𝑦, 𝑦).

Training neural networks

38

Forward Propagation

y

y
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Training neural networks

39

Back Propagation

• Go back and adjust the weights slowly. Aim is

𝑬𝒓𝒓𝒐𝒓 𝑻 < 𝑬𝒓𝒓𝒐𝒓 𝑻−𝟏

• Repeat this process until the error we get is very 

small.

𝐥𝐢𝐦
∈→𝟎

 𝑬𝒓𝒓𝒐𝒓𝑻 < ∈
y

y
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Backpropagation

40
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• Brute force

• Try all the possible combination of weights.

• Plot the cost function.

• Use the weights which result in smallest error. 

• Sounds simple but will take too much time !!!

Backpropagation

41
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• Enters the gradient descent

Backpropagation

42

Learning rate

• Big learning rate

• May never 

converge.

• Small rate. 

• Will converge for 

sure.

• A lot of small steps.

Learning rate compromise
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• Enters the gradient descent

Backpropagation

43

Learning rate

Use adaptive learning rate!
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Backpropagation pitfall

44

Gradient descent



ST Confidential

Backpropagation

45

Learning rate

Note: One epoch means one pass of the whole training set.
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• Example: Finding best linear fit to a set of points.

Gradient descent in action

46
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Under, Good, and Over Fit

47

Poor learning              Correct learning           Wrong learning
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• One of the challenges of working with ANN is to have a big labelled dataset.

• The dataset is usually divided into

• Training set

• Training set

• Validation set

• Testing set

Learning datasets

48

 Multiple epochs

Note: One epoch means one pass of the whole training set.
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Learning Curves

49

Example of Training Learning Curve 

Showing an Underfit Model That Requires 

Further Training

Example of Train and Validation 

Learning Curves Showing an Overfit 

Model

Example of Train and Validation 

Learning Curves Showing a Good Fit
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TinyML deployment challenges
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Cloud computing vs Edge Computing

Cloud Computing

Training is still here

51

Edge Computing

And many more…

Inference can be here
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What are the main deployment challenges of TinyML?

52
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Tiny ML Challenges

53

Phenomenal Cosmic Powers!

Itty Bitty Living Space!
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Tiny ML Challenges

Tiny Resources

Toward Zero Power

Live without floating point numbers

Achieve High Accuracy

Automated deployments
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2

1

4

5 Key steps for Supervised Deep Learning

Neural Network (NN) Model Creation Operating Mode

Clean, label, augment

pre-process data

Convert NN into 

optimized code for 

sensor/MCU

5

Deploy application

on the field

Conceive &

Train NN Model

3

Your idea !

Jump to STEP2
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Deploying Inference on MCU/sensor 

NN complexityFLOPS

MCUFLOPS/s
<

samples in a window

fsensor sampling rate/s

RAMMCU >  ActivationsNetwork

R0MMCU >  WeightsNetwork

1)

2)

3)

"Embedded Real-Time Fall Detection with Deep Learning on Wearable Devices," 2018 21st Euromicro 

Conference on Digital System Design (DSD), Prague, 2018, pp. 405-412, doi: 10.1109/DSD.2018.00075.

1

2

3

0 Accuracyneural networks >  Accuracy ℎ𝑎𝑛𝑑−𝑐𝑟𝑎𝑓𝑡𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

MLC

STM32

STM32N6

STELLAR

ISPU
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Deployment un-aware Neural Architecture Search 
(NAS)

Generate 

candidate 

ANN

Hyper-

parameter

Space

Computational 

kernels

very high computational cost

K-fold

Validation

Dataset

Accuracy 

deviation

Accuracy

Acceptance 

criteria

Deployable 

on Tiny 

devices ?
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Deployment aware Neural Architecture Search (NAS)

Generate 

candidate 

ANN

Model 

analysis

MACC, 

RAM, 

ROM, 

latency

Detailed 

profiling

Compute

deviation

K-fold

Validation

Dataset

Accuracy 

deviation

Accuracy

Acceptance 

criteria

Not deployable on MCU/SENSOR

Model

Sign-off

Hyper-

parameter

Space

Computational 

kernels

very high computational cost

very fast to report 

with the CLI
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Solving Heterogeneity
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Machine Learning Heterogeneity

Multiple

Networks
Multiple

Targets
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Coping with source and target heterogeneity

Maximize:

Performance 

Sharing and Reuse

Productivity

Automation

Minimize:

Differences

Development time
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From the ML model to its deployment
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From the ML model to its deployment

Kernels

Library
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From the ML model to its deployment

float * temp1 = conv2d(input);

float * temp2 = relu(temp1);

Kernels

Library
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From the ML model to its deployment

float * temp1 = conv2d(input);

float * temp2 = relu(temp1);

float * temp4 = conv2d(temp3);

float * temp5 = relu(temp4);

float * temp3 = maxpool(temp2);

output = maxpool(temp5);

Kernels

Library
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From the ML model to its deployment

float * temp1 = conv2d(input);

float * temp2 = relu(temp1);

float * temp4 = conv2d(temp3);

float * temp5 = relu(temp4);

float * temp3 = maxpool(temp2);

output = maxpool(temp5);

void network(float * input, float * output) {

}

Kernels

Library
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Heterogeneity: Operators
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Heterogeneity: Operators
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Heterogeneity: Operators
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Heterogeneity: Operators
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Heterogeneity: Operators
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Heterogeneity: Operators

~350 Unique 

Operators
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Source Model Heterogeneity: DL Formats

.tflite
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Heterogeneity: DL Formats

.tflite
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Heterogeneity: DL Formats

.h5

.tflite
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Heterogeneity: DL Formats

.keras

.h5

.tflite
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Heterogeneity: DL Formats

.keras

.h5

.tflite

.pth
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Heterogeneity: DL Formats

.keras

.h5

.tflite

.pth.onnx
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Heterogeneity: DL Formats

.keras

.h5

.tflite

.pth.onnx
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Heterogeneity: DL Formats

.keras

.h5

.tflite

.pth.onnx
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Heterogeneity: DL Formats

.keras

.h5

.tflite

.pth.onnx
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Heterogeneity: DL Differences 

Availability of operators: not all operators are available in all 

frameworks

Attributes: different attributes, meaning and default values

Data layout, i.e., channel first vs. channel last

Quantization, i.e., many possible bit-width to represent data
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Heterogeneity: DL Differences 

TFLite

MEAN

ONNX

Mean
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Heterogeneity: DL Differences 

TFLite

MEAN

ONNX

Mean≠
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Heterogeneity: DL Differences 

TFLite

MEAN

ONNX

Mean≠

ONNX

ReduceMean

TFLite

MEAN =
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Heterogeneity: DL Formats
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Heterogeneity: Quantization

Convolution

Weights

Input Output
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Heterogeneity: Quantization

Convolution

Weights

Input Output

float32

float32 float32
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Heterogeneity: Quantization

Convolution

Weights

Input Output

int8

int8 int8



ST Confidential

Heterogeneity: Quantization

Convolution

Weights

Input Output

binary

binary binary
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Heterogeneity: Quantization

Convolution

Weights

Input Output

binary

float32 float32
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Heterogeneity: Quantization

Convolution

Weights

Input Output

int8

int8 binary
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Heterogeneity: Quantization

Convolution

Weights

Input
Output

int8

int8 binary

Limiting to binary, int8, 

float32 there are 

3^3=27 combinations 

to be supported for a 

single layer
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Heterogeneity: Execution Targets

Different Instruction Sets (ARM Cortex M 0/4/7/33/55/85, STRed)

Different computational power, e.g.,

MLC, ISPU

STM32 std MCU family, STM32N6 

Different specialized functional units, e.g.,

Binary accelerator in ISPU

Integer SIMD/Vector ISA in ARM

Convolution accelerators in STM32N6
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• Different memory infrastructure e.g.,

• Single memory component

• Multiple and homogeneous memories

• Multiple and heterogeneous memories

Heterogeneity: Execution Targets

Memory optimizer

• Memory allocation

• Internal/external memory repartition

• Model-only update option

Optimize memory allocation to get the best 

performance while respecting the 

constraints of the embedded design
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Paths from Source to Target

?
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Paths from Source to Target

?
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Paths from Source to Target

?
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Paths from Source to Target

?
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Homogenize Developer Experience

One Core 

Technology
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Removing Deep Learning Frameworks Differences
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Removing Deep Learning Frameworks Differences

Conv2D

shapes

attributes

formats
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Removing Deep Learning Frameworks Differences

Reshape

shapes

formats
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Hiding Target Differences

• Same public APIs for all the 

execution targets

• Same application code means 

portability on all the supported 

target

• Internal code is optimized for 

the different targets 

exploiting the 

heterogeneous hardware 

capabilities

• Extra APIs to support 

advanced features of 

hardware
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Hiding Target Differences

• Simplified public APIs: Init + 

run + deinit

• Different Optimization 

Objectives
• Time: to minimize inference 

time

• RAM: to minimize use of 

memory

• Balanced: trade-off between 

inference time and memory 

usage

• Multiple networks instancing 

in the same application
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ST Edge AI Core
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edge AI on 

Automotive MCUs

More than a decade of research, 
development, and deployment

edge AI on 

STM32

2018 20222020

edge AI 

Developer Cloud

Research using 

ML techniques for 

visual search

edge AI for 

sensors (ISPU*)

edge AI on 

latest automotive MCU 
. 

2021 2023

Introduction of autoML 

2019

edge AI for 

ST Linux

Developer 

Cloud 

Model Zoo

TinyML 

membership

MLC ISPU.AI

SPC5

Studio

.AI

*Intelligent Sensor Processing Unit

Edge AI 

devices

2012

edge AI 

for sensors (MLC)

Now

109
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Edge AI

Resources

Announcing the ST Edge AI Suite

The most complete developer-centric approach 

to accelerate the deployment of edge AI

Edge AI

Suite AI

Online 

documentation

Tutorials and 

trainings 
Community

Benchmarking Deployment
Data capture

Dataset creation

Ideation

Model Zoo

Bring Your 

Own Data

Bring Your 

Own Model

AutoML

End-to-end flow

Model training*

& optimization

OR

*via partner’s ecosystem
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ST Edge AI Core
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STM32Cube.AI
Edge AI optimization tool for STM32
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STM32Cube.AI solutions

113

STM32 model zoo

Dedicated GitHub repo

Getting started

Tutorial + code examples

Partners

Dedicated partner 

ecosystem

X-CUBE-AI

STM32CubeMX extension 

package

Developer Cloud

Online version of the tool

STM32 board farm

Online performance 

benchmarking facilities
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STM32Cube.AI: your go-to solution for edge AI

114

Fully integrated in the STM32Cube software development suite

Completely FREE of charge

Cutting-edge performance, optimized for STM32 hardware

114
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STM32Cube.AI core technology

Optimize and validate 

your NN model

STM32Cube 

ecosystem

Command Line 

Interface

STM32Cube.AI for desktop

REST

API

STM32Cube.AI Developer Cloud

Online

platform

Benchmarking 

tool

Evaluate

Optimize

Finetune

Core 

technology

STM32 model zoo

Bring your own model (BYOM)

viavia
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Two versions of the same tool
depending on your profile

116

Optimize and validate 

your NN model

REST

API

STM32Cube.AI Developer Cloud

Online

platform

Benchmarking 

tool

STM32Cube 

ecosystem

Command Line 

Interface

STM32Cube.AI for desktop

Embedded software 

developer

Data scientist

STM32 model zoo

Bring Your Own Model (BYOM)

viavia
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STM32 benchmarking tool

117

The unique possibility to evaluate the performance of models 

remotely, on real STM32 boards

Get the real inference time from optimized 

models running on STM32

Benchmark models on a large variety of 

STM32 boards

Find the most appropriate board for your 

application 

Get access to the most recent devices 

A board farm is constantly updated with the 

latest available boards
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STM32 model zoo

118

Hosted on GitHub

Model training scripts

• Scripts to generate and validate 

Getting started application packages

• Automatically generated from the trained 

models

• Easy to deploy for end-to-end evaluation

A collection of application-oriented models optimized for STM32

< I >

Audio event detection

Audio classification

Object detection

Computer vision

Image classification

Computer vision

Human activity 

recognition

Motion Sensing
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• Auto graph rewrite

• Node/operator fusion

• Layout optimization

• Constant-folding…

• Operator-level info to finetune 

memory footprint and computation

Quantized model supportGraph optimizer Memory optimizer

• From FP32 to Int8 or mixed-precision

• Minimum loss of accuracy

• Code validation on target

o Latency

o Accuracy

o Memory footprint

• Memory allocation

• Internal/external memory repartition

• Model-only update option

The 3 pillars of STM32Cube.AI 

STM32Cube.AI is free of charge, available both in graphical interface and in command line.

Automatically improve performance through 

graph simplifications & optimizations that 

benefit STM32 target HW architectures 

Import your quantized ANN to be compatible 

with STM32 embedded architectures while 

keeping their performance

Optimize memory allocation to get the best 

performance while respecting the constraints 

of your embedded design

119
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Graph optimizer

Squeeze your graph to fit into an MCU!

Fully automated process in the 

STM32Cube.AI workflow

• Your original graph is optimized at the 

very early stage for optimal integration 

into the STM32 MCU/MPU

• Loss-less conversion

120
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Quantized model support

Simply use quantized networks to reduce memory footprint and 

inference time

STM32Cube.AI supports quantized neural network 

models with all parameter formats:

• FP32

• Int8

• Mixed binary Int1 to Int8 (Qkeras*, Larq.dev*)

0
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400

500

600

700

800

0 20 40 60 80

F
la

s
h

 (
k

B
)

Latency (ms)

LATENCY & MEMORY COMPARISON FOR 
QUANTIZED MODELS

FP32

Int8

Int 1 + Int8
HW Target: NUCLEO-STM32H743ZI2

Model: Low complexity handwritten digit reading

Freq: 480 MHz

Accuracy: >97% for all quantized models

Tested database: MNIST dataset

*Please contact edge.ai@st.com to request 

the relevant version of STM32Cube.AI

MNIST dataset

121

mailto:edge.ai@st.com
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Memory optimizer

Relocatable network

▪ A separate binary is generated for 

the library and the network to 

enable standalone model upgrade

Re-use model input buffer to 

store activation data*

▪ Minimize RAM requirements

Model memory allocation 

▪ Set your external memory 

▪ Map in non-contiguous internal 

flash section

▪ Partition internal vs external flash 

memories

Model RAM 

consumption per layer

▪ Easily identify the most 

critical layers

* Requires input and activation buffers in same memory

Optimize performance easily with the memory allocation tool



ST Confidential

We provide everything to kick off your project

• Wiki by ST is a great forum to learn and 

start deploying edge AI on STM32! 

• Videos of application examples

• Massive open online courses (MOOCs)

Hardware and software toolsDesign documentation

• Evaluation platforms for STM32 MCUs 

and MPUs

• Additional sensor boards

• Full software suite

Support and updates

• ST Community: STM32 ML & AI group

• Distributor certified FAE

• Support center

• Newsletter

123

Development zone

Get started on 

application 

development and 

project sharing

Getting started

We guide you step-

by-step to start with 

the STM32 

ecosystem
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Next Challenges

On-Device Learning

Zero Code

Generative AI on the Edge
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Question Session

125System Development with STMicroelectronics
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Conclusion

“Tiny Machine Learning is not just a technology, it's a mindset that 

empowers us to build intelligent systems that can make a positive 

impact on the world." 
Pete Warden, CEO at Useful Sensors (previously Technical Lead at TensorFlow 

Lite for Microcontrollers)
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