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Speed Control

— Target
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The Trend of the Speed Controller

@ We know that, by modulating controller constants, we can change the
system response, in terms of setup-time, i.e. the time required by the
system to reach the target

@ However... this setup-time is a consequence of constant tuning, and
can be determined sperimentally by analysing the trend of the
controlled variable

@ lItis not an input design parameter
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Speed Control

— Target
— current Speed
— Force

—

The Trend of the Speed Controller (2)

@ We suddenly gave to the system a non-zero set-point (with an “high
value”) when system is a “quiet state” and this is unrealistic

@ Real systems instead feature an acceleration phase that then leads to
the final speed

@ Can we control also the acceleration and thus the time employed to
reach the final speed?
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Speed Control

— Target

The Trend of the Speed Controller (3)

@ Can we control also the acceleration and thus the time employed to
reach the final speed?

@ Rather than give suddenly the final speed, let’s increase the (set-point)
target speed, starting from 0 up to the final value, according to a given
acceleration
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Speed Control with Acceleratio

def _ init__ (self):

self.final target _speed = 1.5 # 1.5 m/s
self.current_target_speed = 0
self.acceleration = 0.5 # 0.5 m/s"2

def run (self):
F = self.controller.evaluate (self.delta_t,
self.current_target_ speed, self.get_speed())
self.cart.evaluate (self.delta_t, F)

# now accelerate
self.current_target_speed += self.acceleration * self.delta t
if self.current_target_speed > self.final target_speed:
# do not overcome the final speed
self.current_target speed = self.final target_speed
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Speed Control with Acceleration

Ko =3,K =2 SAT =2 N
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Let’s tune constants

@ Using the constants above (and considering a saturation value of 2 N)
the trend of the real speed does not follow adequately the trend of the
target

@ Moreover, the system is not in saturation, so we can surely increase the
constants
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Cart Speed Control with Acceleration
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Cart Speed Control with Acceleration
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Speed Control with Acceleration

Control Part Physical System
U final
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The final schema is made of:
@ A classical speed (PI) controller with saturation and anti-wind-up
@ A profile generator that, according to the final value vj,, and the

acceleration a provides (for each time instant) the target speed to be
reached in that time instant
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A Step Further

Control Part Physical System

Umag —>| Position Controller | v,  error=v-v F v

a ——— with ——>(————{ Controller Cart
Ptarget —>{ Profile Generation .[ »

Speed

v Sensor

Position

D Sensor

@ Now we have an important key: we discovered that we can modulate
the speed set-point v of the controller and make the system follow it

@ The way in which v is modulated depends of the specific application
It can be reaching a final v according to a certain accelartion, or ...

@ reaching a target position according to an acceleration (and
deceleration) a and a maximum speed Viax
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Cascade Controllers

Control Part Physical System
VUmag —>{ Position Controller | ¥,  error=v-v F v
a — with ———>()————>»| Controller Cart

Ptarget —>{ Profile Generation [ »

Speed

v Sensor

Position

p Sensor

@ We can imagine two controllers in cascade, one driving the other one

@ The Position Controller that, according to a certain algorithm, the

target position prarget, the current position p and other parameters gives
(outputs) the speed set-point v

@ The Speed Controller that provides the push needed to make the cart
reaching the speed set-point instant by instant
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Position and Speed Control

The “Simple” P-Controller |
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Position and Speed Control

Control Part
Umaz

Physical System

Speed
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Position
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* P Controller Pl Controller
Prarget T with Saturation _ with Saturation
v

@ In this schema, the Position controller acts on the basis of the position
error

@ ltis a P-Controller with saturation and generates a desired travel
speed Vv proportional to the error but never greater than vinax

@ The system first travels at the maximum speed and then reduces the
speed proportionally as soon as the target position is approached
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rol

d Speed Co

Control Part
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_ with Saturation Cart .
Speed
Sensor

Position
Sensor

P Controller
with Saturation

Plarget

(see test_speed pi_control_cart_gui_plot.py)
~
def _ init__ (self):
self.speed controller = PIDSat(10.0, 8.0, 0.0, 2.0, True)
# Kp = 3, KI = 2, Sat = 2 N
self.position_controller = PIDSat (0.8, 0.0, 0.0, 1.5)
# Kp = 0.8, vmax = 1.5 m/s
self.target_position = 4 # 4 m/s
def run (self):
v_target = self.position_controller.evaluate(self.delta_t,
self.target_position, self.get_pose())
F = self.speed controller.evaluate(self.delta_t,
v_target, self.get_speed())
self.cart.evaluate(self.delta t, F)
A\
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Cart Speed Control with Acceleration
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Position and Speed Control

The Speed Profile |
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The Simple “P” Controller

— Target Speed
— current speed
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@ In the “simple-P” controller, the (real) speed shows a specific trend:
@ It has an initial acceleration phase
@ then there is a “cruise” phase at the maximum speed (saturation,
Vmax
@ And, when the P controller exits from saturation, the speed
gradually decreases (deceleration phase)
@ While the controller works (i.e. the target position is reached), we have
no control over acceleration and deceleration: in some cases this is
undesirable!
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The Speed Profile

u(t)
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@ Indeed, a more desirable situation is the one in which we can decide:
@ The final/target position parget
@ The value of the acceleration acc
@ The maximum/cruise speed Viax
@ The value of decelration dec (that could be even equal to
acceleration)
@ In such a case, the aim of the controller is to ensure that when the
deceleration phase ends the robot is exactly in position prarget
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Position and Speed Control

The Virtual Robot )
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The Virtual Robot

Umaz . fo.ooooiiiii,
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@ Rather than dealing with the problem of “control”, let us concentrate on
how to create the profile above

@ To this aim, let us consider an “ideal” (virtual) robot that has to travel a
certain distance piager by following that speed profile

@ To model such a motion, we consider the cinematic equations related to
uniform motion and uniformly accelerated motion
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The Virtual Robot
Uniformly Accelerated Motion

a(t) = a (= const)
v(t) = v(b)+a-(t—1)
p(t) = p(bo)+ v(k)-(t—t)+

1 2
5 a (- b)

4

Uniform Motion

v(t) = v (= const)
p(t) = p(to) +v-(t—1t)
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The Virtual Robot

o(t)

Umaz .. f..ooooi
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@ We must simulate the motion of the ideal robot by applying the equation

above

@ However, we must identify when to change the motion (from
acceleration to cruise, and from cruise to deceleration)

@ In other words, we should determine the time instants f; and #, in which
the regime changes

@ This can be done by using the equations, however we must remember
that we then act in a “discretized” world!!
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The Virtual Robot
Let’s implement the virtual robot

@ We can write a class that receives the desired parameters of the motion
and acts accordingly to the speed profile

@ The class embeds, in its attributes, the current speed and position of
the robot

@ Moreover, we need to somehow encode the phase in which our motion
is

class VirtualRobot:
ACCEL = 0
CRUISE = 1
DECEL = 2
TARGET = 3
def _ init_ (self, _p_target, _vmax, _acc, _dec):
self.p_target = _p target

self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.p = 0 # current position
self.phase = VirtualRobot.ACCEL
~ |
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The Virtual Robot
Let’s implement the virtual robot

@ In the evaluate method, let's implement the behavour of the motion

@ acceleration and cruise phases are easy to implement, and also their
transition can be easily idenfied

@ but... when we should start the deceleration?

def evaluate(self, delta_t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta t \
+ self.accel * delta t * delta t / 2
self.v = self.v + self.accel * delta_t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta\_t
if ?7?2°?2°7:

self.phase = VirtualRobot.DECEL

d Speed using Profiles
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The Deceleration Distance

v(t)

Umaz

dec

@ Let’s consider the final part of the motion, from #, to the end .

@ We start at speed viax, at time {y
@ We end at speed 0, at time 1.

@ Let us apply the formulae of the uniformly accelerated (decelerated)
motion (let's suppose that dec is positive)

v(it) = v(b)+a-(t—b)
v(te) = Vv(tg) —dec- (te — tq)
0 = Vmax —dec-(te — ty)
Vmax
(—ta) = ‘g
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The Deceleration Distance

o(t)

@ Now let’s everything but final part of the motion

@ lts durationis Ty = fe — fy = 22

@ Let’s suppose that it starts at position 0 and ends a position D

1
PO = pl) + V(D) (t=to) + 5 -a- (1= 1o)*
1
D = 0+vmaX~Td—§-dec-T§
Vmax 1 V1277ax
D = LAmax D geg . —max
T dec 2 dec?
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The Deceleration Distance

D — 1 . Vr2nax
2 dec

@ We obtained the deceleration distance

@ ltis the distance from the target at which we must start the
deceleration phase

@ Therefore, if Prarget — Peurrent < D, We are in the deceleration phase

class VirtualRobot:
&éé __init_ (self, _p_target, _vmax, _acc, _dec):
ééif.decelidistance = 0.5 * _vmax *x _vmax / _dec
def evaluate(self, delta t):
éiif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta\_t

if self.p _target - self.p <= self.decel_distance:
self.phase = VirtualRobot.DECEL
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The Virtual Robot

@ And finally let’s implement the deceleration phase

def evaluate(self, delta_t):

elif self.phase == VirtualRobot.DECEL:
self.p = self.p + self.v x delta_t \
— self.decel * delta_t » delta_t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0

self.p = self.p target

self.phase = VirtualRobot.TARGET
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The Virtual Robot

Testing the Code

rob = VirtualRobot ( 4, # distance 4 m
1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
|
4.0{ — speed
—— Position
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The Virtual Robot

rob = VirtualRobot ( 2, # distance 2 m
1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
|
2.00{ — speed
—— Position
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The Virtual Robot

rob = VirtualRobot (

# max speed 1.5 m/s
# accel 2 m/s2

1, # distance 2 m
1.5,

2.0,

2.0) # decel 2 m/s2

.5
.0
.0

— speed
14 —— Position

0.0 0.2 0.4 0.6 0.8 1.0 12




Virtual Robot

Phase Overlapping

@ When the distance is too short, phases may overlap

@ The deceleration distance is such that the deceleration phase should
begin before the acceleration phase is ended

@ So we should consider this particular case in our code
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Testing the Code

@ At first sight, the code should be patched as follows:

def evaluate(self, delta t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta t \
+ self.accel * delta t * delta t / 2
self.v = self.v + self.accel x delta t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = VirtualRobot.CRUISE
elif self.p target - self.p <= self.decel distance:
self.phase = VirtualRobot.DECEL

— speed
— Position

00 o2 04 08 o8
time

The target is never reached!! Why??

Corrado Santoro Controlling Position



Speed Profile and Distance

ace

ace
dec

@ As soon as the the target distance decreases, the cruise phase is
shortened and the deceleration phase “approaches” the acceleration
phase

@ Until the acceleration and deceleration phases overlap!
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Speed Profile and Distance

@ In this case, the deceleration distance is not the one computed before

@ But we must find the place in which the acceleration and deceleration
lines meet
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Speed Profile and Distance

Where do the acc and dec phases meet?

@ Let’s consider once again only the deceleration phase

@ Let us suppose that, at a certain time instant, we are at a distance d
from the target

@ Here we will start travelling at a certain speed v, and we will have the
distance d to cover

@ According to dec that distance will be covered in certain time t’
@ We have:

d = 0+vd~t’—%~dec-t/2
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Speed Profile and Distance
Where do the acc and dec phases meet?

@ We have:
d = 0+vd~At/—%-dec-At/2 (1)
@ In the same time interval At’, our speed will go from vy (unknown) to 0,
S0:

0 = vy—dec-At 2)

@ Let's compute At’ from (2) and substitute in (1):
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Speed Profile and Distance

Where do the acc and dec phases meet?

_ oy e, v
d = v dec 2 dec dec? “
@ Let's determine vy from (4):
Vg = V2-dec-d (5)

@ Formula (5) gives the expected speed v, when we are at a distance d
from the end of the motion
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Speed Profile and Distance

o(t)

Umaz

ta it te

Resolving the Overlapping

@ Now, we are in the acceleration phase, and our speed is v

@ According to our initial computation of the deceleration distance we have that,
hypothetically, our deceleration should start at ¢;, can we really enter in that
phase?

@ Since we know the distance to be travelled d, let’s determine the expected speed
Vd

@ if vy > v, we are still in the acceleration phase, so continue to accelerate until
the condition becomes false
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The Virtual Robot
The final code

def evaluate(self, delta t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v x delta_t \

+ self.accel * delta_t * delta t / 2
self.v = self.v + self.accel * delta_t
distance = self.p_target - self.p
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE
elif distance <= self.decel _distance:
v_exp = math.sqrt (2 * self.decel * distance)
if v_exp < self.v:
self.phase = VirtualRobot.DECEL

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax x delta t
distance = self.p_target - self.p
if distance <= self.decel_distance:
self.phase = VirtualRobot .DECEL

elif self.phase == VirtualRobot.DECEL:
self.p = self.p + self.v * delta t \
— self.decel x delta t x delta t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0

self.p = self.p_target

self.phase = VirtualRobot.TARGET
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Back to Position Control

Umaz acc dec Umaz

PI Controller
with Saturation

Virtual Robot p_+ PID Controller
Trajectory Generator A with Saturation

Drarget —|

Speed
Sensor

Position
Sensor

From Virtual to Real

@ Now we have our virtual robot that travels according to a “path”
generated from our initial requirements (distance, maximum speed,
acceleration and deceleration)

@ How can we use it in our real position control?
@ The idea is to let the real robot “catch” the virtual robot
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Back to Position Control

Umaz acc dec Unna:

L] [

Virtual Robot p + PID Controller
Trajectory Generator A with Saturation

Pl Controller

Prarget —>| with Saturation

B

Speed
Sensor

Position
Sensor

Catching the Virtual Robot

@ The trajectory generator (our VirtualRobot class) gives the position p of
the virtual robot time-by-time

@ pis the position in which we expect to find also the real robot, but this
will not be the case

@ Let’s determine the error p — p between expected and real position of
the real robot and use a PID controller to compute the speed needed to
reach p

@ In other words, the control system works in order to keep the error p — p
as non-zero in order to output a travelling speed (until p = prarget)
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Catching the Virtual Robot

Uﬂr x EIC ‘TC vmf ™
_ v
Virtual Robot | P+ PID Controller Pl Controller
arget — = " 5
Prarget Trajectory Generator A with Saturation with Saturation Cart »

Speed
Sensor

Position
Sensor

The Code

~
class CartRobot (RoboticSystem) :
def __init__ (self):

self.trajectory = VirtualRobot( 8, # distance 8 m
5, # max speed 1.5 m/s

1.0, # accel 1 m/s2

1.0) # decel 1 m/s2
self.speed controller = Sat (10.0, 8.0, 0.0, 2.0, True)
# Kp = 3, KI = 2, Sat =
self.position_controller =
# Kp = 2?2, vmax = 1.5 m/s

PID
2 N
PIDSat (2?2, 0.0, 0.0, 1.5)

def run(self):
self.trajectory.evaluate (self.delta_t)
v_target = self.position_controller.evaluate(self.delta t,
self.trajectory.p, self.get_pose())
F = self.speed _controller.evaluate(self.delta t, v_target, self.get_speed())
self.cart.evaluate(self.delta_t, F)
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Catching the Virtual Robot

—— Virtual Robot Speed

Role of Constants of the Position Controller

@ Kp controls the delay of the real robot with respect to the virtual robot

@ ltis only a delay not an error, since the target position is (sooner or
later) reached
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Catching the Virtual Robot

— Target Speed
— Current Speed
—— Virtual Robot Speed

4
time time.

The Role of Constants of the Position Controller

@ Interesting.... but still slow
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Catching the Virtual Robot

— Virtual Robot Speed

The Role of Constants of the Position Controller
@ Very nice!l But there is an overshot

@ Let’'s add a small derivative contribution ...

Corrado Santoro Controlling Posit nd Speed using Profiles



Catching the Virtual Robot

Kp =8.0,Kp =0.8

— Target Speed 8 — Target position
14 — Current Speed — Current Position
—— Virtual Robot Speed 7
12
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4
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02 1
00 0
o 2 4 6 8 10 0 2 4 [ 8 10
time time

The Role of Constants of the Position Controller
@ It's OK!

Corrado Santoro Controlling Posit nd Speed using Profiles



The Virtual Robot

Umaz acc dec Vmaz

_ f

Virtual Robot p_+ PID Controller
Trajectory Generator A with Saturation

Drarget —>|

” | PIController
with Saturation

Speed
Sensor

Position
Sensor

Lesson Learned

@ The virtual robot is indeed a generator of the theoretical trajectory
that, during time, must be followed by the real system

@ Here we have a case with mono-dimensional motion and thus a single
(position) variable to control

@ However the same concepts can be applied when the trajectory is in a
plane or in space
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Position and Speed Control

The Speed Profile Generator |
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From the Virtual Robot ....

Umaz
Umaz acc dec l

1T f

PID Controller
with Saturation

| PIController
with Saturation

Virtual Robot

Prarget | Trajectory Generator

Speed
Sensor

Position
Sensor

A small patch...

@ The Virtual Robot Trajectory Generator outputs not only the theoretical
position p but also the theoretical speed Vv that, during time, must be
followed by the real system

@ And the plots show that indeed the real speed is in accordance with the
speed profile generated by the Virtual Robot

@ Well...but, instead of using the position, could we consider directly the
theoretical speed as the set-point the speed controller?

Corrado Santoro Controlling Posit nd Speed using Profiles



From the Virtual Robot ....

Umaz

Umaz acc dec

l

Virtual Robot
Trajectory Generator

PI Controller
with Saturation

Prarget —>|

Speed
Sensor

Position
Sensor

A small patch...

@ Indeed we can consider to connect the theoretical speed v directly to
the (final) speed controller

@ The Position Controller is now useless and can be removed

@ But the current position p cannot be left unconnected: it must be always
sent in feedback, otherwise the concept of “control” does not apply and
the control does work work
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... to the Speed Profile Generator

Vpaz acc dec

Speed Profile
Generator

P Controller
with Saturation

——

Prarget —>|

B

Speed
Sensor

Position
Sensor

A small patch...

@ The profile generator must posses the current position to output the
right v

@ But, since we are not considering a virtual robot moving, we must (and
can!) use directly to the real postion
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The Speed Profile Generator

Umaz acc dec

l

, v
Speed Profile PI Controller
Prarget Generator with Saturation »
p

Speed
Sensor

Position
Sensor

The Code (

class SpeedProfileGenerator:

ACCEL = 0
CRUISE = 1
DECEL = 2
TARGET = 3

def _ init_ (self, _p_target, _vmax, _acc, _dec):
self.p_target = _p_target

self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.phase = SpeedProfileGenerator.ACCEL
self.decel _distance = 0.5 * _vmax * _vmax / _dec
~ v
”
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The Speed Profile Generator

The Code (

class SpeedProfileGenerator:

def evaluate(self, delta_t, current_pos):
# Indeed this is not correct!!
# We should consider that, if the target is overcome, we must go back!!
if current_pos >= self.p_target:

self.v = 0
self.phase = SpeedProfileGenerator.TARGET
return

distance = self.p_target - current_pos
if self.phase == SpeedProfileGenerator.ACCEL:
self.v = self.v + self.accel x delta t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = SpeedProfileGenerator.CRUISE
elif distance <= self.decel_distance:
v_exp = math.sqrt (2 * self.decel * distance)
if v_exp < self.v:
self.phase = SpeedProfileGenerator.DECEL

elif self.phase == SpeedProfileGenerator.CRUISE:
if distance <= self.decel distance:
self.phase = SpeedProfileGenerator.DECEL

elif self.phase == SpeedProfileGenerator.DECEL:
self.v = math.sqrt (2 * self.decel * distance)

Corrado Santoro



The Speed Profile Generator

(see test position control with profile gui.py)

-
class CartRobot (RoboticSystem) :

def _ init__ (self):
super () .__init__ (le-3) # delta t = le-3
# Mass = 1kg
# friction = 0.8
self.cart = Cart(l, 0.8)
self.plotter = DataPlotter()
self.profile = SpeedProfileGenerator , # distance 8 m
, # max speed 1.5 m/s
, # accel 1 m/s2
.0) # decel 1 m/s2
self.speed controller = PIDSat(10.0, 8.0, 0.0, 2.0, True)

def run(self):
self.profile.evaluate(self.delta_t, self.get_pose())
F = self.speed _controller.evaluate(self.delta t,
self.profile.v, self.get_speed())
self.cart.evaluate (self.delta t, F)
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The Speed Profile Generator

— Target Speed 8

— current speed

—— Target Position
—— current Position
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Controlling Position and Speed using Profiles
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