


2



3

Title: “AN OPERATING SYSTEM IN A NUTSHELL”

Author: Corrado Santoro

Edition: Draft 1.2.0 - Dec 04, 2004

Copyright c© 2001, 2002, 2003, 2004, 2005 Corrado Santoro (csanto@diit.unict.it), University

of Catania. All rights reserved.

This book is a draft version; anyway, it contains material which are copyright by the Autor.

Everything is present in this book (text, source code, figures) are copyright by the Author. None

of these parts may be reproduced in form by any electronic or mechanical means (including

photocopying, recording, or information storage and retrieval) without permission in writing

from the Author.



Contents

1 Preface 7

I NUXI Explained 9

2 Presenting NUXI 10

2.1 Compiling, Installing and Running NUXI . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 NUXI Basic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 NUXI Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 NUXI Source Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Writing Your Programs in NUXI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 NUXI C Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.1 Standard I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.2 Standard lib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 String Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.4 C-Type Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6.5 File Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 NUXI Kernel Services 17

II NUXI Revealed 18

4 Intel x86 Family Basics 19

5 The Startup Process 20

5.1 The Boot Sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 Boot Sector Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Switching into Protected Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Kernel Startup Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Preparing the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4



CONTENTS 5

5.4 A20 Gate Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Testing Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.6 Resetting co-processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.7 Kernel Startup Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 The Console Display Manager 35

7 Handling Interrupts 36

7.1 The Interrupt Descriptor Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 Handling Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.3 Preparing Interrupt Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.4 The NUXI Interrupt Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.5 8259A Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 NUXI and Time 42

8.1 The 8253 System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.2 8253 Initialization in NUXI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.3 The Timer Handler Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8.4 NUXI Software Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.5 8253 Management Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.6 Timer Management Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Running Tasks 51

9.1 Task States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9.2 The Task Structure and Task Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.3 Task Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.4 Task Switching in Intel x86 Family . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9.5 Starting a New Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.6 Task Switching in NUXI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.7 “task.h” Header File Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9.8 Task Management Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10 Handling Concurrency 66

10.1 Wait Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10.2 Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10.3 Condition Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

10.4 “wait.h” Header File Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.5 Concurrency Management Source Code . . . . . . . . . . . . . . . . . . . . . . . 70

11 Managing Memory Space 74

12 Files and File Drivers 75



CONTENTS 6

13 What’s the meaning of ...? 76



Chapter 1

Preface

When we planned to start writing NUXI OS, the basic problem we was called to resolve was

about the real necessity to write another multi-tasking kernel. What we asked ourselves was

“Aren’t we satisfied of the huge number of existing operating systems and relevant books? Why

proposing yet another OS?....” Although the bare presence of such questions could led anyone

to desist in trying to write a new OS, we wanted to analyze the problem in-depth and these are

the conclusion we reached.

Surely there a large number of “famous” books, like [bach][tanenbaum][silberschatz][stallings],

which provide a complete explaination of OS design basics, presenting the most known tech-

niques used to solve all the problems related to task switching, scheduling, memory manage-

ment, etc.; some of these books, such as [bach], also present a full description of the func-

tioning of internal system calls, giving their pseudo-implementation, while other books, such as

[tanenbaum-minix], explains OS basics by means of the analysis of the source code of a real

operating system.

However, many people are often not satisfied of these descriptions since they would like to

see a real working implementation of the techniques onto a full-functioning operating system.

Surely, they could anaylize the source code of Linux or Minix (as we made before writing this

text), but this is could be too much time-expensive: You have to lose yourselves into a very

large number of source code lines, include files and makefiles, and often you are unable to gain

control over all the “secrets” of the analized operating system. Except Linus Torvalds, Andrew

Tanenbaum and maybe few others, not so many people are able to do this and to understand

the details.

Moreover, if you are a student of an operating system course, probably you would not like

to spend much time in source code analyzing and, at the same time, you would understand as

much as possible of the secrets of a real OS implementation. In this sense, our basic though

was: “OK, we know how a task switch should be performed and how virtual memory should be

implemented, but if we want to really design and implement an operting system from scratch,

7



CHAPTER 1. PREFACE 8

what have we to do? which kind of structures have we to implement? what kind of processor

instructions have we to use to handle memory space, task switching, exceptions and system

calls?”.

Dealing with all of these issues lead us to design NUXI, a very very light microkernel for Intel

x86 platforms providing support for multi-tasking, memory management and device drivers.

Its name means Not a UniX Imitation: yes! it is not another Unix/Minix/Linux clone, it is

only a simple micro-kernel for educational purpose. Surely, we wrote it from scratch but we

borrowed many design and implementation techniques from Minix/Linux, just to help students

to understand also how the operating system they use daily works.

We reported our experience in this book, explaining each single byte of NUXI using its real

souce code, which is given in the figures inside each Chapter. Moreover, since our aim is to pro-

vide a description as much comprehensive as possible, we added some sections dealing with the

functioning of multi-tasking support of Intel processors, basic BIOS interrupt services, interrupt

and timer circuitry, “misterious” assembler directives, etc. We will travel together in the secrets

of NUXI starting from the boot stage, following protected-mode processor switching, multi-task

preparation, memory handling, etc., till reaching the user-level processes. In addition, just to

allow a better comprehension, the last Chapter, which is called “What’s the meaning of...?”,

explains some minor issues/tips which are not useful to understand the core of the explained

routines, but allows non-expert readers to enrich their knowledge. A diamon “♦” sign in the text

means that you may find more information in the “What’s the meaning of ...?” Chapter.

Even if we tried to deal with most of the issues related to kernel design, this text is not

intended to replace other authoritative operating systems books! To read this text, you must

be familiar with 8086 assembler, C language, OS structure basics, task scheduling, memory

management techniques, and device support architectures. For this reason, it is intended to be

a companion text for an operating system course.

The Authors



Part I

NUXI Explained

9



Chapter 2

Presenting NUXI

Let’s start to know NUXI. Since we think that you would see what NUXI is able to do, our first step

will be to compile and run NUXI. Subsequently, we will learn how NUXI is composed, by looking

at its internal structure and analzing each module and the relevant characteristics. Finally, we

will see how to write, compile and run user programs inside NUXI.

2.1 Compiling, Installing and Running NUXI

Compiling and launching NUXI is quite simple. First of all you need a Linux system (or the

CygnusWin system if you have a Windows machine) provided that the “gcc” complier and the

“make” tool are present in your system. To install the developing version of NUXI, copy the

file “nuxi.tgz” onto your hard disk and unpack it (using the command “tar zxvf nuxi.tgz”). A

directory “nuxi” will be created. Reach this directory and run first the command “./configure.sh”

and then “make”; if no error occurs (we hope!), the following files will be generated:

• nuxi.img: the complete installation image, it contains the boot sector and the kernel image

(see Chapter 5)

• boot.lst: the disassembled boot sector code

• nuxi.lst: the disassembled kernel code

Now you are ready to install your kernel onto a bootable floppy. This is done using the command

“make install”. At this point, if you reboot your computer using the boot disk created, NUXI will

start and you will see a page like the one of Figure ?????.

After the boot, NUXI starts a simple shell, characterized by the nuxi$ prompt, which accepts

the following commands:

10



CHAPTER 2. PRESENTING NUXI 11

Command Meaningat sys:tasks Prints the list of current tasksat sys:mem Prints information about memory spacelear Clear console screenfifo Tests the character FIFOsbfifo Tests the block FIFOs

While you analyze NUXI code and (possibly!) patch it, if you do not want to reboot your PC

every time in order to test your implementation, you may download the open-source PC emula-

tor “bochs” (http://bochs.sourceforge.net), or buy the VMWareTM product (http://www.vmware.com).

Please note that a configuration file to run NUXI using “bochs” is included in the NUXI distribu-

tion.

2.2 NUXI Basic Features

The main idea we kept in mind when designed NUXI is to build a light, fast and real-time kernel

suitable for both educational purpose and specific applications (such as process control) running

on embedded platforms. To this aim, we first designed the scheduler and some concurrency

control services (the microkernel), and then we built around this all kernel services and the

user layer. NUXI is thus a microkernel-based system: the kernel presents a modular structure

allowing to add easily more services simply by including the source file in the source directory

tree and using some microkernel hooks provided just to insert the additional services. At the

same time, NUXI is monolithic, in the sense that all modules – microkernel, kernel, user library

and user programs – are compiled and linked together thus creating a single binary file (which,

in particular, is a boot floppy image). This is due to the fact that NUXI is a system designed to

be as small as possible and (currently) does not have a file system (probably in future versions,

a file system manager will be added). Due to this “small and light” requirement, user programs

in NUXI do not behave as processes, but there is a single user process which can run multiple

threads. In addition, NUXI does not provide virtual memory management, because NUXI is not

intended to be run on workstations or servers like other more authoritative OS, but it is designed

to be employed in specific application fields (such as small computing environment) which do

not need more than the RAM which could be installed on a PC platform.

Finally, the last characteristic we kept in mind was the standardization: system calls and

utility functions provided by the NUXI user library are designed in order to be conform to ANSI-

C and POSIX.



CHAPTER 2. PRESENTING NUXI 12

m
ic

ro
ke

rn
e

l
u

se
r 

la
ye

r
ke

rn
e

l

Console Sysinfo FIFOs

Low-level (VGA) Console

Timers

File Drivers

Exception HandlerMemory Manager Interrupt Handler

Scheduler

Thread Control

User Tasks

Stdio library Pthread library

Hardware

Figure 2.1: NUXI Modular Structure

2.3 NUXI Structure

The modular composition of NUXI is depicted in Figure 2.1 which shows that basically NUXI is

composed of the following three layers:

MicroKernel. This layer is very thin and includes the modules for tasks and CPU management.

The microkernel provides all services for interfacing the kernel layer with the CPU. In

particular, the low-level console, handles VGA output by offering a set of calls to print

characters and strings onto the screen, perform scrolling functions and handling cursor

positioning. The memory manager handles memory heap, offering services to allocate

and free memory blocks. The interrupt handler and the exception handler allow instead

to set and remove interrupt-service routines for processor exceptions, software interrupts,

and hardware IRQs. Upon the interrupt handler runs the timer module, entailed to han-

dle flow of time and software timer, and the scheduler, one of the main part of NUXI.

It is a standard round-robin preemptive scheduler with a priority management mecha-

nism able to handle both dynamic and static priorities: dynamic priorities are used for

non-realtime processes, and are managed on the basis of the most recent CPU usage of

a process (thus implementing a UNIX-like fair scheduler); static priorities are reserved

for realtime processes and are fixed on the basis of time urgency of each process. The

scheduler is managed by the thread control module, responsible of handling process cre-

ation and destruction, and concurrency control. The latter function is performed through

semaphores, condition variables and wait channels which are offered to the higher levels of

kernel running upon this module. The presence of a thread control placed at a low level



CHAPTER 2. PRESENTING NUXI 13

and running directly upon the scheduler allows to write a pre-emptible kernel, which is a

mandatory characteristic when you develop a realtime OS. Other OSs, like Unix/Linux,

do not allow pre-emption in kernel mode: this introduces impredictable latencies which

impede hard-realtime processes to meet the requested time constraints. NUXI, instead, is

developed using some techniques which allows to pre-empt everything, both in kernel and

user mode. Kernel routines make a wide use of semaphores for critical sections (instead

of clearing interrupts) and each process has both a user-level and kernel-level context in

order to allow pre-emption in kernel code when a process issues a system call.

Kernel. The kernel layer is basically composed of the file driver module and the system call

handler. The file driver manages installable drivers which offer filing services; in par-

ticular it provides an abstraction layer handling all filing system calls (open, read, write,

close, ioctl, etc.) and its functioning is similar to that of character device driver manage-

ment module of the Unix OS. Inside this module three file drivers run: the console driver,

handling screen and keyboard I/O, the sysinfo driver, a read-only driver providing system

information such as process list or memory statistic data, and the FIFO driver, which offers

inter-process communication services.

User. At the highest level user programs and user libraries are placed. In particular the system

library implements ANSI-C standard I/O and POSIX-thread services, providing the needed

interface between the kernel and user processes.

2.4 NUXI Source Organization

2.5 Writing Your Programs in NUXI

In this Section, we will explain how to write user programs in NUXI. If you want to write kernel

parts or patch it, please read the Part II (Nuxi Revealed) of this book.

To write a user program in NUXI is quite simple. Since the kernel, once it finishes all its

startup procedures, calls the function void user_main(void), you have to add a source file

which implements your program as this function and modify the Makefile by setting the USER

variable to the name of your source file (without the “.c” suffix). As an example, you may see the

file “userproc.c”, which implements a very simple shell for testing purpose. You can write your

program using a subset of the standard ANSI-C and POSIX library calls, which are described in

Section 2.6, and the kernel services described in Section 3.

2.6 NUXI C Library

This Section reports the prototype of the library functions currently implemented in NUXI.



CHAPTER 2. PRESENTING NUXI 14

2.6.1 Standard I/O

Include files:

• stdio.h
Available functions:

• int vfprintf(FILE *f,har *fmt,va_list ap);
• int printf(har *fmt,...);
• int fprintf(FILE *f,har *fmt,...);
• int fprintf(FILE *,har *fmt,...);
• int fput(int ,FILE * f);
• int fputs(onst har *s,FILE * f);
• int put(har ,FILE * f);
• int puthar(har );
• int fget(FILE * f);
• har * fgets(har * s,int size,FILE * f);
• har gethar(void);
• int vsprintf(har * s,har *fmt,va_list ap);
• int sprintf(har * s,har *fmt,...);

2.6.2 Standard lib

Include files:

• stdlib.h
Available functions:

• long int strtol(onst har *nptr,har **endptr,int base);
• int atoi(har * s);



CHAPTER 2. PRESENTING NUXI 15

2.6.3 String Library

Include files:

• string.h
Available functions:

• int strlen(har * s);
• har * strpy(har * dst,har * sr);
• har * strat(har * dst,har * sr);
• har * strnpy(har * dst,har * sr,int len);
• int strmp(har * s1,har *s2);
• int strnmp(har * s1,har *s2,int n);
• har * strhr(har * s,har );
• void * mempy(void * dest,void * sr,int size);
• void * memset(void * s,int ,int size);

2.6.4 C-Type Library

Include files:

• type.h
Available functions:

• int isspae(int );
• int isdigit(int );
• int isalpha(int );
• int toupper(int );
• int tolower(int );



CHAPTER 2. PRESENTING NUXI 16

2.6.5 File Operations

Include files:

• fntl.h
Available functions:

• int open(har * name,int mode);
• long write(int fid,har * buf,long size);
• long read(int fid,har * buf,long size);
• long iotl(int fid,int md,void * arg);
• int lose(int fid);



Chapter 3

NUXI Kernel Services

17



Part II

NUXI Revealed

18



Chapter 4

Intel x86 Family Basics

[TBD]

19



Chapter 5

The Startup Process

Let’s start dealing with NUXI design and implementation from the boot process. NUXI is cur-

rently designed to boot only from a floppy, because handling the OS loading process from a

floppy is more simple than using an hard disk, since we do not need to deal with partition ta-

bles. At the same time, we think that, when you will perform some experiments by modifying

kernel source, you will prefere to avoid any data loss, on your hard disk, deriving from a possible

bug in the OS install process.

Once NUXI is compiled, the “makefile” produces a floppy image binary file which has the

following structure:

1. The first 512 bytes compose the boot sector. It is loaded and executed by the BIOS when

the computer is started-up.

2. The remaining bytes compose the OS kernel image, which will be loaded and executed

by the code present in the boot sector.

When this image is copied onto a floppy, the boot sector is placed in the first sector of the disk

(track 0, head 0, sector 1), and the OS kernel image is placed in the subsequent sectors.

5.1 The Boot Sector

When your PC is started-up, the ROM BIOS loads the first sector of the floppy at memory address

07C0H:0000H (linear 07C00H)1 and then performs a long jump to that location. The boot code

has to load the kernel into memory and then to run it. To this aim, several issues have to be taken

account. First of all, we must choose the memory location onto which starting to load our kernel.

In order to do not waste memory space (even if we have a huge amount of RAM!), we should

place the code as near as possible to the beginning of our memory. As Figure 5.1 shows, which

1Please note that, at start-up, the processor is in real mode and thus its addressing mode behaves like 8086 CPU.

20



CHAPTER 5. THE STARTUP PROCESS 21

Linear Address

00000H

00400H

00500H

BIOS Data Area

Interrupt Vectors

07C00H
Boot Sector

07E00H

0A0000H
Video Area

0C0000H

ROM Space

BIOS ROM

0F0000H

100000H
Extended Memory

Linear Address

Relocated Boot Sector
09FE00H

09F000H

09FDF0H
Boot Sector Stack

(real−mode addressable space)

End of 1st megabyte

NUXI Kernel is loaded
starting from here

Figure 5.1: PC Memory Map

reports the memory map of standard PC, locations from 0000:0000 to 0000:0400H are occupied

by the interrupt vectors (4 bytes, seg:off, for each interrupt vector times 256 interrupts), while

the memory from 0000:0400H to 0000:0500H is used by the BIOS to store its data (the so-called

“BIOS Data Area”). Thus, since we will use BIOS services in this boot process (for example the

“read sectors” service for kernel loading) we must not overwrite data stored in these locations.

The lowest memory location available is therefore 0000:0500H therefore the boot code will load

the kernel image placing it starting from this address. However, in performing kernel loading,

we must do care to code size: if it is greater than 30464 bytes (7700H), location 7C00H (500H +

7700H) is reached, thus overwriting the boot code which is still running. To solve this problem,

which is common for all existing operating systems, the boot code generally relocates itself to a

higher memory area before performing any other operation. We chose the highest memory area

available in the first megabyte of RAM which, according to Figure 5.1, is location 09FE0H:0000H

(linear 09FE00H)2. The final choice we have to make is establish the memory area for the stack

of the boot code which, following the same guidelines, is placed before relocated boot code at

linear address 09FDF0 (which corresponds to 09F00:0DF0H) ♦. Now we are ready to load the

kernel. The complete listing of the boot code is given in Section 5.1.1 and performs the following

steps:

Lines 17–18. Perform a short jump to location next. This is required to skip the setor_ount
variable definition, which is initially set to 0, and the local variable area (lines 20–23). As

2RAM size in the first megabyte is 0A0000H, boot sector is 200H (512) bytes long, thus 0A0000 - 200H = 09FE00H.



CHAPTER 5. THE STARTUP PROCESS 22

we will see in the following, the setor_ount variable holds the number of sectors to be

read in order to load the kernel image. Its value depends on the size of the kernel and

thus it is computed at kernel compile time: once the final kernel image is produced by the

compiling process, the utils/kernelsize utility determines the number of sectors which

the kernel will occupy and stores the value directly at offset 2 of the boot sector image

(the short jump instruction is two bytes long). The presence of a short jump as the first

instruction of a boot sector is common technique and allows a parameter table, needed by

the boot process, to be placed at a known address (location 2) in order to be filled in a

second time.

Lines 25–36. Relocate boot sector. According to what we said above, the boot sector relocate

itself from address 07C0H:0000H to segment BOOTSEG which is set to 09FE0H (line 10).

This is done by using the “move string word” – movsw – opcode repeated by 256. Then a

long jump to the relocated boot sector is performed.

Lines 37–47. Setup Stack and Segment Registers. First we load registers SS and SP, then, since

we have some local variable in the boot sector, we need to access them. For this reason we

set DS register to point to segment BOOTSEG, which contains the relocated boot sector.

Lines 48–83. Load the kernel from disk. Now we are ready to perform kernel loading. To this

aim, we have to read setor_ount sectors from disk starting from sector 2 of track 0, head

0. Please note that, even if track and head numbers start from 0, sector numbers start from

1, thus our boot sector is track 0, head 0, sector 1 and the kernel image starts from track 0,

head 0, sector 2. To read floppy sectors, we use the “read sectors” service of the Disk BIOS,

by calling INT 13H ♦ with AH=2 (Figure 5.2 reports the meaning of the registers for this

service call). This service is able to read multiple sectors but, in some BIOS, it cannot go

beyond a track. For example, if want to read 20 sectors of a 1.44 MBytes floppy (which

has 18 sectors per track) with a single call, the BIOS service will fail, since the requested

sectors do not surely belong to the same track. For this reason, we do not read the whole

kernel image using a single service call but we invoke the BIOS “read sector” service for

each single sector until we reach setor_ount. To this aim, we use the varaibles setor,trak and head to store respectively the sector number, track number and head number

of the disk sector to be read, and address to store the memory offset address at which

the sector will be loaded. As the source code reports, the latter variable is initialized tokaddress which is defined as 0500H in file “segments.s”. The loop which reads kernel

sectors is quite simple: we prepare all registers to read one sector, print an ’E’ and retry if

an error occurs, if read succeeds increase memory location by 512 (each sector is 512 bytes

long), increase sector number and, if needed, change head and/or track number. The loop

counter is register CX which is initialized to setor_ount.

Lines 85–87. Turn motor drive off. If no error occurs, we turn the drive motor off by out’ing

the value 0 to port 03F2H.



CHAPTER 5. THE STARTUP PROCESS 23

Register Meaning

AH 2 (“read sector” service)

AL Number of sectors to read

ES:BX Memory address at which the loaded sectors have to be places (SEG:OFS)

CL First sector number to be read

CH First track number to be read

DH First head number to be read

DL Drive number (drive A=0, drive B=1, drive C=2, etc.)

Figure 5.2: INT 13H Registers Meaning

Line 91. Start the kernel. Finally we start the loaded code by performing a long jump to loca-

tion 0000:0500H.

The last two lines of the boot sector souce places the bytes 0x55 0xAA at the end of the sector

itself (offset 510). This is the “boot signature” needed to signal the BIOS that the sector contains

a boot code.

5.1.1 Boot Sector Source Code1: #2: # NUXI Boot Code3: # Copyright (C) 2001 Corrado Santoro <santo�diit.unit.it>4: #5: # This ode is loaded from BIOS at address 0000:7C006: #7:8: .inlude "segments.s"9:10: BOOTSEG = 0x9FE011: STACKSEG = 0x9F0012:13: .global boot14:15: .ode1616: .balign 0x0817: boot:18: jmp next19: setor_ount: .word 020: setor: .byte 221: head: .byte 022: trak: .byte 023: address: .word kaddress24:25: next:26: # now move boot setor at BOOTSEG:0000H



CHAPTER 5. THE STARTUP PROCESS 2427: movw $0x70,%ax # boot setor is loaded at 07C0H:0000H28: movw %ax,%ds # thus load DS to aess this area29: movw $0,%si # ds:si = loaded boot setor area30: movw $BOOTSEG,%ax31: movw %ax,%es32: movw $0,%di # es:di = destination area33: movw $256,%x # word ount34: ld35: rep movsw # reloate setor36: ljmp $BOOTSEG,$go # go to reloated ode37: go:38: movw $STACKSEG,%ax39: movw %ax,%ss40: movw $0x0df0,%sp #plae stak at STACKSEG:0DF0H (before boot setor)41: all writedot # put a dot onto the sreen to signal42: # the first boot stage43:44: movw $BOOTSEG,%ax # now boot setor is at BOOTSEG:0000H45: movw %ax,%ds # thus load DS to aess this area46: movw setor_ount,%x # loop for the number of setors47: # to read48: do_read:49: pushw %x50: movw $ksegment, %ax # prepare register for setor read51: movw %ax, %es # address (segment)52: movw address, %bx # address (offset)53: movb $0x02, %ah # servie 2 (read setors)54: movb $0x01,%al # setor ount=1 setor55: movb setor, %l # setor number56: movb trak,%h # trak number57: movb head,%dh # head number58: movb $0x0,%dl # drive number (0=A:)59: int $0x13 # read a setor of mirokernel image60: jn read_ok61:62: movb $0x45,%al # if error, display 'E' and retry63: all writehar64: popw %x65: jmp do_read66:67: read_ok:68: all writedot # setor loaded suessfully69: # now go to next setor70: addw $512,address # setor size if 512 bytes71: inb setor72: mpb $19,setor # are we at the end of trak?73: # (1.44 MB floppy => 18 ses./trak)74: jne read_next75: movb $1,setor



CHAPTER 5. THE STARTUP PROCESS 2576: inb head # end of trak reahed => next disk fae77: mpb $2,head # did we read both faes ?78: jne read_next79: movb $0,head # both faes read, go to next trak80: inb trak81: read_next:82: popw %x83: loop do_read # loop to total number of setor to read84:85: movw $0x03F2, %dx # turn off drive motor86: xorb %al, %al87: outb %al, %dx88:89: all writedot # motor off suessfully90:91: ljmp $ksegment, $kaddress92:93: # write a dot into the sreen94: writedot:95: movb $0x2e,%al96: writehar:97: movb $0x0e,%ah98: movw $0x0007,%bx99: int $0x10100: ret101:102: .org 510, 0103: .byte 0x55,0xAA
5.2 Switching into Protected Mode

The first step performed by the loaded kernel is to switch the processor in protected mode. This

is performed by the NUXI startup code present in file start.s and reported in Section 5.2.1. First,

we set the DS register equal to CS since our data is placed in the code segment (lines 22–23). The

next instruction clears the processor interrupt flag to impede the CPU to respond to any incoming

external interrupt, operation required since we are going to change processor addressing mode;

in fact, until the interrupt service routines which use protected mode addressing will be not

properly installed, an interrupt occurring during this initialization phase, if handled, could hang

up the system. At this point, we load the GDT register of the CPU (line 26) with the data stored

at location gdtr (located at lines 81–92): it contains the size and the linear address of our global

descriptor table. The GDT size (in bytes) is computed using the constant gdt_entries counting

the number of entries of our table, while the GDT starting address is referred by label gdt whose

linear address is resolved by the linker (see below).



CHAPTER 5. THE STARTUP PROCESS 26

Let’s show how our GDT is organized. As we can see in the source code of Section 5.2.1,

each entry is compose of four words, according to Intel specifications (see Chapter 4). The first

entry is the “null entry” and correspond to selector 0; the entry is filled to zero just to cause

a “segment not-present” [general protection fault??] exception (P bit is 0) when the program

references a NULL pointer. This is a common design technique for operating systems and avoids

dirting memory when a program tries to use a non-initialized pointer (a common bug when

you develop software using C language); instead, an exception is raised to allow the kernel to

stop the program which caused incorrect addressing and, possibily, to print a proper message

on the screen (aren’t you familiar with “Segmentation Fault” messages?). The next two entries

(selectors 08H and 10H) will refer respectively to code segment and data segment in our kernel.

Both descriptors map the entire addressable memory: a 4 GBytes segment starting from the

beginning of memory (address 0). As Figure 5.3 shows, by setting the segment limit to the

maximum and the Granularity bit to 1 (the limit part of selector thus refers to 4 KBytes pages)

we are able to access the whole memory from a single segment in order to map each location of

the segment to the numerically correspondent physical location. For example, accessing memory

address 0FF0100H using selector 08H will be equivalent to access memory at linear address

0FF0100H. Both segments are thus relevant to the same memory space, but the former (relevant

to selector 08H) is executable, i.e. the bit E is set, while the latter (relevant to selector 10H)

is a data segment. Choosing this virtual-to-physical correspondence is mandatory since the

linker resolves symbols considering a contiguous addressing space, thus mapping data and code

segments on the overall 4 GBytes addressing space avoids the need for run-time relocation.

Indeed, the global descriptor table contains other segments, but they are left un-initialized

since will be used to map Task State Segments of the various tasks which will be launched later

(see Chapter 9).

After loading the GDT register (and after writing another dot!), we are ready to switch into

protected mode, operation performed by setting the bit 0 of the processor’s machine status word

(MSW) also called register CR0 (lines 30–32). However, switching is performed by the processor

only after an inter-segment long jump. Thus, following the suggestion of Intel software devel-

opers’ manual [rif.], we perform a simple short jump in order to flush the processor’s instruction

cache (lines 34–35), and then a long jump to address k_start of selector 08H (lines 37–40). This

long jump is forced to work in 32-bit addressing mode by using the 32-bit addressing override

instruction. Since we do not know whether the compiler treats a long jump using 16 or 32 bit

addressing (we are still in the .code16 part of the code), we place directly in the source code

the requred op-codes instead of using the jmpl mnemonic: op-code 66H forces the processor to

treat the next instruction with 32 bit addressing, op-code 0EAH is the long jump instruction, the

following long word is the offset of the target of the jump and the last word is the selector (ode
constant is set to 08H in the “segments.s” source file).

Program continues execution at location k_start (line 55 – we are now in the .code32 section

since here the execution is in protected mode), here we load all the segment selectors registers



CHAPTER 5. THE STARTUP PROCESS 27

00 0 0 0 0 0 0 00 0 0 0 0 0 0

Segment Limit 15..0

Segment Base 15..0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G

10 1 0 0 1 1 1 10 0 0 0 0 0 0
Limit 19..16

00 0 0 0 0 0 0 01 0 0 1 1 0 1

Base 31..24

P DPL S A Base 23..16

D

Type

00 0 0 0 0 0 0 00 0 0 0 0 0 0

Base = 0

Limit = 0FFFFFH (x 4K-page = 4GBytes)

Present = 1

DPL = 0

S = 1 (Code or Data descriptor)

Type = binary 101 (executable & readable)

D = 1 (32-bit segment)

G = 1 (Page granular)

0FFFFH

00000H

09200H

000CFH

Selector 10H

0FFFFH

00000H

09A00H

000CFH

Selector 08H

Segment Limit 15..0

Segment Base 15..0

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1

G

10 1 0 0 1 1 1 10 0 0 0 0 0 0
Limit 19..16

00 0 0 0 0 0 0 01 0 0 1 0 0 1

Base 31..24

P DPL S A Base 23..16

D

Type

Base = 0

Limit = 0FFFFFH (x 4K-page = 4GBytes)

Present = 1

DPL = 0

S = 1 (Code or Data descriptor)

Type = binary 001 (not-executabile & writable)

D = 1 (32-bit segment)

G = 1 (Page granular)

Figure 5.3: The Segments used by the Kernel

of the processor (except CS) in order to point to the data segment 10H (data constant is set to

10H in the “segments.s” source file). Then, we have to setup a temprary stack (which will be

freed when the first task will be started) by setting ESP register to the highest memory location

in the first megabyte, i.e. location 09FFF0H. Finally we jump to location kernel_main which

refers to the kernel startup routine, written in C, and present in the kernel. source file.

5.2.1 Kernel Startup Source Code1: #2: # NUXI Startup Code3: # Copyright (C) 2001 Corrado Santoro <santo�diit.unit.it>4: #5:6: .inlude "segments.s"7:8: .global _gdt9: .global start10: .global _start11: .global _load_idtr12: .global _dummy_iret13:14: .ode16



CHAPTER 5. THE STARTUP PROCESS 2815:16:17: .balign 0x0818: start:19: _start:20: all writedot # jump to start ode suessfully21:22: movw %s,%ax # setup DS equal to CS23: movw %ax,%ds24:25: li # disable interrupts26: lgdt gdtr # load global desriptor table27:28: all writedot # gdt setup OK29:30: # OK. Set Bit0 of Mahine Status Word �> Set Proessor in Proteted Mode31: movw $0x1,%ax32: lmsw %ax33: # fore flushing of instrution ahe34: jmp flush35: flush:36: # NOW IN PROTECTED MODE. Perform long jump to kernel startup ode37: # jmpi 0x10,pm38: .byte 0x66,0xea39: .long k_start40: .word ode41:42: # ��������������������43: # subroutines for 16bit mode44: .balign 0x0845: # write a dot into the sreen46: writedot:47: movb $0x2e,%al48: writeh:49: movb $0x0e,%ah50: movw $0x0007,%bx51: int $0x1052: ret53:54: .ode3255: k_start:56: movw $data, %ax57: movw %ax, %ds58: movw %ax, %es59: movw %ax, %fs60: movw %ax, %gs61: movw %ax, %ss62: movl $0x09fff0,%eax63: movl %eax,%esp



CHAPTER 5. THE STARTUP PROCESS 2964:65: # booting the kernel main funtion (in kernel.)66: jmp kernel_main67:68: .set gdt_size,1669:70: .balign 0x0871: .word 0x000072: gdtr: .word (gdt_size * 8)-173: .long gdt74:75: .balign 0x0876: gdt:77: .word 0x0000, 0x0000, 0x0000, 0x000078: .word 0xFFFF, 0x0000, 0x9A00, 0x00CF79: .word 0xFFFF, 0x0000, 0x9200, 0x00CF80: .rept gdt_size-381: .word 0x0000, 0x0000, 0x0000, 0x000082: .endr83:84: .data85: _gdt:86: .long gdt87: .end
5.3 Preparing the Kernel

Now we can switch to source file kernel. (whose listing is given in Section 5.7) which is (fi-

nally!) written in C and take a look of function kernel_main (lines 137-161). This function

contains several calls to initialization functions and ends by launching the first kernel task. We

do not detail here these routines since they belong to modules which will be described each in

its relevant Chapter. In particular console management, interrupts handling and task switching

will be dealt with in the above Chapter, while the next section of this Chapter will describe A20

gate enabling, memory testing, and co-processor resetting.

The kernel_main function ends with calling task_add which launches the routine passed as

parameter as a new task. If the task is the first task launched, task_add must never return, but if

a return occurs maybe there is a bug in the kernel; in this case, we disable scheduler by clearing

the interrupt bit, print a panic message on the screen and halt the machine. We will deal with

operation performed by task_add in Chapter 9.



CHAPTER 5. THE STARTUP PROCESS 30

5.4 A20 Gate Management

The first thing we must do (after writing the NUXI welcome message!) is to enable A20 line.

What is the meaning of “A20 enabling”? Well, A20 is the line 20 of the memory address bus; in

PC platforms (since the IBM PC-AT), this line is forced to 0, at computer startup, by a suitable

circuitry in order to allow 80286 and subsequent processor, when operating in real-mode, to

behave exactly like 8086/8088. Let us explain this in a deeper way. When you access memory

in an 8086/8088 processor, the addressing unit performs the calculation segment*16+offset and

then reads/writes memory using the resulting linear address. If you try to access memory at

address 0FFFFH:0FFFFH the resulting linear address will be 10FFEFH; since 8086/8088 have

only 20 address lines, the above linear address is truncated into 0FFEFH. On the contrary, 80286

CPUs (and subsequent) have more than 20 address lines, thus they do not perform MSB trun-

cation. This could provoke a different behavior of programs running in a 80286 processor (in

real mode) but designed for 8086/8088. For this reason, designers of the “good old” IBM PC-AT

added a circuitry which forces A20 line to zero. Fortunally, this circuitry can be disabled in order

to allow correct addressing when the processor works in protected mode. This is what we have

to do!

The code which enables A20 line is the function a20_enable – lines 44–57 of source code in

Section 5.7. In the first AT PC, the circuit controlling this function was enabled and disabled

by using a spare bit of the keyboard controller. For this reason, the first two port operations

of the a20_enable function are relevant to port 064H and 060H (the keyboard controller, see

Chapter [keyboard]!). When PS/2 PCs were introduced, designers added a different I/O port

dedicated to A20 management. For this reason, in our source code, we also reported enabling

of A20 by setting bit 1 of port 092H.

The __SLOW_DOWN_IO macros, defined in the include file “io.h” and used in A20 enabling,

introduce a small delay in order to permit driven circuits to respond. This macro simply “wastes

time” by performing two short jump instructions.

5.5 Testing Memory

The function memory_test is quite simple (lines 25–42). It aims to set the mahine_memory_size
variable to the highest available location of the installed memory. We do this by performing a

write/read test on the first location of each megabyte of our memory. The local variable memaddr
is initially set to point to the second megabyte of the memory (we assume that you have at least

1 MByte of memory istalled!!) and increased each time by 1 MByte. The test is performed by

writing the word 1234H in the location pointed by memaddr and reading it back; the loop ends

when the value read differs from 1234H or when we reached the end of the addressable memory

(4 GBytes, but we think that no computer with this amount of memory exists... probably in the

future... However, even if we did not tested our function with this amount of memory, it should



CHAPTER 5. THE STARTUP PROCESS 31

work correctly!). The memaddr variable is declared as volatile otherwise compiler optimization

will skip the test assuming that it is always false. In fact, we write the value 1234H onto *memaddr
and then we test it against the same value, thus the compiler thinks that, between the assignment

and the test, no one will change the written data (uhm, a stupid compiler? No, obviously it does

not suppose that we are trying to address non-exisiting memory!).

5.6 Resetting co-processor

Finally, we perform a co-processor reset. Co-processor is driven by using I/O ports 0F0H and

0F1H and its reset is simply performed by out’ing zero on these ports.

5.7 Kernel Startup Source Code1: /*2: * kernel.3: * Copyright (C) 2001, 2002 Corrado Santoro (santo�diit.unit.it)4: */5:6: #inlude <kernel/io.h>7: #inlude <kernel/asm.h>8: #inlude <kernel/onsole.h>9: #inlude <kernel/interrupt.h>10: #inlude <kernel/timer.h>11: #inlude <kernel/task.h>12: #inlude <kernel/kprintf.h>13: #inlude <kernel/mm.h>14: #inlude <kernel/wait.h>15: #inlude <kernel/exeption.h>16: //#inlude <kernel/mailbox.h>17: #inlude <kernel/driver.h>18: #inlude <kernel/usertable.h>19: #inlude <user/pthread.h>20:21: #define KERNEL_RELEASE "0.0.9-2"22:23: void * mahine_memory_size = 0;24:25: void memory_test(void)26: {27: // Start memtest from 0x100000 (1 MB)28: // Delare as 'volatile' otherwise assignment and omparison with 0x123429: // does not work due to ompiler optimization30: volatile uint16 * memaddr = (uint16 *)0x100000;31: while (memaddr != 0x0) {



CHAPTER 5. THE STARTUP PROCESS 3232: uint32 l_addr = (uint32)memaddr;33: l_addr �= 20;34: kprintf("\rTesting Memory: %d MBytes",(int)l_addr);35: *memaddr = 0x1234;36: if (*memaddr != 0x1234)37: break;38: memaddr += 0x80000; // goto next megabyte39: }40: kprintf(" Found OK\r\n");41: mahine_memory_size = (void *)memaddr;42: }43:44: void a20_enable(void)45: {46: kprintf ("Enabling A20...");47: outb(0xd1,0x64);48: __SLOW_DOWN_IO;49: outb(0xdf,0x60);50: __SLOW_DOWN_IO;51: outb(inb(0x92) | 0x02,0x92); // fast "A20" version52: __SLOW_DOWN_IO;53: __SLOW_DOWN_IO;54: __SLOW_DOWN_IO;55: __SLOW_DOWN_IO;56: kprintf ("OK\r\n");57: }58:59: void reset_oproessor(void)60: {61: kprintf ("Resetting oproessor...");62: outb(0xf0,0x0);63: __SLOW_DOWN_IO;64: outb(0xf1,0x0);65: __SLOW_DOWN_IO;66:67: asm ("finit68: lts69: mov %r0,%eax70: and $0xfffffff1,%eax71: mov %eax,%r072: ");73:74: kprintf ("OK\r\n");75: }76:77: void nibble_print(uint32 x)78: {79: kprintf("%%%%",80: x & 0xff , (x � 8) & 0xff, (x � 16) & 0xff, (x � 24) & 0xff);



CHAPTER 5. THE STARTUP PROCESS 3381: }82:83: void puid(void)84: {85: uint32 eax,ebx,ex,edx;86: asm ("movl $0x0,%%eax;"87: "puid;"88: "movl %%eax,%0;"89: "movl %%ebx,%1;"90: "movl %%ex,%2;"91: "movl %%edx,%3" : "=m" (eax) , "=m" (ebx) , "=m" (ex) , "=m" (edx));92: kprintf("CPU Type is `");93: nibble_print(ebx);94: nibble_print(edx);95: nibble_print(ex);96: asm ("movl $0x1,%%eax;"97: "puid;"98: "movl %%eax,%0;"99: "movl %%edx,%1" : "=m" (eax) , "=m" (edx));100: kprintf("' Type %d, Family %d, Model %d, Stepping ID %d\r\n",101: (eax � 12) & 3, (eax � 8) & 0xf, (eax � 4) & 0xf, eax & 0xf);102: }103:104: void banner(void)105: {106: kprintf(" _ _ _ _ \r\n");107: kprintf(" | | | | | | | | \r\n");108: kprintf(" | | | | | | | | _\r\n");109: kprintf(" | | | | \\ \\ / / |_|\r\n");110: kprintf(" _______ | | | | \\ \\/ / _\r\n");111: kprintf(" / ___ | | | | | / /\\ \\ | |\r\n");112: kprintf(" | | | | | | | | / / \\ \\ | |\r\n");113: kprintf(" | | | | | |____| | | | | | | |\r\n");114: kprintf(" |_| |_| \\________| |_| |_| |_| "115: KERNEL_RELEASE " is started\r\n\n");116: }117:118: void main_kernel_task(void * x)119: {120: pthread_t t1;121: int i = 0;122:123: kprintf("Main Task Started OK\r\n");124: driver_init();125: init_timer();126: puid();127: banner();128: kprintf("Starting User Tasks...\r\n");129: while (user_tasks[i℄.pro != NULL) {



CHAPTER 5. THE STARTUP PROCESS 34130: pthread_reate(&t1,NULL,user_tasks[i℄.pro,NULL);131: i++;132: }133: urrent_task->status = TASK_SLEEPING;134: for (;;);135: }136:137: void kernel_main()138: {139: onsole_base_init();140: kprintf ("\r\nNUXI release " KERNEL_RELEASE " loaded.\r\n");141: kprintf ("Copyright (C) 2001,2002 Corrado Santoro (santodiit.unit.it)"\142: " GPL Released.\r\n");143: kprintf ("Compiled on " __DATE__ "\r\n");144: kprintf ("Booting the kernel.\r\n");145: a20_enable();146: memory_test();147: reset_oproessor();148: interrupt_setup();149: kprintf("Preparing Memory Manager...");150: // hummm.. we onsider heap memory starting from seond megabyte151: // indeed we should start from the end of kernel (how to ompute it?)152: mm_init(0x100000,(uint32)mahine_memory_size);153: kprintf("OK\r\n");154: //mailbox_init();155: kprintf("Preparing Task Strutures...\r\n");156: task_add(NULL,main_kernel_task,NULL);157: // never return158: __li();159: kprintf("PANIC! Unreahable point reahed!\r\n");160: __halt();161: }



Chapter 6

The Console Display Manager

[TBD]

35



Chapter 7

Handling Interrupts

7.1 The Interrupt Descriptor Table

[Described in “x86 Basics” Chapter???]

7.2 Handling Hardware Interrupts

As we know from Intel Datasheets, processors of x86 family have three interrupt input pins:

RESET, NMI and INT. The INT line is used for peripheral interrupt requests, and its management

is performed by the processor using several steps, depicted in Figure 7.1. In particolar, when an

interrupt signal (i.e. a transition from logic level 1 to logic level 0)1 appears on the INT pin,

the processor interrupts its activity, reads a value from its address bus, adds the IDT base and

performs a long jump using the pointed gate (please note that each entry of the IDT is a gate)2.

This technique is needed since processor has only one INT line but the request may arrive

from different peripherals. Indeed, as Figure 7.2-left side shows, supposing that all periph-

eral interrupts lines are AND’ed together, each peripheral, after generating the interrupt signal,

should present the proper address in order to allow processor to jump to the peripheral interrupt

handling routine. Unfortunally, an AND gate is not sufficient, since it is not able to handle the

simultaneous occurring of multiple interrupts, where a priority assignment is needed. To this

aim, Intel designed an interrupt multiplexer chip, the 8259A called the Programmable Interrupt

Controller, PIC in short. As Figure 7.2-right side shows, the PIC has 8 interrupt request input

lines, numbered IRQ0-7, and it is connected to the processor though the bus and the INT signal.

The PIC has two registers allowing programming: priorities can be assigned to IRQ lines as well

1The interrupt singnal is indeed a “pulse”: after tranistion from 1 to 0 the program is interrupted and the processor
is “frozen”; when the signal returns to logic level 1, the interrupt service routine is started.

2This is the functioning in protected mode. In real mode, processor handles interrupts a little bit differently. However,
NUXI works in protected mode, thus if you want to know how interrupts are managed in real mode, please refer to Intel
Datasheets and Manuals.

36



CHAPTER 7. HANDLING INTERRUPTS 37

+

IDT Base

Gate Descriptor

IDT

Jump to Gate

Read Address Bus

INT

Processor System Memory

Figure 7.1: Interrupt Handling in Intel x86 Processors

Peripheral AProcessor Peripheral B

Address Bus

Processor

Address Bus

PIC 8259A

INT

INT
Peripheral B

Peripheral A

IRQ0

IRQ1

Figure 7.2: Multiple Interrupt Management in Intel x86 processors and 8259A

as the vector number to present on address bus for each IRQ signal. Thus each time an interrupt

signal appears on an IRQ line, it is routeed to the INT processor pin by the PIC which puts also

the programmed vector number on the address bus. Simultaneous IRQ requests are handled

by the PIC by serving the one which has the highest priority, leaving the other pending until

the former is completely served. For this reason, interrupt service routines must acknowledge

interrupt requests to the PIC by writing a proper value on one of its registers (see below). This

is generally done immediatelly before performing IRET istruction.

When more than 8 IRQs are needed, PICs can be connected in a master-slave fashion, as it

happens in PCs since they have 16 interrupt lines on the bus. As reported in Figure 7.3, master-

slave connections is performed by wiring the INT output of the master to a IRQ line of the slave

(IRQ2 in the PC) and by programming PICs in order to enable master-slave functionality. Some

of the depicted IRQ lines are then connected, in PCs, to pre-defined peripherals; this assingment

is given in the right side of Figure 7.3.

7.3 Preparing Interrupt Management

Now it’s time to know how to program our PICs. As we said above, a PIC has two 8-bit registers

which are mapped to ports 020H - 021H, for the master PIC, and ports 0A0H - 0A1H, for the slave



CHAPTER 7. HANDLING INTERRUPTS 38

IRQ0

IRQ3

IRQ2

IRQ1

IRQ7

IRQ4

IRQ5

IRQ6

PIC 8259A−Slave PIC 8259A−Master

IRQ8

Processor

INT

IRQ15

IRQ14

IRQ13

IRQ12

IRQ11

IRQ10

IRQ9

IRQ0 = Timer Tick

IRQ1 = ??

IRQ2 = Cascade

IRQ3 = Second Serial Port

IRQ4 = First Serial Port

IRQ5 = Floppy Drive

IRQ6 = ??

IRQ7 = Parallel Port

IRQ8 = ??

IRQ9 = VGA

IRQ10 = Co−processor (?)

IRQ11 = ??

IRQ12 = ??

IRQ13 = ??

IRQ14 = ??

IRQ15 = ??

Figure 7.3: PICs and IRQ assignment in the PC

PIC. Initialization is performed by the interrupt_setup function in the source file “interrupt.c”

and reported in Figure 7.4 (see Section 7.5 for a more detailed description of PIC initialization

sequence). In particular, the first PIC (relevant to IRQ0-7) is initialized as master and enabled to

generate INTs with vectors from 020H to 027H (according to the generated IRQ). On the other

hand, the second PIC (IRQ8-15) is initialized to generate INTs with vectors from 028H to 02FH.

We chose to map IRQs starting from vector 020H since it is the least available vector number:

indeed, vectors from 00H to 01FH are used to map processor exceptions.

After initializing PICs, we mask off all IRQs (except IRQ2 which is used as the cascade line)

since, till now, no interrupt service routine (ISR) is installed thus a interrupt which arrives at this

stage could hang the system. IRQ masking is done by sutably setting register 1 of both PICs, it

is a bit-mapped register where each bit controls the enabling of each IRQ line: if the bit is 1, the

relevant IRQ line is disabled, otherwise it is enabled. In particular, register at port 021H controls

lines from IRQ0 to IRQ7 (bit 0 = IRQ0, bit 1 = IRQ1, etc.), while register at port 0A1H controls

the remaining lines (bit 0 = IRQ8, bit 1 = IRQ9, etc.).

After IRQ masking, we initilize the vector which contains the user-defined interrupt service

routine to NULL (no ISR installed for each interrupt, see Sect. 7.4 below) and then we fill

the interrupt descriptor table which we place at the beginning of memory (linear address 0)3.

The setup_idt_entry_int_gate function creates an “interrupt gate” descriptor in the IDT: the

first parameter is the vector number and the second and third parameters are the address of the

service routine (offset and selector). We wrote 64 interrupt handlers, called from _int00_handler
to _int3f_handler and defined in the assembler file “int.s”, for interrupts from 00H to 03FH;

these are used as “trampoline code” to call run-time defined interrupt service routines as we will

see in the next section.

Finally, we load the IDT register by calling function _load_idtr (defined in “int.s”), enable

interrupts (__sli is a macro defined in “include/asm.h”) and exit.

3You can see, in the code of function setup_idt_entry_int_gate, that the idt variable which represent the pointer
to IDT is always initialized to 0.



CHAPTER 7. HANDLING INTERRUPTS 39

/** interrupt.* Copyright (C) 2001, 2002 Corrado Santoro (santo�diit.unit.it)*/#define IRQ_BASE 0x20 // the base handler for the first irq#define INTERRUPT_VECTORS 0x40 // number of entries in the IDTvoid interrupt_setup(void){ kprintf("Initializing interrupts units...");// initialize 8259A-1outb(0x11,0x20); __SLOW_DOWN_IO; // initialization sequeneoutb(IRQ_BASE,0x21); __SLOW_DOWN_IO; // irq 0-7 loated at 0x20-0x27outb(0x04,0x21); __SLOW_DOWN_IO; // 8259-1 is masteroutb(0x01,0x21); __SLOW_DOWN_IO; // 8086 mode// initialize 8259A-2outb(0x11,0xa0); __SLOW_DOWN_IO; // initialization sequeneoutb(IRQ_BASE+8,0xa1); __SLOW_DOWN_IO; // irq 8-15 loated at 0x28-0x2foutb(0x02,0xa1); __SLOW_DOWN_IO; // 8259-2 is slaveoutb(0x01,0xa1); __SLOW_DOWN_IO; // 8086 modeoutb(0xff,0xa1); __SLOW_DOWN_IO; // mask off all interruptsoutb(0xfb,0x21); __SLOW_DOWN_IO; // mask off interrupts but irq2 (asade)// now setup the internal interrupt jump tablefor (i = 0;i < INTERRUPT_VECTORS;i++)int_servies[i℄ = NULL; // no ISR for eah interrupt// setup the handlers for eah interruptsetup_idt_entry_int_gate(0x00,&_int00_handler,KERNEL_CODE_SELECTOR);setup_idt_entry_int_gate(0x01,&_int01_handler,KERNEL_CODE_SELECTOR);//.....setup_idt_entry_int_gate(0x3e,&_int3e_handler,KERNEL_CODE_SELECTOR);setup_idt_entry_int_gate(0x3f,&_int3f_handler,KERNEL_CODE_SELECTOR);_load_idtr();__sti();interrupts_enabled = 1;kprintf("OK\r\n");}
Figure 7.4: Preparing Interrupt Management in NUXI



CHAPTER 7. HANDLING INTERRUPTS 40

7.4 The NUXI Interrupt Manager

As you can see in the source file “int.s”, each _intXX_handler routine calls the interrupt_handler
function (file “interrupt.c”, Figure 7.5) passing as parameter the interrupt number. This function

tests whether an ISR is defined in the int_servies array for the requested interrupt number: if

yes (the array item is not null), the ISR is called otherwise the message “unhandled interrupt

0xnn” is printed onto the screen and the system is halted. Thus adding an ISR to NUXI is simply

made by setting the proper item of int_servies array to the pointer of the ISR. This is done

by the utility function register_interrupt, which takes, as parameter, the interrupt number

to map and the pointer to the new interrupt service routine. The function also checks if an

ISR is already defined for that interrupt. Registering ISR for IRQs is instead performed by theregister_irq function. It behaves like register_interrupt but also provides IRQ line enabling

by masking off the relevant bit the PIC. [PIC re-arming???]

7.5 8259A Basics

[Include this section???]



CHAPTER 7. HANDLING INTERRUPTS 41/** interrupt.* Copyright (C) 2001, 2002 Corrado Santoro (santo�diit.unit.it)*/// the base handler for the first irq#define IRQ_BASE 0x20#define INTERRUPT_VECTORS 0x40int_servie_t int_servies[INTERRUPT_VECTORS℄;// handles a generi interrupt// It is alled by the _intxx_handler (see int.s) defined in the IDTvoid interrupt_handler(uint32 int_no){ /* If a ISR is defined for this servie, all it */if (int_servies[int_no℄ != NULL)int_servies[int_no℄();else {kprintf("Unhandled interrupt 0x%x", int_no);__li(); for (;;) ;}}// register a new ISRint register_interrupt(int int_no,int_servie_t routine){ __li(); // disable interruptsif (int_servies[int_no℄ == NULL) { // hek whether the irq is already registeredint_servies[int_no℄ = routine; // register the ISR__sti(); // re-enable interruptsreturn 1; // return suessfully}else {__sti(); return 0;}}// Register a new ISR relevant to an IRQ. Enables also the relevant bit of the 8259int register_irq(int irq,int_servie_t routine){ __li(); // disable interruptsif (int_servies[irq+IRQ_BASE℄ == NULL) { // hek whether the irq is already registeredint_servies[irq+IRQ_BASE℄ = routine; // register the ISR// now enable interrupt mask register of 8259if (irq < 8) {unsigned har mask = �(1 <�< irq); // reset the relevant irq bitoutb(inb(0x21) & mask,0x21);outb(0x20,0x20); // re-arm PIC1}else {unsigned har mask = �(1 <�< (irq-8)); // reset the relevant irq bitoutb(inb(0xa1) & mask,0xa1);outb(0x20,0xa0); // re-arm PIC2}__sti(); // re-enable interruptsreturn 1; // return suessfully}else {__sti(); return 0;}}
Figure 7.5: Interrupt Management in NUXI



Chapter 8

NUXI and Time

Managing flow of time is a fundamental part of any operating system, especially for a real-

time one. Timers are used to trigger scheduling, to perform delays, to trigger execution of

periodic tasks, to check deadline missing conditions. Timers are handled using a cooperation

between software and hardware. A square-wave generator, calibrated to a suitable frequency,

is connected to an IRQ thus generating interrupts at the given frequency. This interrupt is then

used by the kernel (and in particular by the scheduling routine) to perform task switching and

to maintain internal counters needed to emulate flow of time and to manage software-requested

delays. In addition, in order to allow the kernel for autonomously calibrating the interrupt

frequency, a special integrated circuit, called the programmable timer/counter (Figure 8.1, left-

side), is connected between the square-wave generator and the IRQ pin; this circuit performs

a division of the generator frequency by the value programmed, in its internal registers, by the

software, in order to generate the timer/scheduling tick at the desidered frequency.

In PC-based platform, this integrated circuit is the Intel 8253 [rif], which is also called the

PIT - Programmable Interval Timer. It is connected to a square-wave generator at the frequency of

1.193182 MHz (why this strange frequency value? It comes from the NTSC standard; probably

the first IBM PCs could be connected to american television sets). The PIT embeds three coun-

ters which are used in PC platforms in the following manner (Figure 8.1, right-side): the first,

counter 0, is used to generate IRQ0 for task scheduling and software timer management; the

second, counter 1, is used to generate the refresh tick for the dynamic RAM; the third, counter

2, is instead connected to the system speaker and is used to generate the system beep. Generally,

counter 1 and 2 are initialized by the BIOS and their divisor value is not modified by the operat-

ing system loaded. Counter 0 is instead re-initialized by the operating system according to the

design choices. The PIT performs frequency division in the following way: initially, a counter

is programmed by the OS according to its requirements (the divisor value), the counter is thus

decremented at the rate of input frequency (1.193182 MHz), when it reaches zero the IRQ is

generated and the counter is reloaded with the intially programmed value.

42



CHAPTER 8. NUXI AND TIME 43

1.193182 MHz

Square−Wave

Generator

to a IRQ line

Programmable Timer/Counter

Divisor Register

Counter 1

Counter 2

Counter 0

8253

IRQ0

DRAM Refresh

Speaker

Figure 8.1: Programmable Timer/Counter

8.1 The 8253 System Timer

Now, before starting analyzing the timer modules of NUXI, let us spent some words on how

the 8253 PIT can be programmed. Please note that here we describe only some functionalities

of 8253, and, if you need further information, you may consult the relevant Intel documenta-

tion [rif.]

The 8253 of a PC-based platform is located at ports 040H-043H, with the meaning reported

in Figure 8.2. The first three ports refer respectively to counter 0, 1 and 2, and are used to write

the relevant divisor or to read the counter. The fourth port is the control port; it is bit-mapped,

and the meaning of each bit is reported in Figure 8.2. As the figure shows, each timer can be

programmed to work in various mode, but the one we are interested in is mode 3, which allows

the generation of a square-wave with a frequency equal to the input frequency quotient the value

programmed in the divisor. This value is loaded by issuing the command “read/write counter

bits 0-7 and then 8-15” and then writing to the data port of the chosen counter first the LSB ♦

and then the MSB ♦ of the divisor. This operation, as regards counter 0, is performed in NUXI

by the function set_timer_resolution in the source file “i8253.c” (lines 28–37, Section 8.5): it

first outs the binary pattern 00110110 to the control port 043H (counter 0 select, read/write

counter bits 0-7 and then 8-15, mode 3-square wave generator, binary 16-bit counter), then

the LSB and finally the MSB of the resolution are set for counter 0, port 040H. The functionset_timer_resolution() also calculates the value for the USEC variable which contains the

timer period in microseconds; its value is then used to update the software timer and thus to

manage flow of time.



CHAPTER 8. NUXI AND TIME 44

Port Meaning

040H Counter 0 (IRQ0)

041H Counter 1 (DRAM Refresh)

042H Counter 2 (Speaker)

043H Control Port

Control Port

Bits Meaning

7-6 00 Counter 0 select
01 Counter 1 select
10 Counter 2 select

5-4 00 Count latch command
01 read/write counter bits 0-7
10 read/write counter bits 8-15
11 read/write counter bits 0-7 and then 8-15

3-1 000 mode 0 – interrupt on terminal count
001 mode 1 – programmable one shot
x10 mode 2 – rate generator
x11 mode 3 – square-wave generator
100 mode 4 – software triggered strobe
101 mode 5 – hardware triggered strobe

0 0 binary counter 16 bits
1 BCD counter

Figure 8.2: Registers of 8253 in PC-based platforms

8.2 8253 Initialization in NUXI

Timers initialization is performed, during NUXI startup phase, by the init_timer() function

(lines 105–128, Section 8.6), which, in turn, calls i8253_init() (lines 49–56, Section 8.5) and

then the function set_timer_resolution() to initialize the PIT. Function i8253_init() pre-

pares the divisor value of counter 0 of the PIT by dividing the clock base frequency CLOCK_BASE
by the HZ parameter, which is the scheduling tick frequency desidered. The values of CLOCK_BASE
is defined in the include file “hz.h” while HZ variable is set in file “timer.c” (line 19). The default

value is 100 Hz, which generates a clock interrupt each 10 milliseconds.

Function init_timer() performs also all the other operation needed to initialize time man-

agement: first of all it sets to zero the current time (line 109, see below); then it modify the

entry 0x20 of the interrupt descriptor table (which corresponds to IRQ0 interrupt handler, see

Chapter 7) by setting it as a task state segment in order to allow context saving of the inter-

rupted task (lines 110–123, this will be more clearly explained in Chapter 9); then it registers

the interrupt-service routine for IRQ0 (lines 125) and finally initializes the PIT (line 126).

The variable urr_time holds the current time and, in particular, the number of microsec-

onds elpsed from last boot1; according to POSIX, it is of the type strut timeval (defined in

“user/sys/time.h”), with the field tv_se which stores the “seconds” part and the field tv_use
storing the “microseconds” part.

1Indeed this variable should hold the current (real) time, thus it should be initialized by reading the real-time clock
at system boot. But this will be done in future releases of NUXI.



CHAPTER 8. NUXI AND TIME 45

8.3 The Timer Handler Routine

The NUXI timer handler routine (i.e. the IRQ0 service routine), which is the function tik_timer()
in “timer.c” (lines 33–37 of the source in Section 8.6), performs two main tasks: (1) it triggers

the scheduler which handles task switching (function sheduler() of “task.c”), and (2) updates

the current timer urr_time (function do_timer() of “timer.c”, lines 39–79). If you take a look

to the source code, you will find in tik_timer() only a call to sheduler(), because timer

updating (i.e. call to do_timer()) is performed by a call issued inside the sheduler() function

itself.

Current time updating performed by do_timer() must take into account that the scheduler

is called not only when the timer tick occurs, but also when a thread goes to sleep awaiting for

a resource (e.g. a semaphore, a condition, etc.). In this last case, as we will see in Chapter 10,

the thread’s state is set to TASK_SLEEPING by the wait function, and the scheduler is invoked

immediatelly, in order to select a new ready thread. Therefore, when the scheduler is invoked

due to a clock tick, we should increase the current time by the number of milliseconds stored inUSEC; in the opposite case, since the sleeping thread does not have totally used its time quantum,

we should increase the current time by the numer of milliseconds elapsed since the last clock

tick. However, as Figure 8.3 shows, the situation could become more complex: indeed we must

increase our current time by the microseconds elapsed since last call to do_timer(). To this aim,

we need (1) to recognize whether the function is called due to a IRQ0 and (2) store the time

elapsed since last call in a suitable variable. The first problem is solved by reading and testing

the ISR register of the master PIC (lines 44–47). This register holds the number of IRQ which is

currently begin served [cosa contiene se non ci sono IRQ pendenti??]: if its value is 0 the call

is generated due to a IRQ0. The second problem is solved by using the variable last_elapsed
which holds the time passed since last IRQ0 which is read from the PIT: to determine the time

since last IRQ0 generation we read the current value of counter 0 (line 59), complement it to the

divisor value (line 61, remember that the counter is decremented at the input frequency rate),

and finally multiply it by the input frequency period (lines 62–70, 1000000/CLOCK_BASE is the

input frequency period in microseconds).

At this point, let us show how the mechanism to correctly increment current time works.

Variable last_elapsed is first intialized to 0. If no task sleeping occurs and do_timer() is always

called due to a IRQ0, the increment value is always USEC (lines 52–53). Now let us suppose that

a task sleeping occurs: we thus calculate the time since last IRQ0 by reading the value of counter

0 of the PIT; then we assign this value to last_elapsed (lines 69–70, last_elapsed currenlty

is 0) and use the same value to increment current time. Now two cases are possible: either next

call to do_timer() is issued again by a thread going to sleep, or next call is triggered by IRQ0.

In the latter case, the elapsed time is simply computed by subtracting USEC from last_elapsed
(case 1 of Figure 8.3) and clearing last_elapsed since now we are synchronized again with

IRQ0. In the former case, (case 2 of Figure 8.3) current time is update using the counter 0 value



CHAPTER 8. NUXI AND TIME 46

clock tick

do_timer()

increase by USEC

clock tick

do_timer()

increase by USEC

T

do_timer()

increase by T

(case 1)

a thread goes to sleep another thread goes to sleep

clock tick

increase by T1

(case 2)

do_timer()

T1

do_timer()

increase by USEC − (T + T1)

clock tickclock tick

USEC

clock tick

do_timer()

increase by USEC

a thread goes to sleep

do_timer()

increase by T

(case 1)

T

do_timer()

increase by USEC

do_timer()

increase by USEC − T

Time

USEC

Figure 8.3: Update of current time in NUXI

(computed in microseconds in variable val) minus last_elapsed and setting the latter variable

to val in order to reflect always the time passed since last IRQ0. Using this mechanism, correct

evolution of current time is ensured.

8.4 NUXI Software Timers

[TBD]

8.5 8253 Management Source Code1: /*2: * i8253.3: * Copyright () Dario Russo (dariorusso�hotmail.om)4: */5: #inlude <kernel/kprintf.h>6: #inlude <kernel/asm.h>7: #define REALLY_SLOW_DOWN_IO8: #inlude <kernel/io.h>9: #inlude <kernel/interrupt.h>10: #inlude <kernel/kernel.h>11: #inlude <kernel/i8253.h>12: #inlude <kernel/hz.h>13:14: // read the ount register of the seleted ounter15: unsigned int i8253_read(int ounter)



CHAPTER 8. NUXI AND TIME 4716: {17: unsigned int lo,hi;18: ounter &= 3;19: ounter <<= 6;20: outb (ounter,0x43); // 0x0 lath ounter21: SLOW_DOWN_IO;22: lo = inb (0x40+ounter);23: SLOW_DOWN_IO;24: hi = inb (0x40+ounter);25: return hi * 256 + lo;26: }27:28: inline void set_timer_resolution(volatile int resolution)29: {30: USEC = 1000000.0*(float)resolution/(float)CLOCK_BASE;31: outb (0x36,0x43); //00110110b = 0x3632: SLOW_DOWN_IO;33: outb ((resolution & 0xff),0x40);34: SLOW_DOWN_IO;35: outb ((resolution >>8),0x40);36: SLOW_DOWN_IO;37: }38:39: inline void set_timer_one_shot(volatile int ountdown)40: {41: outb (48,0x43); //00110000b = 4842: SLOW_DOWN_IO;43: outb ((ountdown & 0xff),0x40);44: SLOW_DOWN_IO;45: outb ((ountdown >>8),0x40);46: SLOW_DOWN_IO;47: }48:49: inline void i8253_init(void)50: {51: register long mipsounter = 0;52: kprintf("\r\nCopyright (C) Dario Russo (dariorusso�hotmail.om)i8253 Driver...\r\n");53:54: set_timer_resolution(CLOCK_BASE/HZ);55: kprintf("Timers Initialized...");56: }57:
8.6 Timer Management Source Code1: /*



CHAPTER 8. NUXI AND TIME 482: * timer.3: * Copyright (C) Corrado Santoro (santo�diit.unit.it)4: */5:6: #inlude <kernel/ntypes.h>7: #inlude <kernel/interrupt.h>8: #inlude <kernel/io.h>9: #inlude <kernel/kprintf.h>10: #inlude <kernel/asm.h>11: #inlude <kernel/timer.h>12: #inlude <kernel/task.h>13: #inlude <kernel/kernel.h>14: #inlude <kernel/i8253.h>15: #inlude <kernel/hz.h>16: #inlude <user/sys/time.h>17:18: extern uint32 _int20_handler;19: int HZ = 100;20: unsigned long USEC;21: strut timeval urr_time;22: task_strut timer_task;23: long last_elapsed = 0;24:25:26: /*27: * OK this is the interrupt all sequene28: * task -->29: * .... isr (start.s)30: * .... handle_interrupt(uint32)31: * .... tik_timer32: */33: void tik_timer(void)34: {35: sheduler();36: outb(0x20,0x20);37: }38:39: // updates the software urrent time40: long do_timer(void)41: {42: uint8 isr;43: long val,inrval;44: // read the ISR register of 8259-145: outb(0xa,0x20); // 00001010 pattern to read ISR register46: isr = inb(0x20);47: outb(0x8,0x20); // 00001000 reset read ondition48: // test if IRQ0 is being servied49: if (isr == 0)50: {



CHAPTER 8. NUXI AND TIME 4951: // ok! inrement software timer52: inrval = USEC - last_elapsed;53: last_elapsed = 0;54: }55: else56: {57: // do_timer is alled due to a proess whih goes to sleep58: // read urrent ount59: val = i8253_read(0);60: // determine the number of ounts from last IRQ61: val = CLOCK_BASE/HZ - val;62: // determine the miroseonds elapsed63: if (val < 2000)64: val = (val * 1000000l)/CLOCK_BASE;65: else66: // prevent long overflow67: // FIXME! Use longmax!68: val = ((val * 1000l)/(CLOCK_BASE/1000l))*1000l;69: inrval = val - last_elapsed;70: last_elapsed = val;71: }72: urr_time.tv_use += inrval;73: if (urr_time.tv_use > 1000000l)74: {75: urr_time.tv_use = urr_time.tv_use % 1000000l;76: urr_time.tv_se++;77: }78: return inrval;79: }80:81: // perform the sum result = result + operand82: void time_add(strut timeval *result,strut timeval *operand)83: {84: result->tv_use += operand->tv_use;85: if (result->tv_use > 1000000l)86: {87: result->tv_use = result->tv_use % 1000000l;88: result->tv_se++;89: }90: result->tv_se += operand->tv_se;91: }92:93: // perform the differene result = result - operand94: void time_diff(strut timeval *result,strut timeval *operand)95: {96: if (result->tv_use < operand->tv_use)97: {98: result->tv_use = result->tv_use + 1000000l - operand->tv_use;99: result->tv_se--;



CHAPTER 8. NUXI AND TIME 50100: }101: result->tv_se -= operand->tv_se;102: }103:104: // Initialize timer strutures and 8253 timer/ounter105: void init_timer(void)106: {107: __li();108: kprintf("Initializing Timer and Sheduler...");109: urr_time.tv_se = urr_time.tv_use = 0;110: // Timer Initialization111: // To allow sheduler to perform task swithing, we map the INT 0x20 handler112: // (IRQ0) as a task gate. In this way, the interrupt task state113: // is saved by the proessor and an be restored easily.114:115: // Thus first prepare the timer_task TSS using the _int20_handler as116: // routine entry point117: task_prepare(&timer_task,(startup_pro)&_int20_handler,NULL);118: // Then prepare in the GDT a TSS desriptor pointing to prepared TSS.119: // It is assoiated to seletor KERNEL_TIMER_TSS120: gdt_make_tss(KERNEL_TIMER_TSS,(uint32)&timer_task.tss,sizeof(timer_task),0);121: // Now setup the IDT entry relevant to INT 0x20 as a task gate desriptor122: // pointing to the KERNEL_TIMER_TSS seletor123: setup_idt_entry_task_gate(0x20,0,KERNEL_TIMER_TSS);124: // finally register in the interrupt manager our IRQ0 handler125: register_irq(0,tik_timer);126: i8253_init();127: kprintf("OK\r\n");128: }129:



Chapter 9

Running Tasks

As stated in Section 2.2, the multiprogramming model of NUXI is single-process with multiple

threads which we will simply call tasks. In the current version of NUXI, the task model is quite

simplified. First of all, even if there is a system call handler, there is no distinction between user

level and kernel level and also memory space is not protected: both kernel and user programs

run at CPU privilege 0 (the most privileged level), and see the same linear address space of 4

GBytes (see Section 5.2). This is basically due to the fact that user programs are linked together

in a single large binary which is entirely loaded during boot phase. Since this mode is not a good

functioning technique for OSs, we plan to modify it in future versions of NUXI. The absence of

memory separation does not require to maintain some per-task information, such as memory

region or memory page tables, but all the other data regarding task state need to be managed.

To this aim, the context of a task is stored in special structures, of the type task_strut (lines 54–

65, Section 9.7), composed of two parts: the CPU-dependent context – i.e. CPU registers –, the

OS-dependent context – i.e. the stack space, the list of opened files, etc. All running tasks are

thus represented by a set of task_struts linked together in two lists, ordered respectively by

priority and by task identifier. The former parameter gives the policy of choicing the task to be

run among various ready tasks; currenly NUXI manages up to 256 priority levels. This latter

parameter, also called the TID, is a unique number which identifies the task; it has the same

meaning of the PID of a Unix system.

All task management routines are present in the source file “task.c”, whose listing is given in

Section 9.8, while Section 9.7 reports the relevant include file (task.h). These routines perform

essentially task creation, task destruction, scheduling and dispatching. Since NUXI is designed to

run onto PC-based platforms, we exploited the native task switching mechanism, offered by Intel

processors, to perform CPU context saving and restoring. The functioning of this mechanism,

together with the other task management operations, are described in the following Sections.

51



CHAPTER 9. RUNNING TASKS 52

READY

RUNNING SLEEPING

ENDING

the task is scheduled

the task is preempted

the task waits due to a condition

the task finished its work

the task was created

the task is removed

the wait condition no longer holds

Figure 9.1: Task’s State and Task Evolution

9.1 Task States

Figure 9.1 depicts the finite state machine which describes the evolution of the state of a task;

it is quite similar to those of other existing OSs. A task state in NUXI can assume one of the

following values, which are defined as constants in file “task.h” (lines 13–18, Section 9.7):

RUNNING (TASK_RUNNING) The task is currently running.

READY (TASK_READY) The task is ready to run, but it is not running.

SLEEPING (TASK_SLEEPING) The task is waiting for something (a delay, a semaphore, a con-

dition variable, etc.).

ENDING (TASK_ENDING) The task finished its work (the task’s main routine is ended).

State transitions are triggered by events shown in Figure 9.1. Basically, when a task is created,

it is in the READY state and goes to RUNNING when it is selected by the scheduler. Transition

from RUNNING to READY occurs when the scheduler performs task preemption in order to run

another ready task. If the task has instead issued a command which provokes a suspension,

such as a delay, waiting for a semphore, or a condition variable, its state goes to SLEEPING and

then again to READY when the wait condition no longer holds. Finally, when a task ends, its

state goes to ENDING; in this case, the task is physically removed and the relevant structures are

released by the scheduler itself.



CHAPTER 9. RUNNING TASKS 53

9.2 The Task Structure and Task Lists

As introduced above, in NUXI the context of a task is stored in a structure of the type task_strut,

which is defined in the include file “kernel/task.h”, the code of which is reported in Section 9.7

(lines 54–65). Each field of this structure has the following meaning:

tss. This is the so-called task state segment, and is the CPU-dependent part of the task context.

It is defined in the lines 21–39, and reflects the same structure of the task state segment

managed by Intel processors. Its precise structure and the functioning of the task switching

mechanism is reported in Section 9.6.

stack. An array which contains the task’s stack. In the current version of NUXI its size is fixed

to 4096 (TASK_STACK_SIZE, line 42), which should be enough.

tid. The task identifier (TID), a unique number which identify this task.

p_tid. The TID of the parent task, i.e. the task which created this task.

state. The state of the task; it can be one of the constants defined in lines 13–18 and it was

explained in the previous Section.

files. It is an array of file * and holds information on files opened by the task. Its use is

explained in Chapter 12.

cpu_time. The amount of CPU time spent by the task in the running state.

syscall. A structure holding the information needed to handle system calls. Explained in ????.

errno. The “errno” variable for this task/thread. It holds the error number of the last failed

system call.

next, next_ordered. Two pointers to another task_strut used to maintaint a linked list of

tasks of the same priority, and a linked list ordered by TID. Explained below.

To keep track and manage all tasks in the system, NUXI maintains two internal structure

which are represented in Figure 9.2: the tasks array (defined in line 27, Section 9.8) and

the task_list (the type is defined in lines 67–71, Section 9.7, while the variable is defined

in line 23, Section 9.8). The former is an array of task_strut pointers where each element

represents a circular linked list (called the priority list) of all task_struts referring to tasks

with the same priority: the element n is the list of tasks with priority n. All task_struts in a

priority list are linked together through the next field. If there are no task for a certain priority,

the relevant entry of the tasks array is set to NULL. Therefore, to know all the tasks which run

at a given priority, we simply access the relevant element of the array and walk the priority list

through the next field.



CHAPTER 9. RUNNING TASKS 54

task 1
next_ordered

next

254

255

task 5
next_ordered

next
task 7

next_ordered

next

task 2
next_ordered

next

task 3
next_ordered

next
task 6

next_ordered

next

tasks array

task_list

endbegin

0

1

2

priority

task 4
next_ordered

next

Figure 9.2: NUXI Task Lists

The second structure (task_list) represents a list of all tasks ordered by TID, which is

linked through the next_ordered field. The task_list variable has two fields, begin and end,

which point respectively to the first and the last element of the list. In order to obtain a list of

tasks ordered by TID we access the begin field of task_list, and then walk the list through thenext_ordered field until NULL is reached.

The practical utilization of these two structures is the following. By maintaining a priority

order simplify the process of selecting the ready task with the highest priority, which is performed

by the scheduler. The TID-ordered list, instead, allows to obtain the list of tasks ordered by

creation epoch, since a new TID is generated when a new task is started up and it is never reused

(unless there were be more than 4 billions task creations since power up, and thus TID number,

which is 32-bit unsigned, restarts from zero).

9.3 Task Scheduling

As it is widely known, the scheduler is that part of an OS entailed to select the next task to run.

In NUXI this is performed by the sheduler() function of “task.c” (lines 150–251, Section 9.8).

Even if this function could seem long, it is quite simple and aims to scan the tasks array in order

to:



CHAPTER 9. RUNNING TASKS 55

1. select the task in READY state with the highest priority;

2. remove the entries relevant to tasks in ENDING state.

Once the task to be run is selected, the variable urrent_task (defined in line 26, Section 9.8)

is set to the selected task’s task_strut, in order to allow the kernel to refer to the currenlty

running task simply by using this variable. Now let us analyze the scheduler code.

First of all, the urrent_task variable is tested against NULL (running the scheduler with no

current task does not make sense). In this case a panic message is displayed and the system is

halted. Secondly, we update the pu_time of the running task (lines 162–164) by obtaining –

by the function do_timer() – the number of microseconds elapsed since last scheduler call (see

Chapter 8 for the details on time handling). Then, if the scheduler is invoked due to a task pre-

emption we have to change the state of the current task from RUNNING to READY (line 165).

The test is needed since the scheduler can be invoked not only by the clock interrupt handler but

also by functions which cause a wait condition (e.g. downing a semaphore, see Chapter 10); in

this last case, the scheduler is entered with the state of the current task already set to SLEEPING,

thus a state change to READY must not occur. At this point, the code in lines 167–250 selects the

READY task with the highest priority by scanning each priority list. Please note that (using the

same convention adopted in UNIX), priority number 0 is the highest while 255 is the lowest, thus

we have to scan priority lists starting from the first entry of the tasks array (loop at line 167).

First the scheduler tests whether the selected entry of the array (the head of the priority list)

contains a list (i.e. it is not NULL) and then scans this list (“do-while” loop at lines 174–245)

in order to find the first READY task. Once a task is found (lines 178–192), before running it,

the head the the scanned priority list (the entry of the tasks array) is set to the task to be run

(line 181) in order to start the scan, at the next scheduler call, from the subsequent task. In

this way, we implement a round-robin mechanism on each priority list. Then the task is run

(lines 181–189) using the dispatching mechanism provided by the task management of Intel

processors (see Section 9.6). Indeed, the task is run by the function task_all() called at

line 189, which performs the task switch: the scheduler is suspended here, i.e. the next time

it will be called (due to a IRQ0, for example), its execution will start from here, not from the

beginning of the function. This is due to the task switching mechanism of the Intel process,

which will be deailed in the following Sections of this Chapter. For this reason, we placed the

“goto” statement at line 191 which forces a jump to begin of the scheduler routine.

During priority lists scanning, if the scheduler finds a task in the ENDING state, the latter is

removed by adjusting the links in both the priority list and the task list, freeing also the allocated

memory (lines 193–242).

If the scheduler did not find a READY task in the scanned priority list, the “do-while” loop

at lines 174–245 ends, and the scheduler starts to scan the next priority list. If all the lists were

scanned, without finding a READY task, the program will/would reach line 249, which prints

the panic message and halts the system: indeed, in all OSs, when there are no ready tasks (i.e.



CHAPTER 9. RUNNING TASKS 56

all tasks in SLEEPING state) the so-called “idle process” is run, but in NUXI the “idle process” is

not invisible, like in other OSs, and it is a task (which does nothing) with its task_strut entry

linked in the task management lists. The idle task is always in the RUNNING/READY state, thus,

in our case, to have to no ready tasks does not make sense.

9.4 Task Switching in Intel x86 Family

Since the introduction of 80286 CPU, Intel processors provide a native mechanism for task

switching in order to rely OS code to save the context of a pre-empted task and to restore

the context of the task to be scheduled. This mechanism works only when the processor is in

protected mode and is performed by using the so-called Task State Segments or TSS. A TSS

is a memory region (Figure 9.3) which contains the complete CPU context in terms of register

values, a user-defined area and other information regarding the priviledges for accessing I/O

ports [ref. Intel manual]. This memory region becomes a TSS, for the CPU, when it is referred

by a “Task State Segment” entry in the GDT (or LDT); here the base address is the beginning

linear address of the TSS region in memory, the size is the region length in bytes, while the entry

type is “32-bit TSS”. Any long jump or long call instruction with a destination selector which

refers to a TSS causes a task switch, i.e. the CPU registers are saved in the current task’s TSS

and the values stored in the called/destination TSS are loaded in the registers, thus continuing

execution to the location referred by CS:EIP of the new TSS. The TSS of the currently running

task is stored in a special register called TR (task register) which contains the selector (in the

GDT or LDT) of the current TSS. Let us explain more deeply this process. Let us suppose that

the fourth entry of the GDT (selector 018H) refers to a TSS and that the program makes a long

jump or long call to 018H:0000H1. In this case the CPU peforms the following steps:

1. It checks that current TR refers to a TSS. If no, it means that this is the first task switch

since power up, thus step 2 is skipped.

2. It saves the values of all registers in the TSS referred by TR.

3. It loads TR register (task register) with value 018H which points to the selector of new

TSS.

4. It loads all its registers using the values stored in the TSS referred by TR (which now is

018H). Therefore execution will continue from location referred by the values of CS:EIP

stored in the TSS.

5. Performs other operations in order to keep updated the task chain (see Intel manual [rif!]).

1Please note that when a destination location refers to a TSS, the offset part is ignored since the real destination
address is taken from the CS:EIP registers stored in the TSS itself.



CHAPTER 9. RUNNING TASKS 57

backlink

ESP0

SS0

ESP1

SS1

ESP2

SS2

CR3 (PDBR)

EIP

EAX

ECX

EFLAGS

+ 0

+ 4

+ 8

+ 12

+ 16

+ 20

+ 24

+ 28

+ 32

+ 36

+ 40

+ 44

+ 48

+ 52

+ 56

+ 60

+ 64

+ 68

+ 72

+ 76

+ 80

+ 84

+ 88

+ 92

+ 96

+ 100

ESI

EDI

ES

SS

DS

CS

FS

GS

LDT Selector

T I/O Perms Base

EBP

ESP

EBX

EDX

User−Available Area

I/O Permissions Area

31 16 15 0

32−Bit Task State Segment

offset

GDT or LDT

Base

Limit

32−Bit TSS

TR (Task Register)

Reserved Bits (set to 0)

Figure 9.3: A Task State Segment



CHAPTER 9. RUNNING TASKS 58

NUXI uses this CPU facility to perform task switching, which is triggered, in particular, by the

timer tick (IRQ0). However, this makes NUXI code CPU-dependent requiring to make many

patches in order to make it run on other platforms. But this is a design choice since NUXI is

developed for x86 platforms. Other OSs, such as Linux which is cross-platform, implement task

switching totally in software [rifs!].

9.5 Starting a New Task

9.6 Task Switching in NUXI

9.7 “task.h” Header File Source1: /*2: * task.h3: * Copyright (C) Corrado Santoro (santo�diit.unit.it)4: */5:6: #ifndef __TASK_H7: #define __TASK_H8:9: #inlude <kernel/ntypes.h>10: #inlude <kernel/file.h>11: #inlude <user/sys/time.h>12:13: #define TASK_STARTUP 014: #define TASK_RUNNING 115: #define TASK_READY 216: #define TASK_SLEEPING 317: #define TASK_PREEMPTED 418: #define TASK_ENDING 519:20: #pragma pak(1)21: typedef strut TSS32 {22: uint16 link, __unused0;23: uint32 esp0;24: uint16 ss0, __unused1;25: uint32 esp1;26: uint16 ss1, __unused2;27: uint32 esp2;28: uint16 ss2, __unused3;29: uint32 r3, eip, eflags;30: uint32 eax,ex,edx,ebx,esp,ebp,esi,edi;31: uint16 es, __unused4;32: uint16 s, __unused5;33: uint16 ss, __unused6;



CHAPTER 9. RUNNING TASKS 5934: uint16 ds, __unused7;35: uint16 fs, __unused8;36: uint16 gs, __unused9;37: uint16 ldt, __unused10;38: uint16 debugtrap, iomapbase;39: } TSS;40: #pragma pak()41:42: #define TASK_STACK_SIZE 409643:44: typedef void (*startup_pro)(void *);45:46: #define MAX_SYSCALL_PARAMS 3247:48: typedef strut {49: uint32 sysall_no;50: uint32 params[MAX_SYSCALL_PARAMS℄;51: uint32 return_value;52: } t_sysall_p;53:54: typedef strut task_strut {55: TSS tss;56: uint8 stak[TASK_STACK_SIZE℄;57: uint32 tid;58: uint32 p_tid;59: uint8 state;60: file * files[MAX_FILES℄;61: strut timeval pu_time;62: t_sysall_p sysall;63: int errno;64: strut task_strut * next,* next_ordered;65: } task_strut;66:67: typedef strut {68: task_strut * begin;69: task_strut * end;70: int total_tasks,last_tid;71: } t_task_list;72:73: extern task_strut * urrent_task;74: extern t_task_list task_list;75:76: void task_init(void);77: void task_prepare(task_strut * task,startup_pro pro,void * param);78: void task_add(uint32 *tid,startup_pro pro,void * param);79: void task_end(void);80: void task_dump(void);81: void sheduler(void);82:



CHAPTER 9. RUNNING TASKS 6083: #endif
9.8 Task Management Source Code1: /*2: * task.3: * Copyright (C) 2001, 2002 Corrado Santoro (santo�diit.unit.it)4: */5:6: #inlude <kernel/ntypes.h>7: #inlude <kernel/io.h>8: #inlude <kernel/asm.h>9: #inlude <kernel/interrupt.h>10: #inlude <kernel/kprintf.h>11: #inlude <kernel/kernel.h>12: #inlude <kernel/task.h>13: #inlude <kernel/gdt.h>14: #inlude <kernel/mm.h>15: #inlude <kernel/timer.h>16: #inlude <kernel/profile.h>17: #inlude <kernel/hz.h>18:19: t_profile_info profile_info;20:21: int pri = 10;22:23: t_task_list task_list = { NULL,NULL,0,0};24:25: #define MAX_PRIORITY 25626: task_strut * urrent_task = NULL;27: task_strut * tasks[MAX_PRIORITY℄;28:29: void task_all(uint32 tss)30: {31: uint32 sel[2℄;32: sel[0℄ = 0;33: sel[1℄ = tss;34: // enable 8259-1 timer interrupt and jump to new task35: asm("mov $0x20,%%ax;out %%al,$0x20;sti;ljmp %0;li"::"m" (*sel));36: }37:38: inline void task_prepare(task_strut * task,startup_pro pro,void * param)39: {40: register uint32 * sp;41:42: kmemset((uint8 *)&task->tss,sizeof(TSS),0);



CHAPTER 9. RUNNING TASKS 6143: sp = (uint32*)((uint32)&task->stak + TASK_STACK_SIZE - 8);44: *sp = (uint32)param;45: sp--;46: task->tss.esp0 = (int32)sp;47: task->tss.ss0 = KERNEL_STACK_SELECTOR;48: task->tss.eax = 0;49: task->tss.ebx = 0;50: task->tss.ex = 0;51: task->tss.edx = 0;52: task->tss.esi = 0;53: task->tss.edi = 0;54: task->tss.esp1 = task->tss.esp2 = task->tss.ss1 = task->tss.ss2 = 0;55: task->tss.r3 = 0;56: task->tss.eip = (uint32)pro;57: task->tss.eflags = 0x0202; // 0x4202 -> paging on58: task->tss.esp = task->tss.esp0;59: task->tss.ss = task->tss.ss0;60: task->tss.s = KERNEL_CODE_SELECTOR;61: task->tss.ds = task->tss.es =62: task->tss.fs = task->tss.gs = KERNEL_DATA_SELECTOR;63: task->tss.ldt = task->tss.debugtrap = task->tss.iomapbase = 0;64: }65:66: // Start a new task!67: void task_add(uint32 * tid,startup_pro pro,void * param)68: {69: task_strut * task,* saved_urrent;70: // lear interrupt to prevent task swithing71: __li();72: // first alloate memory for task strut73: task = (task_strut *)kmallo(sizeof(task_strut));74: if (task == NULL)75: {76: kprintf("No more spae for tasks\r\n");77: __sti();78: return ;79: }80: // OK, first prepare the TSS in the task strut, using "pro" as81: // entry point82: task_prepare(task,pro,param);83: // Now map the KERNEL_TSS seletor as a Task State Segment desriptor84: gdt_make_tss(KERNEL_TSS,(uint32)&task->tss,sizeof(task_strut),0);85: //display_gdt(KERNEL_TSS);86: // link new task in the ordered task list87: task->next_ordered = NULL;88: if (task_list.begin == NULL)89: {90: int i;91: // this is the first task



CHAPTER 9. RUNNING TASKS 6292: for (i = 0;i < MAX_PRIORITY;i++) tasks[i℄ = NULL;93: task_list.begin = task;94: task_list.end = task;95: }96: else97: {98: task_list.end->next_ordered = task;99: task_list.end = task;100: }101: // link new task in the priority queues102: if (tasks[pri℄ == NULL)103: {104: tasks[pri℄ = task;105: task->next = task; // irular list, link with itself106: }107: else108: {109: task->next = tasks[pri℄->next;110: tasks[pri℄->next = task;111: }112: // inrement the total numer113: ++task_list.total_tasks;114: ++task_list.last_tid;115: // set the tid and the parent tid116: task->tid = task_list.last_tid;117: if (urrent_task == NULL)118: task->p_tid = 0;119: else120: task->p_tid = urrent_task->tid;121: if (tid != NULL) *tid = task->p_tid;122: task->pu_time.tv_se = 0;123: task->pu_time.tv_use = 0;124: // Update urrent_task. The reated task will be sheduler immediatelly125: saved_urrent = urrent_task;126: saved_urrent->state = TASK_READY;127: urrent_task = task;128: urrent_task->state = TASK_RUNNING;129: // Now run the new task by performing a long jump using130: // the seletor KERNEL_TSS131: task_all(KERNEL_TSS);132: urrent_task = saved_urrent;133: __sti();134: }135:136: // end urrent task137: void task_end(void)138: {139: __li();140: urrent_task->state = TASK_ENDING;



CHAPTER 9. RUNNING TASKS 63141: sheduler();142: }143:144: void task_dump(void)145: {146: kprintf(" %x ",urrent_task->tss.eip);147: }148:149: // This is the sheduler! It is very simple!150: void sheduler(void)151: {152: task_strut * prev,* end,* p;153: strut timeval temp;154: int i;155: redo:156: if (urrent_task == NULL)157: {158: kprintf("PANIC! Sheduler is trying to run without tasks!\r\n");159: __li();160: for (;;) ;161: }162: temp.tv_use = do_timer();163: temp.tv_se = 0;164: time_add(&urrent_task->pu_time,&temp);165: if (urrent_task->state == TASK_RUNNING) urrent_task->state = TASK_READY;166: // OK! This is a simple round-robin with priorities167: for (i = 0;i < MAX_PRIORITY;i++)168: {169: urrent_task = tasks[i℄;170: if (urrent_task != NULL)171: {172: end = urrent_task;173: prev = NULL;174: do175: {176: prev = urrent_task;177: urrent_task = urrent_task->next;178: if (urrent_task->state == TASK_READY)179: {180: // We found the task to run181: tasks[i℄ = urrent_task;182: // Sine we use always the same seletor to run the urrent_task,183: // let's update the KERNEL_TSS seletor in the GDT with the TSS184: // of the new task to be sheduled185: gdt_make_tss(KERNEL_TSS,186: (uint32)&urrent_task->tss,sizeof(task_strut),0);187: urrent_task->state = TASK_RUNNING;188: // well, swith to the new task189: task_all(KERNEL_TSS);



CHAPTER 9. RUNNING TASKS 64190: // then restart sheduler191: goto redo;192: }193: else if (urrent_task->state == TASK_ENDING)194: {195: // task is marked to be terminated, remove it196: // first remove it from the ordered list197: task_strut *pprev;198: p = task_list.begin;199: pprev = NULL;200: // walk the ordered list to find the TID201: while (p != NULL)202: {203: if (p->tid == urrent_task->tid)204: {205: // TID found206: if (p == task_list.begin)207: {208: // the element is the first209: task_list.begin = p->next_ordered;210: }211: else if (p == task_list.end)212: {213: // the element is the last214: task_list.end = pprev;215: if (pprev != NULL) pprev->next_ordered = NULL;216: }217: else218: {219: // the element is in the middle220: pprev->next_ordered = p->next_ordered;221: }222: task_list.total_tasks--;223: break; // break the while224: }225: pprev = p;226: p = p->next_ordered;227: }228: // now remove the task from the priority list229: p = urrent_task;230: if (urrent_task->next == urrent_task)231: {232: // no more task in this priority list233: tasks[i℄ = NULL;234: kfree(p);235: break; // break do-while236: }237: else238: {



CHAPTER 9. RUNNING TASKS 65239: prev->next = urrent_task->next;240: urrent_task = urrent_task->next;241: kfree(p);242: }243: }244: }245: while (urrent_task != end);246: // we walked the entire priority list without finding a ready task247: }248: }249: kprintf("PANIC! Sheduler did not found a ready tasks. Cannot ontinue!\r\n");250: __halt();251: }



Chapter 10

Handling Concurrency

In any multiprogrammed operating system, all problems related to concurrency and race condi-

tions are faced with the use of appropriate structures which handle access to critical section, to

manage sleep/wakeup conditions, etc. In NUXI these structures are semaphores, which are mod-

eled according to the Dijkstra’s generalized semaphores [rif!], and condition variables, which

allow a form of task synchronization based on a condition which must hold in order to enter

a critical section. Condition variables behave very similar to the structures used in the POSIX

pthread package [rif!]. Both semaphores and condition variables are based on other internal

structures, called wait channels, which handle the sleep/wakeup mechanism.

The source code of all the routines for concurrency handling is included in the file “wait.c”

(reported in Section 10.5) and the relevant header file is “kernel/wait.h” (reported in Sec-

tion 10.4).

task_struct

wait_list

task_struct

wait_list

task_struct

wait_listwait_chan

tasks waiting on this wait channel

Figure 10.1: Wait Channels.

66



CHAPTER 10. HANDLING CONCURRENCY 67

10.1 Wait Channels

A NUXI wait channel is a linked list of tasks waiting for the occurence of the same condition. Its

type is wait_han (defined in line 32, Section 10.4) which represents a pointer to the beginning

of the list (Figure 10.1). Each element (wait_list, lines 27–30, Section 10.4) is structure

composed of a pointer to the task_strut representing the task in the list, and a pointer to the

next element of the list. Of course, the list is ended with a NULL.

A task can suspend itself by invoking the function thread_sleep() (lines 43–48, Section 10.5),

passing as parameter a wait_han pointer which represents the channel onto which to perform

suspension. Then, when another task invokes the function thread_wakeup() (lines 62–67, Sec-

tion 10.5), all the tasks suspended onto the channel, passed as parameter, are awaken, i.e. placed

in the READY state in order to be selected by the scheduler. The source code of these functions

is quite simple: they both simply perform a call respectively to the functions in_int_sleep()
and in_int_wakeup() with interrupts disabled. As we will see in the folloiwng, the reason for

these indirected calls relies on the fact that, for semaphores and condition variables manage-

ment, we need to handle “sleep” and “wakeup” with interrupt disabled, thus we need suitable

functions which do not change the interrupt enable processor flag. The in_int_sleep() routine

(lines 27–41, Section 10.5) performs the following steps: it allocates the memory for a new ele-

ment of the wait_list (lines 30–34), then it sets to SLEEPING (line 35) the state of the current

task (i.e. the task invoking this sleeping function), then the created element is filled with the

proper information (lines 36–37) and is placed at the beginning of the list represented by thewhan parameter (line 38); finally the scheduler is invoked (line 40) by a software interrupt

call to vector 0x20, operation which really causes the task to be suspended. This software in-

terrupt call is equivalent to a timer tick (IRQ0, mapped to vector 0x20, see Chapter 7), thus

causing the pre-emption of the current task (saving of the task’s state) and a call to the sched-

uler (Section 9.6) which then selects another task to run. In this way, to wake up a sleeping

task implies simply to change its state to READY: when the scheduler will select it, its execution

will resume immediatelly after the INT 0x20 call (line 41, return to caller). This is done by thein_int_wakeup function (lines 50–60), which scans and clears the list pointed by the parameterwhan, changing to READY the state of each task stored, in order to wake up it.

10.2 Semaphores

As state previously, a NUXI semaphore is an implementation of the Dijkstra’s generalized semaphore [rif!].

It is represented by the structure t_semaphore (lines 34–37, Section 10.4) composed of an in-

teger field, which holds the semaphore value, and a wait channel to hold the tasks waiting for

being able to decrement the value. According to Dijkstra theory, a semaphore value is always

greather than or equal to zero, and each task, trying to perform a decrement, when this value

is yet equal to zero, must be suspended until the semaphore itself will be incremented. Two



CHAPTER 10. HANDLING CONCURRENCY 68

functions are provided, both taking a t_semaphore pointer as argument: semaphore_down(),

which decrements the semaphore value suspending the task if this value would go below zero,

and semaphore_up(), which increments the semaphore value waking up all tasks waiting for

this value to become greather than zero. Since these operations must be atomic, they are per-

formed with interrupts disabled. The implementation of these functions is the same to that of

Dijkstra and is quite simple. Function semaphore_down() (lines 77–84, Section 10.5) tests the

semaphore and sleeps the calling task until the value is different than zero; only in this last

case, the semaphore value is decremented. On the other hand, semaphore_up() (lines 69–75,

Section 10.5) increments the semaphore value and wakes up all waiting tasks associated to this

semaphore (if any).

When using these routines, the t_semaphore pointer, passed as parameter, needs to be an

initialized, i.e. the wait channel list has to be empty and the value has to be set up accord-

ingly to program requirements (for example, if the semaphore is used as a mutex, its initial

value must be one). To this aim, several macros are provided in file “wait.h” which can be

used to perform semaphore initialization. In particular, macros INIT_NEW_SEMAPHORE(n) andINIT_NEW_SEMAPHORE0 (lines 44–45, Section 10.4) can be used in a declaration to initialize a

semaphore respectively to a value “n” and to zero. For example, if we want to declare and

initialize a mutex, we can use the following code:t_semaphore mutex = INIT_NEW_SEMAPHORE(1);
Macro NEW_SEMAPHORE(s,n) can be instead used to initialize runtime a semaphore “s” to

value “n”, for example:t_semaphore mutex;void myfuntion(){ ...NEW_SEMAPHORE(mutex,1);...}
10.3 Condition Variables

Condition variables are used to perform entering in a critical section if a certain condition holds.

For example, in the classical producer-consumer problem, the producer can put the item (and

thus enter the critical section) if the shared buffer is empty (the condition). Therefore, since

conditions are associated to critical section, the condition variable handling is performed using

also a binary semaphore (mutex) that controls access to the critical section.



CHAPTER 10. HANDLING CONCURRENCY 69

As reported in the source code (lines ??–??, Section 10.4), a NUXI condition variable is a

structure composed of a wait channel, which is used to handle the sleep and wakeup mechanism,

and a semaphore pointer, which holds the reference to the semaphore used to control the critical

section.

Two functions are provided: ond_wait() and ond_signal() (lines ??-??, Section 10.5).

The former takes, as parameters, the condition variable and the semaphore; since this function

is called within a critical section, it first unlock the semaphore (by incrementing its value and

waking up associated sleeping tasks) to release the critical section, and then sleeps using the wait

channel. When the condition no longer holds (signalled by a call to function ond_signal()),

it enters again in the critical section by down’ing the semaphore.

Like semaphores, two macros are provided for condition variable initialization. Macro INIT_NEW_COND

is used in condition variable declaration, while NEW_COND allows intialization during execu-

tion. The following example shows the use of these macros:t_ond ond = INIT_NEW_COND();void myfuntion(){ t_ond ond2;...NEW_COND(ond2);...}
10.4 “wait.h” Header File Source1: /*2: * wait.h3: * Copyright (C) 2001,2002 Corrado Santoro (santo�diit.unit.it)4: *5: * The ontents of this file are subjet to the GNU Publi Liense6: * (the "Liense"); you may not use this file exept in ompliane with7: * the Liense. You may obtain a opy of the Liense at http://www.fsf.org.8: *9: * Software distributed under the Liense is distributed on an "AS IS"10: * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the11: * Liense for the speifi language governing rights and limitations12: * under the Liense.13: *14: * The Original Code is NUXI ode.15: *16: * The Initial Developer of the Original Code is Corrado Santoro.



CHAPTER 10. HANDLING CONCURRENCY 7017: * Portions reated by Corrado Santoro are Copyright (C) 2001,2002.18: * All Rights Reserved.19: */20:21: #ifndef __WAIT_H22: #define __WAIT_H23:24: #inlude <kernel/ntypes.h>25: #inlude <kernel/task.h>26:27: typedef strut wait_list {28: task_strut * task;29: strut wait_list * next;30: } wait_list;31:32: typedef wait_list * wait_han;33:34: typedef strut {35: int value;36: wait_han whan;37: } t_semaphore;38:39: typedef strut {40: wait_han whan;41: t_semaphore * sem;42: } t_ond;43:44: #define INIT_NEW_SEMAPHORE(n) { n, NULL }45: #define INIT_NEW_SEMAPHORE0 INIT_NEW_SEMAPHORE(0)46: #define NEW_SEMAPHORE(s,n) { s.value = n; s.whan = NULL; }47:48: #define INIT_NEW_COND { NULL , NULL }49: #define NEW_COND() { .whan = NULL; .sem = NULL; }50:51: void thread_wakeup(wait_han * whan);52: void thread_sleep(wait_han * whan);53: void semaphore_up(t_semaphore * sem);54: void semaphore_down(t_semaphore * sem);55: void ond_wait(t_ond * ond,t_semaphore * sem);56: void ond_signal(t_ond * ond);57:58: #endif
10.5 Concurrency Management Source Code1: /*



CHAPTER 10. HANDLING CONCURRENCY 712: * wait.3: * Copyright (C) 2001,2002 Corrado Santoro (santo�diit.unit.it)4: *5: * The ontents of this file are subjet to the GNU Publi Liense6: * (the "Liense"); you may not use this file exept in ompliane with7: * the Liense. You may obtain a opy of the Liense at http://www.fsf.org.8: *9: * Software distributed under the Liense is distributed on an "AS IS"10: * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the11: * Liense for the speifi language governing rights and limitations12: * under the Liense.13: *14: * The Original Code is NUXI ode.15: *16: * The Initial Developer of the Original Code is Corrado Santoro.17: * Portions reated by Corrado Santoro are Copyright (C) 2001,2002.18: * All Rights Reserved.19: */20:21: #inlude <kernel/wait.h>22: #inlude <kernel/asm.h>23: #inlude <kernel/task.h>24: #inlude <kernel/mm.h>25: #inlude <kernel/kprintf.h>26:27: void in_int_sleep(wait_han * whan)28: {29: wait_list * p;30: p = (wait_list *)kmallo(sizeof(wait_list));31: if (p == NULL) {32: kprintf("No more memory for wait list alloation\r\n");33: return ;34: }35: urrent_task->state = TASK_SLEEPING;36: p->task = urrent_task;37: p->next = *whan;38: *whan = p;39:40: asm ( "int $0x20" ::); // do sheduler41: }42:43: void thread_sleep(wait_han * whan)44: {45: __li();46: in_int_sleep(whan);47: __sti();48: }49:50: void in_int_wakeup(wait_han * whan)



CHAPTER 10. HANDLING CONCURRENCY 7251: {52: wait_list * p;53: while (*whan != NULL)54: {55: (*whan)->task->state = TASK_READY;56: p = *whan;57: *whan = p->next;58: kfree(p);59: }60: }61:62: void thread_wakeup(wait_han * whan)63: {64: __li();65: in_int_wakeup(whan);66: __sti();67: }68:69: void semaphore_up(t_semaphore * sem)70: {71: __li();72: ++sem->value;73: in_int_wakeup(&sem->whan);74: __sti();75: }76:77: void semaphore_down(t_semaphore * sem)78: {79: __li();80: while (sem->value == 0)81: in_int_sleep(&sem->whan);82: sem->value--;83: __sti();84: }85:86:87: void ond_wait(t_ond * ond,t_semaphore * sem)88: {89: __li();90: ++sem->value;91: ond->sem = sem;92: in_int_wakeup(&sem->whan);93: in_int_sleep(&ond->whan);94: while (sem->value == 0)95: in_int_sleep(&sem->whan);96: sem->value--;97: __sti();98: }99:



CHAPTER 10. HANDLING CONCURRENCY 73100: void ond_signal(t_ond * ond)101: {102: __li();103: if (ond->whan != NULL)104: {105: // someone is waiting106: in_int_wakeup(&ond->whan);107: }108: __sti();109: }110:



Chapter 11

Managing Memory Space

74



Chapter 12

Files and File Drivers

75



Chapter 13

What’s the meaning of ...?

In Chapter 5:

Why boot code stack address 09FDF0H is converted to 09F00H:0DF0H? Indeed this linear

address could be converted into 09FD0H:00F0H or 09FDFH:0000H. But you have to re-

member that the stack pointer in x86 processor is referred by registers SS (the segment

part) and SP (the offset part) and that the stack grows towards lower memory locations,

i.e. each time a “push” or a “call” occurs, the SP register is decremented by the size of

pushed data. Since when SP reaches zero (and overcomes it), the processor raises a “stack

overflow” exception [controllare], the stack region for a program is from offset 0 up to

initial SP. Thus, setting initial stack as 09FDFH:0000H means to have no stack space while

if we use 09FD0H:00F0H we would have 240 bytes (0F0H) of stack, which could be too

small. The value of 09F00H:0DF0H means 3568 bytes (0DF0H) of stack which is enough

for the purpose of the boot code.

.code16 statement in assembler source code: it signals the assembler to produce code for the

execution in real mode. We find this statement in the boot sector “boot.s” since its code is

executed by the processor in this mode.

.code32 statement in assembler source code: it signals the assembler to produce code for the

execution in protected mode. We find this statement in the kernel start code “start.s” after

the instruction which switches the processor in protected mode.

.balign 0x08 statement in assembler source code: it forces the alignment of the next code to

a 8-byte boundary. It is useful for 64-bit processors in order to optimize the fetch phase

[spiegare meglio!]

writedot/writechar subroutines in the boot sector: they write a dot or the given char on the

screen. See the “INT 10H” bullet below.

.global statement in assembler source code: ...

76



CHAPTER 13. WHAT’S THE MEANING OF ...? 77

.rept statement in assembler source code: ...

INT 10H: this software interrupt provides the screen output services for programs running in

real-mode. These services are offered by ROM BIOS. The value in register AH selects the

service to be performed (e.g. character output, string output, clear screen, scroll, display

mode change, etc.), while the other registers are used to pass service-specific parameters.

For example, AH = 0EH selects the “write single character” service; here AL has to contain

the ASCII code of the character to be displayed, BL the color attribute (bits 4-7 selects

background color while bits 0-3 selects the foreground), and BH the screen page to write

to (text and graphic modes may have multiple pages according to the amount of EGA/VGA

memory installed, page 0 is the default). [ref!][REMOVE THIS BULLET!!!!]

INT 13H: this software interrupt provides the disk I/O services for programs running in real-

mode. These services are offered by ROM BIOS. The value in register AH selects the service

to be performed (e.g. sector read, sector write, disk reset, track format, etc.), while the

other registers are used to pass service-specific parameters. [ref!]

In Chapter 8:

LSB: it means “Least Signficant Byte” and refers to bits 0-7 of a 16-bit word.

MSB: it means “Most Signficant Byte” and refers to bits 8-15 of a 16-bit word.


