Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Posit nd Speed using Profiles



Speed Control

— Target
— current speed
Force

—

The Trend of the Speed Controller

@ We know that, by modulating controller constants, we can change the
system response, in terms of setup-time, i.e. the time required by the
system to reach the target

@ However... this setup-time is a consequence of constant tuning, and
can be determined sperimentally by analysing the trend of the
controlled variable

@ lItis not an input design parameter

Corrado Santoro Controlling Po: nd Speed using Profiles



Speed Control

— Target
— current Speed
— Force

—

The Trend of the Speed Controller (2)

@ We suddenly gave to the system a non-zero set-point (with an “high
value”) when system is a “quiet state” and this is unrealistic

@ Real systems instead feature an acceleration phase that then leads to
the final speed

@ Can we control also the acceleration and thus the time employed to
reach the final speed?

Corrado Santoro Controlling Posit nd Speed using Profiles



Speed Control

— Target

The Trend of the Speed Controller (3)

@ Can we control also the acceleration and thus the time employed to
reach the final speed?

@ Rather than give suddenly the final speed, let’s increase the (set-point)
target speed, starting from 0 up to the final value, according to a given
acceleration

Corrado Santoro Controlling Posit nd Speed using Profiles



Speed Control with Acceleratio

def _ init__ (self):

self.final target _speed = 1.5 # 1.5 m/s
self.current_target_speed = 0
self.acceleration = 0.5 # 0.5 m/s"2

def run (self):
F = self.controller.evaluate (self.delta_t,
self.current_target_ speed, self.get_speed())
self.cart.evaluate (self.delta_t, F)

# now accelerate
self.current_target_speed += self.acceleration * self.delta t
if self.current_target_speed > self.final target_speed:
# do not overcome the final speed
self.current_target speed = self.final target_speed

Corrado Santoro Controlling Position



Speed Control with Acceleration

Ko =3,K =2 SAT =2 N

16

14

12

10

0.8

0.6

04

0.2 —— Target
—— Current Speed

0.0 —— Force

Let’s tune constants

@ Using the constants above (and considering a saturation value of 2 N)
the trend of the real speed does not follow adequately the trend of the
target

@ Moreover, the system is not in saturation, so we can surely increase the
constants

Corrado Santoro Controlling Posit nd Speed using Profiles



Cart Speed Control with Acceleration

Kp=6,K =4 Kp=6,K =8

16
150
14
12 125
10 1.00
08
075
06
050
04
02 —— Target 0.25 —— Target
—— Current Speed —— Current Speed
00 — Force 0.00 — Force
o 2 4 6 8 10 12 14 4 2 4 6 8 10 2 1
time time

Corrado Santoro Con i i d Speed using Profiles



Cart Speed Control with Acceleration

Kp=8,K =8 Kp = 10,K, = 8

150 150

125 125

1.00 1.00

075 075

050 050

0.25 —— Target 025 — Target

—— Current Speed —— Current Speed
000 — Force 0.00 — Force
o 2 4 6 8 10 12 14 4 2 4 6 8 10 2 1
time time

Corrado Santoro Con i i d Speed using Profiles



Speed Control with Acceleration

Control Part Physical System
U final
firl o T Y emormi F v
a Controller
_____ 5| Generator R I P

The final schema is made of:
@ A classical speed (PI) controller with saturation and anti-wind-up
@ A profile generator that, according to the final value vj,, and the

acceleration a provides (for each time instant) the target speed to be
reached in that time instant

Corrado Santoro Controlling Po: nd Speed using Profiles



A Step Further

Control Part Physical System

Umag —>| Position Controller | v,  error=v-v F v

a ——— with ——>(————{ Controller Cart
Ptarget —>{ Profile Generation .[ »

Speed

v Sensor

Position

D Sensor

@ Now we have an important key: we discovered that we can modulate
the speed set-point v of the controller and make the system follow it

@ The way in which v is modulated depends of the specific application
It can be reaching a final v according to a certain accelartion, or ...

@ reaching a target position according to an acceleration (and
deceleration) a and a maximum speed Viax

Corrado Santoro



Cascade Controllers

Control Part Physical System
VUmag —>{ Position Controller | ¥,  error=v-v F v
a — with ———>()————>»| Controller Cart

Ptarget —>{ Profile Generation [ »

Speed

v Sensor

Position

p Sensor

@ We can imagine two controllers in cascade, one driving the other one

@ The Position Controller that, according to a certain algorithm, the

target position prarget, the current position p and other parameters gives
(outputs) the speed set-point v

@ The Speed Controller that provides the push needed to make the cart
reaching the speed set-point instant by instant

Corrado Santoro Controlling Po: nd Speed using Profiles



Position and Speed Control

The “Simple” P-Controller |

Corrado Santoro Controlling Position and Speed using Profiles



Position and Speed Control

Control Part
Umaz

Physical System

Speed
Sensor

Position
P Sensor

* P Controller Pl Controller
Prarget T with Saturation _ with Saturation
v

@ In this schema, the Position controller acts on the basis of the position
error

@ ltis a P-Controller with saturation and generates a desired travel
speed Vv proportional to the error but never greater than vinax

@ The system first travels at the maximum speed and then reduces the
speed proportionally as soon as the target position is approached

Corrado Santoro i i d Speed using Profiles



rol

d Speed Co

Control Part

Vmaz

Physical System

® -
Pl Controller | F.
_ with Saturation Cart .
Speed
Sensor

Position
Sensor

P Controller
with Saturation

Plarget

(see test_speed pi_control_cart_gui_plot.py)
~
def _ init__ (self):
self.speed controller = PIDSat(10.0, 8.0, 0.0, 2.0, True)
# Kp = 3, KI = 2, Sat = 2 N
self.position_controller = PIDSat (0.8, 0.0, 0.0, 1.5)
# Kp = 0.8, vmax = 1.5 m/s
self.target_position = 4 # 4 m/s
def run (self):
v_target = self.position_controller.evaluate(self.delta_t,
self.target_position, self.get_pose())
F = self.speed controller.evaluate(self.delta_t,
v_target, self.get_speed())
self.cart.evaluate(self.delta t, F)
A\

Corrado Santoro Controlling Position



Cart Speed Control with Acceleration

Control Part
VUmaz

Physical System

_ I v
Y+ Tr =YY | piController
with Saturation »

P + P Controller O
target I with Saturation A

Speed Position

[ Postion |
P Sensor

—— Target Speed 4.0
14 —— Current Speed
35
12
30
e 25
o8 2.0
06 15
04 10
02 05
—— Target Position
0.0 0.0 —— Current Position
o 2 4 6 8 10 12 14 o 2 4 6 8 10 1 14
time time

Corrado Santoro



Position and Speed Control

The Speed Profile |

Corrado Santoro Controlling Position and Speed using Profiles



The Simple “P” Controller

— Target Speed
— current speed

e COTIOI Part 12

P Controller
with Saturation

Physical ¢

Prarget

@ In the “simple-P” controller, the (real) speed shows a specific trend:
@ It has an initial acceleration phase
@ then there is a “cruise” phase at the maximum speed (saturation,
Vmax
@ And, when the P controller exits from saturation, the speed
gradually decreases (deceleration phase)
@ While the controller works (i.e. the target position is reached), we have
no control over acceleration and deceleration: in some cases this is
undesirable!

Corrado Santoro



The Speed Profile

u(t)

Umaz . fo.ooooiiii

tq tq te

@ Indeed, a more desirable situation is the one in which we can decide:
@ The final/target position parget
@ The value of the acceleration acc
@ The maximum/cruise speed Viax
@ The value of decelration dec (that could be even equal to
acceleration)
@ In such a case, the aim of the controller is to ensure that when the
deceleration phase ends the robot is exactly in position prarget

Corrado Santoro Controlling Po: nd Speed using Profiles



Position and Speed Control

The Virtual Robot )

Corrado Santoro Controlling Position and Speed using Profiles



The Virtual Robot

Umaz . fo.ooooiiiii,

\4
o~

tq ta te

@ Rather than dealing with the problem of “control”, let us concentrate on
how to create the profile above

@ To this aim, let us consider an “ideal” (virtual) robot that has to travel a
certain distance piager by following that speed profile

@ To model such a motion, we consider the cinematic equations related to
uniform motion and uniformly accelerated motion

Corrado Santoro Controlling Po: nd Speed using Profiles



The Virtual Robot
Uniformly Accelerated Motion

a(t) = a (= const)
v(t) = v(b)+a-(t—1)
p(t) = p(bo)+ v(k)-(t—t)+

1 2
5 a (- b)

4

Uniform Motion

v(t) = v (= const)
p(t) = p(to) +v-(t—1t)

Corrado Santoro Controlling Position and Speed using Profiles



The Virtual Robot

o(t)

Umaz .. f..ooooi

\4
o~

t; t;i te
@ We must simulate the motion of the ideal robot by applying the equation

above

@ However, we must identify when to change the motion (from
acceleration to cruise, and from cruise to deceleration)

@ In other words, we should determine the time instants f; and #, in which
the regime changes

@ This can be done by using the equations, however we must remember
that we then act in a “discretized” world!!

Corrado Santoro Controlling Po: nd Speed using Profiles



The Virtual Robot
Let’s implement the virtual robot

@ We can write a class that receives the desired parameters of the motion
and acts accordingly to the speed profile

@ The class embeds, in its attributes, the current speed and position of
the robot

@ Moreover, we need to somehow encode the phase in which our motion
is

class VirtualRobot:
ACCEL = 0
CRUISE = 1
DECEL = 2
TARGET = 3
def _ init_ (self, _p_target, _vmax, _acc, _dec):
self.p_target = _p target

self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.p = 0 # current position
self.phase = VirtualRobot.ACCEL
~ |

Corrado Santoro



The Virtual Robot
Let’s implement the virtual robot

@ In the evaluate method, let's implement the behavour of the motion

@ acceleration and cruise phases are easy to implement, and also their
transition can be easily idenfied

@ but... when we should start the deceleration?

def evaluate(self, delta_t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta t \
+ self.accel * delta t * delta t / 2
self.v = self.v + self.accel * delta_t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta\_t
if ?7?2°?2°7:

self.phase = VirtualRobot.DECEL

d Speed using Profiles

Corrado Santoro




The Deceleration Distance

v(t)

Umaz

dec

@ Let’s consider the final part of the motion, from #, to the end .

@ We start at speed viax, at time {y
@ We end at speed 0, at time 1.

@ Let us apply the formulae of the uniformly accelerated (decelerated)
motion (let's suppose that dec is positive)

v(it) = v(b)+a-(t—b)
v(te) = Vv(tg) —dec- (te — tq)
0 = Vmax —dec-(te — ty)
Vmax
(—ta) = ‘g

Corrado Santoro Controlling Posit nd Speed using Profiles



The Deceleration Distance

o(t)

@ Now let’s everything but final part of the motion

@ lts durationis Ty = fe — fy = 22

@ Let’s suppose that it starts at position 0 and ends a position D

1
PO = pl) + V(D) (t=to) + 5 -a- (1= 1o)*
1
D = 0+vmaX~Td—§-dec-T§
Vmax 1 V1277ax
D = LAmax D geg . —max
T dec 2 dec?

Corrado Santoro Controlling Po: nd Speed using Profiles



The Deceleration Distance

D — 1 . Vr2nax
2 dec

@ We obtained the deceleration distance

@ ltis the distance from the target at which we must start the
deceleration phase

@ Therefore, if Prarget — Peurrent < D, We are in the deceleration phase

class VirtualRobot:
&éé __init_ (self, _p_target, _vmax, _acc, _dec):
ééif.decelidistance = 0.5 * _vmax *x _vmax / _dec
def evaluate(self, delta t):
éiif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta\_t

if self.p _target - self.p <= self.decel_distance:
self.phase = VirtualRobot.DECEL

Corrado Santoro i i d Speed using Profiles



The Virtual Robot

@ And finally let’s implement the deceleration phase

def evaluate(self, delta_t):

elif self.phase == VirtualRobot.DECEL:
self.p = self.p + self.v x delta_t \
— self.decel * delta_t » delta_t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0

self.p = self.p target

self.phase = VirtualRobot.TARGET

Corrado Santoro Controlling Po



The Virtual Robot

Testing the Code

rob = VirtualRobot ( 4, # distance 4 m
1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
|
4.0{ — speed
—— Position
351
3.0
251
2.01
1519
101
0.5
0.0
0.0 0.5 1.0 15 2.0 2.5 3.0 35
time

Corrado Santoro i i d Speed using Profiles



The Virtual Robot

rob = VirtualRobot ( 2, # distance 2 m
1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
|
2.00{ — speed
—— Position
175
150
125
1.00
0.75
0.50
0.25
0.00
O.‘O 0:5 1:0 1:5 2:0
time

Corrado Santoro i i d Speed using Profiles



The Virtual Robot

rob = VirtualRobot (

# max speed 1.5 m/s
# accel 2 m/s2

1, # distance 2 m
1.5,

2.0,

2.0) # decel 2 m/s2

.5
.0
.0

— speed
14 —— Position

0.0 0.2 0.4 0.6 0.8 1.0 12




Virtual Robot

Phase Overlapping

@ When the distance is too short, phases may overlap

@ The deceleration distance is such that the deceleration phase should
begin before the acceleration phase is ended

@ So we should consider this particular case in our code

Corrado Santoro Controlling Po: nd Speed using Profiles



Testing the Code

@ At first sight, the code should be patched as follows:

def evaluate(self, delta t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta t \
+ self.accel * delta t * delta t / 2
self.v = self.v + self.accel x delta t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = VirtualRobot.CRUISE
elif self.p target - self.p <= self.decel distance:
self.phase = VirtualRobot.DECEL

— speed
— Position

00 o2 04 08 o8
time

The target is never reached!! Why??

Corrado Santoro Controlling Position



Speed Profile and Distance

ace

ace
dec

@ As soon as the the target distance decreases, the cruise phase is
shortened and the deceleration phase “approaches” the acceleration
phase

@ Until the acceleration and deceleration phases overlap!

Corrado Santoro i i d Speed using Profiles



Speed Profile and Distance

@ In this case, the deceleration distance is not the one computed before

@ But we must find the place in which the acceleration and deceleration
lines meet

Corrado Santoro Controlling Po: nd Speed using Profiles



Speed Profile and Distance

Where do the acc and dec phases meet?

@ Let’s consider once again only the deceleration phase

@ Let us suppose that, at a certain time instant, we are at a distance d
from the target

@ Here we will start travelling at a certain speed v, and we will have the
distance d to cover

@ According to dec that distance will be covered in certain time t’
@ We have:

d = 0+vd~t’—%~dec-t/2

Corrado Santoro Controlling Posit nd Speed using Profiles



Speed Profile and Distance
Where do the acc and dec phases meet?

@ We have:
d = 0+vd~At/—%-dec-At/2 (1)
@ In the same time interval At’, our speed will go from vy (unknown) to 0,
S0:

0 = vy—dec-At 2)

@ Let's compute At’ from (2) and substitute in (1):

Corrado Santoro Controlling Posit nd Speed using Profiles



Speed Profile and Distance

Where do the acc and dec phases meet?

_ oy e, v
d = v dec 2 dec dec? “
@ Let's determine vy from (4):
Vg = V2-dec-d (5)

@ Formula (5) gives the expected speed v, when we are at a distance d
from the end of the motion

Corrado Santoro Controlling Posi nd Speed using Profiles



Speed Profile and Distance

o(t)

Umaz

ta it te

Resolving the Overlapping

@ Now, we are in the acceleration phase, and our speed is v

@ According to our initial computation of the deceleration distance we have that,
hypothetically, our deceleration should start at ¢;, can we really enter in that
phase?

@ Since we know the distance to be travelled d, let’s determine the expected speed
Vd

@ if vy > v, we are still in the acceleration phase, so continue to accelerate until
the condition becomes false

Corrado Santoro i iti Speed using Profiles



The Virtual Robot
The final code

def evaluate(self, delta t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v x delta_t \

+ self.accel * delta_t * delta t / 2
self.v = self.v + self.accel * delta_t
distance = self.p_target - self.p
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE
elif distance <= self.decel _distance:
v_exp = math.sqrt (2 * self.decel * distance)
if v_exp < self.v:
self.phase = VirtualRobot.DECEL

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax x delta t
distance = self.p_target - self.p
if distance <= self.decel_distance:
self.phase = VirtualRobot .DECEL

elif self.phase == VirtualRobot.DECEL:
self.p = self.p + self.v * delta t \
— self.decel x delta t x delta t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0

self.p = self.p_target

self.phase = VirtualRobot.TARGET

Corrado Santoro



Back to Position Control

Umaz acc dec Umaz

PI Controller
with Saturation

Virtual Robot p_+ PID Controller
Trajectory Generator A with Saturation

Drarget —|

Speed
Sensor

Position
Sensor

From Virtual to Real

@ Now we have our virtual robot that travels according to a “path”
generated from our initial requirements (distance, maximum speed,
acceleration and deceleration)

@ How can we use it in our real position control?
@ The idea is to let the real robot “catch” the virtual robot

Corrado Santoro iti Speed using Profiles



Back to Position Control

Umaz acc dec Unna:

L] [

Virtual Robot p + PID Controller
Trajectory Generator A with Saturation

Pl Controller

Prarget —>| with Saturation

B

Speed
Sensor

Position
Sensor

Catching the Virtual Robot

@ The trajectory generator (our VirtualRobot class) gives the position p of
the virtual robot time-by-time

@ pis the position in which we expect to find also the real robot, but this
will not be the case

@ Let’s determine the error p — p between expected and real position of
the real robot and use a PID controller to compute the speed needed to
reach p

@ In other words, the control system works in order to keep the error p — p
as non-zero in order to output a travelling speed (until p = prarget)

Corrado Santoro Controlling Po: nd Speed using Profiles



Catching the Virtual Robot

Uﬂr x EIC ‘TC vmf ™
_ v
Virtual Robot | P+ PID Controller Pl Controller
arget — = " 5
Prarget Trajectory Generator A with Saturation with Saturation Cart »

Speed
Sensor

Position
Sensor

The Code

~
class CartRobot (RoboticSystem) :
def __init__ (self):

self.trajectory = VirtualRobot( 8, # distance 8 m
5, # max speed 1.5 m/s

1.0, # accel 1 m/s2

1.0) # decel 1 m/s2
self.speed controller = Sat (10.0, 8.0, 0.0, 2.0, True)
# Kp = 3, KI = 2, Sat =
self.position_controller =
# Kp = 2?2, vmax = 1.5 m/s

PID
2 N
PIDSat (2?2, 0.0, 0.0, 1.5)

def run(self):
self.trajectory.evaluate (self.delta_t)
v_target = self.position_controller.evaluate(self.delta t,
self.trajectory.p, self.get_pose())
F = self.speed _controller.evaluate(self.delta t, v_target, self.get_speed())
self.cart.evaluate(self.delta_t, F)

Corrado Santoro



Catching the Virtual Robot

—— Virtual Robot Speed

Role of Constants of the Position Controller

@ Kp controls the delay of the real robot with respect to the virtual robot

@ ltis only a delay not an error, since the target position is (sooner or
later) reached

Corrado Santoro Controlling Posit nd Speed using Profiles



Catching the Virtual Robot

— Target Speed
— Current Speed
—— Virtual Robot Speed

4
time time.

The Role of Constants of the Position Controller

@ Interesting.... but still slow

Corrado Santoro Controlling Position and Speed using Profiles



Catching the Virtual Robot

— Virtual Robot Speed

The Role of Constants of the Position Controller
@ Very nice!l But there is an overshot

@ Let’'s add a small derivative contribution ...

Corrado Santoro Controlling Posit nd Speed using Profiles



Catching the Virtual Robot

Kp =8.0,Kp =0.8

— Target Speed 8 — Target position
14 — Current Speed — Current Position
—— Virtual Robot Speed 7
12
6
10
5
08
4
06 3
04 2
02 1
00 0
o 2 4 6 8 10 0 2 4 [ 8 10
time time

The Role of Constants of the Position Controller
@ It's OK!

Corrado Santoro Controlling Posit nd Speed using Profiles



The Virtual Robot

Umaz acc dec Vmaz

_ f

Virtual Robot p_+ PID Controller
Trajectory Generator A with Saturation

Drarget —>|

” | PIController
with Saturation

Speed
Sensor

Position
Sensor

Lesson Learned

@ The virtual robot is indeed a generator of the theoretical trajectory
that, during time, must be followed by the real system

@ Here we have a case with mono-dimensional motion and thus a single
(position) variable to control

@ However the same concepts can be applied when the trajectory is in a
plane or in space

Corrado Santoro i i d Speed using Profiles



Position and Speed Control

The Speed Profile Generator |

Corrado Santoro Controlling Position and Speed using Profiles



From the Virtual Robot ....

Umaz
Umaz acc dec l

1T f

PID Controller
with Saturation

| PIController
with Saturation

Virtual Robot

Prarget | Trajectory Generator

Speed
Sensor

Position
Sensor

A small patch...

@ The Virtual Robot Trajectory Generator outputs not only the theoretical
position p but also the theoretical speed Vv that, during time, must be
followed by the real system

@ And the plots show that indeed the real speed is in accordance with the
speed profile generated by the Virtual Robot

@ Well...but, instead of using the position, could we consider directly the
theoretical speed as the set-point the speed controller?

Corrado Santoro Controlling Posit nd Speed using Profiles



From the Virtual Robot ....

Umaz

Umaz acc dec

l

Virtual Robot
Trajectory Generator

PI Controller
with Saturation

Prarget —>|

Speed
Sensor

Position
Sensor

A small patch...

@ Indeed we can consider to connect the theoretical speed v directly to
the (final) speed controller

@ The Position Controller is now useless and can be removed

@ But the current position p cannot be left unconnected: it must be always
sent in feedback, otherwise the concept of “control” does not apply and
the control does work work

Corrado Santoro



... to the Speed Profile Generator

Vpaz acc dec

Speed Profile
Generator

P Controller
with Saturation

——

Prarget —>|

B

Speed
Sensor

Position
Sensor

A small patch...

@ The profile generator must posses the current position to output the
right v

@ But, since we are not considering a virtual robot moving, we must (and
can!) use directly to the real postion

Corrado Santoro Controlling Po: nd Speed using Profiles



The Speed Profile Generator

Umaz acc dec

l

, v
Speed Profile PI Controller
Prarget Generator with Saturation »
p

Speed
Sensor

Position
Sensor

The Code (

class SpeedProfileGenerator:

ACCEL = 0
CRUISE = 1
DECEL = 2
TARGET = 3

def _ init_ (self, _p_target, _vmax, _acc, _dec):
self.p_target = _p_target

self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.phase = SpeedProfileGenerator.ACCEL
self.decel _distance = 0.5 * _vmax * _vmax / _dec
~ v
”

Corrado Santoro



The Speed Profile Generator

The Code (

class SpeedProfileGenerator:

def evaluate(self, delta_t, current_pos):
# Indeed this is not correct!!
# We should consider that, if the target is overcome, we must go back!!
if current_pos >= self.p_target:

self.v = 0
self.phase = SpeedProfileGenerator.TARGET
return

distance = self.p_target - current_pos
if self.phase == SpeedProfileGenerator.ACCEL:
self.v = self.v + self.accel x delta t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = SpeedProfileGenerator.CRUISE
elif distance <= self.decel_distance:
v_exp = math.sqrt (2 * self.decel * distance)
if v_exp < self.v:
self.phase = SpeedProfileGenerator.DECEL

elif self.phase == SpeedProfileGenerator.CRUISE:
if distance <= self.decel distance:
self.phase = SpeedProfileGenerator.DECEL

elif self.phase == SpeedProfileGenerator.DECEL:
self.v = math.sqrt (2 * self.decel * distance)

Corrado Santoro



The Speed Profile Generator

(see test position control with profile gui.py)

-
class CartRobot (RoboticSystem) :

def _ init__ (self):
super () .__init__ (le-3) # delta t = le-3
# Mass = 1kg
# friction = 0.8
self.cart = Cart(l, 0.8)
self.plotter = DataPlotter()
self.profile = SpeedProfileGenerator , # distance 8 m
, # max speed 1.5 m/s
, # accel 1 m/s2
.0) # decel 1 m/s2
self.speed controller = PIDSat(10.0, 8.0, 0.0, 2.0, True)

def run(self):
self.profile.evaluate(self.delta_t, self.get_pose())
F = self.speed _controller.evaluate(self.delta t,
self.profile.v, self.get_speed())
self.cart.evaluate (self.delta t, F)

Corrado Santoro



The Speed Profile Generator

— Target Speed 8

— current speed

—— Target Position
—— current Position

Corrado Santoro Controlling Pos

8 10




Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Posit nd Speed using Profiles



