
Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Position and Speed using Profiles

Speed Control

The Trend of the Speed Controller
We know that, by modulating controller constants, we can change the
system response, in terms of setup-time, i.e. the time required by the
system to reach the target

However... this setup-time is a consequence of constant tuning, and
can be determined sperimentally by analysing the trend of the
controlled variable

It is not an input design parameter

Corrado Santoro Controlling Position and Speed using Profiles

Speed Control

The Trend of the Speed Controller (2)
We suddenly gave to the system a non-zero set-point (with an “high
value”) when system is a “quiet state” and this is unrealistic

Real systems instead feature an acceleration phase that then leads to
the final speed

Can we control also the acceleration and thus the time employed to
reach the final speed?

Corrado Santoro Controlling Position and Speed using Profiles

Speed Control

The Trend of the Speed Controller (3)
Can we control also the acceleration and thus the time employed to
reach the final speed?

Rather than give suddenly the final speed, let’s increase the (set-point)
target speed, starting from 0 up to the final value, according to a given
acceleration

Corrado Santoro Controlling Position and Speed using Profiles

Speed Control with Acceleration

�
def __init__(self):

...
self.final_target_speed = 1.5 # 1.5 m/s
self.current_target_speed = 0
self.acceleration = 0.5 # 0.5 m/sˆ2

def run(self):
F = self.controller.evaluate(self.delta_t,

self.current_target_speed, self.get_speed())
self.cart.evaluate(self.delta_t, F)

now accelerate
self.current_target_speed += self.acceleration * self.delta_t
if self.current_target_speed > self.final_target_speed:

do not overcome the final speed
self.current_target_speed = self.final_target_speed
� �

Corrado Santoro Controlling Position and Speed using Profiles

Speed Control with Acceleration

KP = 3,KI = 2,SAT = 2 N

Let’s tune constants
Using the constants above (and considering a saturation value of 2 N)
the trend of the real speed does not follow adequately the trend of the
target

Moreover, the system is not in saturation, so we can surely increase the
constants

Corrado Santoro Controlling Position and Speed using Profiles

Cart Speed Control with Acceleration

KP = 6,KI = 4 KP = 6,KI = 8

Corrado Santoro Controlling Position and Speed using Profiles

Cart Speed Control with Acceleration

KP = 8,KI = 8 KP = 10,KI = 8

Corrado Santoro Controlling Position and Speed using Profiles

Speed Control with Acceleration

CartController
+

-

Control Part Physical System

Speed
Sensor

Profile
Generator

The final schema is made of:

A classical speed (PI) controller with saturation and anti-wind-up

A profile generator that, according to the final value vfinal and the
acceleration a provides (for each time instant) the target speed to be
reached in that time instant

Corrado Santoro Controlling Position and Speed using Profiles

A Step Further

CartController
+

-

Control Part Physical System

Speed
Sensor

Position Controller
with

Profile Generation

Position
Sensor

Now we have an important key: we discovered that we can modulate
the speed set-point v of the controller and make the system follow it

The way in which v is modulated depends of the specific application

It can be reaching a final v according to a certain accelartion, or ...

reaching a target position according to an acceleration (and
deceleration) a and a maximum speed vmax

Corrado Santoro Controlling Position and Speed using Profiles

Cascade Controllers

CartController
+

-

Control Part Physical System

Speed
Sensor

Position Controller
with

Profile Generation

Position
Sensor

We can imagine two controllers in cascade, one driving the other one

The Position Controller that, according to a certain algorithm, the
target position ptarget , the current position p and other parameters gives
(outputs) the speed set-point v

The Speed Controller that provides the push needed to make the cart
reaching the speed set-point instant by instant

Corrado Santoro Controlling Position and Speed using Profiles

Position and Speed Control

The “Simple” P-Controller

Corrado Santoro Controlling Position and Speed using Profiles

Position and Speed Control

CartPI Controller
with Saturation

+

-

Control Part

Physical System

Speed
Sensor

P Controller
with Saturation

Position
Sensor

-

+

In this schema, the Position controller acts on the basis of the position
error

It is a P-Controller with saturation and generates a desired travel
speed v proportional to the error but never greater than vmax

The system first travels at the maximum speed and then reduces the
speed proportionally as soon as the target position is approached

Corrado Santoro Controlling Position and Speed using Profiles

Position and Speed Control

CartPI Controller
with Saturation

+

-

Control Part

Physical System

Speed
Sensor

P Controller
with Saturation

Position
Sensor

-

+

(see test speed pi control cart gui plot.py)�
def __init__(self):

...
self.speed_controller = PIDSat(10.0, 8.0, 0.0, 2.0, True)
Kp = 3, KI = 2, Sat = 2 N
self.position_controller = PIDSat(0.8, 0.0, 0.0, 1.5)
Kp = 0.8, vmax = 1.5 m/s
self.target_position = 4 # 4 m/s

def run(self):
v_target = self.position_controller.evaluate(self.delta_t,

self.target_position, self.get_pose())
F = self.speed_controller.evaluate(self.delta_t,

v_target, self.get_speed())
self.cart.evaluate(self.delta_t, F)
...
� �

Corrado Santoro Controlling Position and Speed using Profiles

Cart Speed Control with Acceleration

CartPI Controller
with Saturation

+

-

Control Part

Physical System

Speed
Sensor

P Controller
with Saturation

Position
Sensor

-

+

Speed Position

Corrado Santoro Controlling Position and Speed using Profiles

Position and Speed Control

The Speed Profile

Corrado Santoro Controlling Position and Speed using Profiles

The Simple “P” Controller

CartPI Controller
with Saturation

+

-

Control Part

Physical System

Speed
Sensor

P Controller
with Saturation

Position
Sensor

-

+

In the “simple-P” controller, the (real) speed shows a specific trend:
It has an initial acceleration phase
then there is a “cruise” phase at the maximum speed (saturation,
vmax

And, when the P controller exits from saturation, the speed
gradually decreases (deceleration phase)

While the controller works (i.e. the target position is reached), we have
no control over acceleration and deceleration: in some cases this is
undesirable!

Corrado Santoro Controlling Position and Speed using Profiles

The Speed Profile

Indeed, a more desirable situation is the one in which we can decide:
The final/target position ptarget

The value of the acceleration acc
The maximum/cruise speed vmax

The value of decelration dec (that could be even equal to
acceleration)

In such a case, the aim of the controller is to ensure that when the
deceleration phase ends the robot is exactly in position ptarget

Corrado Santoro Controlling Position and Speed using Profiles

Position and Speed Control

The Virtual Robot

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Rather than dealing with the problem of “control”, let us concentrate on
how to create the profile above

To this aim, let us consider an “ideal” (virtual) robot that has to travel a
certain distance ptarget by following that speed profile

To model such a motion, we consider the cinematic equations related to
uniform motion and uniformly accelerated motion

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Uniformly Accelerated Motion

a(t) = a (= const)
v(t) = v(t0) + a · (t − t0)

p(t) = p(t0) + v(t0) · (t − t0) +
1
2
· a · (t − t0)2

Uniform Motion

v(t) = v (= const)
p(t) = p(t0) + v · (t − t0)

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

We must simulate the motion of the ideal robot by applying the equation
above

However, we must identify when to change the motion (from
acceleration to cruise, and from cruise to deceleration)

In other words, we should determine the time instants ta and td in which
the regime changes

This can be done by using the equations, however we must remember
that we then act in a “discretized” world!!

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Let’s implement the virtual robot
We can write a class that receives the desired parameters of the motion
and acts accordingly to the speed profile

The class embeds, in its attributes, the current speed and position of
the robot

Moreover, we need to somehow encode the phase in which our motion
is

�
class VirtualRobot:

ACCEL = 0
CRUISE = 1
DECEL = 2
TARGET = 3
def __init__(self, _p_target, _vmax, _acc, _dec):

self.p_target = _p_target
self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.p = 0 # current position
self.phase = VirtualRobot.ACCEL
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Let’s implement the virtual robot
In the evaluate method, let’s implement the behavour of the motion

acceleration and cruise phases are easy to implement, and also their
transition can be easily idenfied

but... when we should start the deceleration?

�
def evaluate(self, delta_t):

if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta_t \

+ self.accel * delta_t * delta_t / 2
self.v = self.v + self.accel * delta_t
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta_t
if ?????:

self.phase = VirtualRobot.DECEL
...
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Deceleration Distance

Let’s consider the final part of the motion, from td to the end te

We start at speed vmax , at time td
We end at speed 0, at time te

Let us apply the formulae of the uniformly accelerated (decelerated)
motion (let’s suppose that dec is positive)

v(t) = v(t0) + a · (t − t0)

v(te) = v(td)− dec · (te − td)

0 = vmax − dec · (te − td)

(te − td) =
vmax

dec

Corrado Santoro Controlling Position and Speed using Profiles

The Deceleration Distance

Now let’s everything but final part of the motion

Its duration is Td = te − td = vmax
dec

Let’s suppose that it starts at position 0 and ends a position D

p(t) = p(t0) + v(t0) · (t − t0) +
1
2
· a · (t − t0)2

D = 0 + vmax · Td −
1
2
· dec · T 2

d

D = vmax ·
vmax

dec
−

1
2
· dec ·

v2
max

dec2

D =
1
2
·

v2
max

dec

Corrado Santoro Controlling Position and Speed using Profiles

The Deceleration Distance

D =
1
2
·

v2
max

dec

We obtained the deceleration distance

It is the distance from the target at which we must start the
deceleration phase

Therefore, if ptarget − pcurrent ≤ D, we are in the deceleration phase�
class VirtualRobot:

...
def __init__(self, _p_target, _vmax, _acc, _dec):

...
self.decel_distance = 0.5 * _vmax * _vmax / _dec

def evaluate(self, delta_t):
...
elif self.phase == VirtualRobot.CRUISE:

self.p = self.p + self.vmax * delta_t
if self.p_target - self.p <= self.decel_distance:

self.phase = VirtualRobot.DECEL
...
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

And finally let’s implement the deceleration phase�
def evaluate(self, delta_t):

...
elif self.phase == VirtualRobot.DECEL:

self.p = self.p + self.v * delta_t \
- self.decel * delta_t * delta_t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0
self.p = self.p_target
self.phase = VirtualRobot.TARGET

...
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Testing the Code�
rob = VirtualRobot(4, # distance 4 m

1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Testing the Code�
rob = VirtualRobot(2, # distance 2 m

1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Phase Overappling�
rob = VirtualRobot(1, # distance 2 m

1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
� �

The target is reached but the final speed is not 0!!

Corrado Santoro Controlling Position and Speed using Profiles

Virtual Robot

Phase Overlapping
When the distance is too short, phases may overlap

The deceleration distance is such that the deceleration phase should
begin before the acceleration phase is ended

So we should consider this particular case in our code

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Testing the Code
At first sight, the code should be patched as follows:�

def evaluate(self, delta_t):
if self.phase == VirtualRobot.ACCEL:

self.p = self.p + self.v * delta_t \
+ self.accel * delta_t * delta_t / 2

self.v = self.v + self.accel * delta_t
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif self.p_target - self.p <= self.decel_distance:
self.phase = VirtualRobot.DECEL
� �

The target is never reached!! Why??
Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

As soon as the the target distance decreases, the cruise phase is
shortened and the deceleration phase “approaches” the acceleration
phase

Until the acceleration and deceleration phases overlap!

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

In this case, the deceleration distance is not the one computed before

But we must find the place in which the acceleration and deceleration
lines meet

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?
Let’s consider once again only the deceleration phase

Let us suppose that, at a certain time instant, we are at a distance d
from the target

Here we will start travelling at a certain speed vd and we will have the
distance d to cover

According to dec that distance will be covered in certain time t ′

We have:

d = 0 + vd · t ′ −
1
2
· dec · t ′2

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?
We have:

d = 0 + vd ·∆t ′ − 1
2
· dec ·∆t ′2 (1)

In the same time interval ∆t ′, our speed will go from vd (unknown) to 0,
so:

0 = vd − dec ·∆t ′ (2)

Let’s compute ∆t ′ from (2) and substitute in (1):

d = vd ·
vd

dec
− 1

2
· dec · (vd

dec
)2 (3)

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?

d = vd ·
vd

dec
− 1

2
· dec · v2

d

dec2 (4)

Let’s determine vd from (4):

vd =
√

2 · dec · d (5)

Formula (5) gives the expected speed vd when we are at a distance d
from the end of the motion

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Resolving the Overlapping
Now, we are in the acceleration phase, and our speed is v

According to our initial computation of the deceleration distance we have that,
hypothetically, our deceleration should start at td , can we really enter in that
phase?

Since we know the distance to be travelled d , let’s determine the expected speed
vd

if vd > v , we are still in the acceleration phase, so continue to accelerate until
the condition becomes false

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

The final code�
def evaluate(self, delta_t):

if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta_t \

+ self.accel * delta_t * delta_t / 2
self.v = self.v + self.accel * delta_t
distance = self.p_target - self.p
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif distance <= self.decel_distance:
v_exp = math.sqrt(2 * self.decel * distance)
if v_exp < self.v:

self.phase = VirtualRobot.DECEL

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta_t
distance = self.p_target - self.p
if distance <= self.decel_distance:

self.phase = VirtualRobot.DECEL

elif self.phase == VirtualRobot.DECEL:
self.p = self.p + self.v * delta_t \

- self.decel * delta_t * delta_t / 2
self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0
self.p = self.p_target
self.phase = VirtualRobot.TARGET
� �

Corrado Santoro Controlling Position and Speed using Profiles

Back to Position Control

CartPI Controller
with Saturation

+

-

Speed
Sensor

PID Controller
with Saturation

Position
Sensor

-

+Virtual Robot
Trajectory Generator

From Virtual to Real
Now we have our virtual robot that travels according to a “path”
generated from our initial requirements (distance, maximum speed,
acceleration and deceleration)

How can we use it in our real position control?
The idea is to let the real robot “catch” the virtual robot

Corrado Santoro Controlling Position and Speed using Profiles

Back to Position Control

CartPI Controller
with Saturation

+

-

Speed
Sensor

PID Controller
with Saturation

Position
Sensor

-

+Virtual Robot
Trajectory Generator

Catching the Virtual Robot
The trajectory generator (our VirtualRobot class) gives the position p of
the virtual robot time-by-time

p is the position in which we expect to find also the real robot, but this
will not be the case

Let’s determine the error p − p between expected and real position of
the real robot and use a PID controller to compute the speed needed to
reach p

In other words, the control system works in order to keep the error p− p
as non-zero in order to output a travelling speed (until p = ptarget)

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

CartPI Controller
with Saturation

+

-

Speed
Sensor

PID Controller
with Saturation

Position
Sensor

-

+Virtual Robot
Trajectory Generator

The Code�
class CartRobot(RoboticSystem):

def __init__(self):
...
self.trajectory = VirtualRobot(8, # distance 8 m

1.5, # max speed 1.5 m/s
1.0, # accel 1 m/s2
1.0) # decel 1 m/s2

self.speed_controller = PIDSat(10.0, 8.0, 0.0, 2.0, True)
Kp = 3, KI = 2, Sat = 2 N
self.position_controller = PIDSat(???, 0.0, 0.0, 1.5)
Kp = ???, vmax = 1.5 m/s

def run(self):
self.trajectory.evaluate(self.delta_t)
v_target = self.position_controller.evaluate(self.delta_t,

self.trajectory.p, self.get_pose())
F = self.speed_controller.evaluate(self.delta_t, v_target, self.get_speed())
self.cart.evaluate(self.delta_t, F)
� �

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

KP = 2.0

The Role of Constants of the Position Controller
KP controls the delay of the real robot with respect to the virtual robot

It is only a delay not an error, since the target position is (sooner or
later) reached

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

KP = 4.0

The Role of Constants of the Position Controller
Interesting.... but still slow

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

KP = 8.0

The Role of Constants of the Position Controller
Very nice!! But there is an overshot

Let’s add a small derivative contribution ...

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

KP = 8.0,KD = 0.8

The Role of Constants of the Position Controller
It’s OK!!

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

CartPI Controller
with Saturation

+

-

Speed
Sensor

PID Controller
with Saturation

Position
Sensor

-

+Virtual Robot
Trajectory Generator

Lesson Learned
The virtual robot is indeed a generator of the theoretical trajectory
that, during time, must be followed by the real system

Here we have a case with mono-dimensional motion and thus a single
(position) variable to control

However the same concepts can be applied when the trajectory is in a
plane or in space

Corrado Santoro Controlling Position and Speed using Profiles

Position and Speed Control

The Speed Profile Generator

Corrado Santoro Controlling Position and Speed using Profiles

From the Virtual Robot

CartPI Controller
with Saturation

+

-

Speed
Sensor

PID Controller
with Saturation

Position
Sensor

-

+
Virtual Robot

Trajectory Generator

A small patch...
The Virtual Robot Trajectory Generator outputs not only the theoretical
position p but also the theoretical speed v that, during time, must be
followed by the real system

And the plots show that indeed the real speed is in accordance with the
speed profile generated by the Virtual Robot

Well...but, instead of using the position, could we consider directly the
theoretical speed as the set-point the speed controller?

Corrado Santoro Controlling Position and Speed using Profiles

From the Virtual Robot

CartPI Controller
with Saturation

+

-

Speed
Sensor

PID Controller
with Saturation

Position
Sensor

-

+
Virtual Robot

Trajectory Generator

A small patch...
Indeed we can consider to connect the theoretical speed v directly to
the (final) speed controller

The Position Controller is now useless and can be removed

But the current position p cannot be left unconnected: it must be always
sent in feedback, otherwise the concept of “control” does not apply and
the control does work work

Corrado Santoro Controlling Position and Speed using Profiles

... to the Speed Profile Generator

CartPI Controller
with Saturation

+

-

Speed
Sensor

Position
Sensor

Speed Profile
Generator

A small patch...
The profile generator must posses the current position to output the
right v

But, since we are not considering a virtual robot moving, we must (and
can!) use directly to the real postion

Corrado Santoro Controlling Position and Speed using Profiles

The Speed Profile Generator

CartPI Controller
with Saturation

+

-

Speed
Sensor

Position
Sensor

Speed Profile
Generator

The Code (1)�
class SpeedProfileGenerator:

ACCEL = 0
CRUISE = 1
DECEL = 2
TARGET = 3
def __init__(self, _p_target, _vmax, _acc, _dec):

self.p_target = _p_target
self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.phase = SpeedProfileGenerator.ACCEL
self.decel_distance = 0.5 * _vmax * _vmax / _dec
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Speed Profile Generator

The Code (2)�
class SpeedProfileGenerator:

...
def evaluate(self, delta_t, current_pos):

Indeed this is not correct!!
We should consider that, if the target is overcome, we must go back!!
if current_pos >= self.p_target:

self.v = 0
self.phase = SpeedProfileGenerator.TARGET
return

distance = self.p_target - current_pos
if self.phase == SpeedProfileGenerator.ACCEL:

self.v = self.v + self.accel * delta_t
if self.v >= self.vmax:

self.v = self.vmax
self.phase = SpeedProfileGenerator.CRUISE

elif distance <= self.decel_distance:
v_exp = math.sqrt(2 * self.decel * distance)
if v_exp < self.v:

self.phase = SpeedProfileGenerator.DECEL

elif self.phase == SpeedProfileGenerator.CRUISE:
if distance <= self.decel_distance:

self.phase = SpeedProfileGenerator.DECEL

elif self.phase == SpeedProfileGenerator.DECEL:
self.v = math.sqrt(2 * self.decel * distance)
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Speed Profile Generator

Its Usage
(see test position control with profile gui.py)�
class CartRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
Mass = 1kg
friction = 0.8
self.cart = Cart(1, 0.8)
self.plotter = DataPlotter()
self.profile = SpeedProfileGenerator(8, # distance 8 m

1.5, # max speed 1.5 m/s
1.0, # accel 1 m/s2
1.0) # decel 1 m/s2

self.speed_controller = PIDSat(10.0, 8.0, 0.0, 2.0, True)

def run(self):
self.profile.evaluate(self.delta_t, self.get_pose())
F = self.speed_controller.evaluate(self.delta_t,

self.profile.v, self.get_speed())
self.cart.evaluate(self.delta_t, F)
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Speed Profile Generator

Corrado Santoro Controlling Position and Speed using Profiles

Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Position and Speed using Profiles

