
Software Aspects in Control Systems

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Software Aspects in Control Systems

Implementation of a Control System

The implementation of control systems is based on an algorithm that is
characterised by the execution of a timed loop of a set of activities:

Starting of the activities on the basis of a sampling time, ∆T

Reading of input variables

Execution of one step of the control algorithm

Writing of the results to the outputs

Algorithm

while True do
On each ∆T ;
in← read input();
out ← compute control();
write output(out);

end

Corrado Santoro Software Aspects in Control Systems

Implementation of a Control System

When the whole system is made of several sub-systems, at first sight, each
of them must be implemented in a different (computational) loop, and all
the loops should be executed concurrently

S1 S2
in1 out1

out2
in2

System S1

while True do
On each ∆T1;
in1← read input1();
out1← compute S1();
write output1(out1);

end

System S2

while True do
On each ∆T2;
in2← read input2();
out2← compute S2();
write output2(out2);

end

Since the sub-systems are interconnected, a certain form of
communication between the “loops” must be implemented: in the case in
figure, variable out1 of S1 is also the input of in2 of S2.

Corrado Santoro Software Aspects in Control Systems

Implementation of a Control System

However, if the periods are the same ∆T1 = ∆T2 = ∆T , we can “fuse” both
the loops:

System S1+S2

while True do
On each ∆T ;
in1← read input1();
out1← compute S1();
in2← out1;
out2← compute S2();
write output2(out2);

end

S1 S2
in1 out1

out2
in2

Corrado Santoro Software Aspects in Control Systems

Implementation of a Control System
At the same time, when one of the intervals is a integer multiple of the other,
∆T1 = n∆T2, we can implement the system as:

System S1+S2

while True do
On each ∆T2;
count ← count + 1;
if count = n then

count ← 0;
in1← read input1();
out1← compute S1();

end
in2← out1;
out2← compute S2();
write output2(out2);

end

S1 S2
in1 out1

out2
in2

Corrado Santoro Software Aspects in Control Systems

Choosing the Sampling Time for Sensors

The Fourier Series
Any (periodic) signal s(t) can be represented as a linear
combination of sinusoids and cosinusoids with coefficientes ai
and bi :

s(t) =
a0

2
+

N∑
n=1

[an cos(
2π
T

nt) + bnsin(
2π
T

nt)]

In other words, the original signal can be constructed using a
linear combination of sinusoids at different frequencies

A signal coming from a sensor can be considered a signal of
the type indicated

Corrado Santoro Software Aspects in Control Systems

Choosing the Sampling Time for Sensors

Nyquist–Shannon Sampling Theorem

Any (periodic) signal s(t) can be reconstructed when it is
sampled at a frequency fsample that is at least two times the
frequency of the sinusoid with maximum frequency

Corrado Santoro Software Aspects in Control Systems

Choosing the Control Period

Choosing the Control Period

The Control Period is used in the discretization of a system, in which
the state matrix A becomes:

A′ = A∆T + I

Since the stability and the behaviour of the discretized system depend
on the eigenvalues of A′, the choice of ∆T plays a fundamental role

Theoretically ∆T must be chosen by meeting the following (give x the
state vector):

∆x
∆T
' 0

Corrado Santoro Software Aspects in Control Systems

Task Subdivision

Task Subdivision

Corrado Santoro Software Aspects in Control Systems

Task Subdivision

Software organisation of a control system
A set of tasks, each implementing a single sub-system

A scheduling environment able to execute such tasks each with its
own period

A communication environment among tasks, able to support data
interchange and synchronisation among tasks

Corrado Santoro Software Aspects in Control Systems

Example: Tasks of Control System

S1 S2
in1 out1

out2
in2

Let us consider the system in figure and suppose that S2 has a period ∆T ,
and S1 has a period 4∆T

Task S1()

in1← read input1();
out1← compute S1();
write output1(out1);

Task S2()

in2← read input2();
out2← compute S2();
write output2(out2);

Corrado Santoro Software Aspects in Control Systems

Example: Scheduling and Communication in a Control
System

S1 S2
in1 out1

out2
in2

Let us consider the system in figure and suppose that S2 has a period ∆T ,
and S1 has a period 4∆T

System S1+S2

while True do
On each ∆T ;
count ← count + 1;
if count = 4 then

count ← 0;
Task S1();
in2← out1;

end
Task S2();

end

Components

Red: Tasks

Green: Scheduler

Blue: Communication

Corrado Santoro Software Aspects in Control Systems

Task Models

Structured Models
A function (task body) that implements the behaviour of the single
system

A data structure that embeds the data about the state of the
task/system

Object Model
A class that represents the sub-system with...

a main method (e.g. run()) that implements the behaviour of the
single system

a set of attributes that embeds the data about the state of the
task/system

Corrado Santoro Software Aspects in Control Systems

Managing Periods

A timer hardware, configured using the period ∆T , with a procedure that is
activated when the timer elapsed:

Adopted Solutions

A shared global variable, in polling

A callback procedure associated to the timer

Invocation of blocking procedure that waits for the timer event

In any case, a library framework, or an operating system, is needed, able to
offer the management of the timer

Corrado Santoro Software Aspects in Control Systems

Managing Periods

Interrupt Service Routine + Polling of a Shared Variable

bool timer elapsed ← false;

TimerISR () begin
timer elapsed ← true;

end

Main () begin
while True do

if timer elapsed then
timer elapsed ← false;
// Do the control tasks

end
end

end

Corrado Santoro Software Aspects in Control Systems

Managing Periods

Callback Procedure associated to the Timer

TimerCallback () begin
// Do the control tasks

end

Main () begin
SetTimerCallback(∆T ,TimerCallback);
// ... do other things

end

Corrado Santoro Software Aspects in Control Systems

Managing Periods

Blocking Procedure waiting for the Timer Event

Main () begin
SetupTimer(∆T);
while True do

WaitTimerEvent();
// Do the control tasks

end
end

Corrado Santoro Software Aspects in Control Systems

Task Communication

Adopted Solutions

Shared Variables, with critical sections when the access is done by
concurrent tasks

References amoung objects (when the implementation is
object-oriented), with critical sections if needed

Use of a communication middleware

Corrado Santoro Software Aspects in Control Systems

Communication Middleware for Control Systems

Publisher/Subscriber Model (Data Distribution Model)

Exchanged data are modelled by means of structured types and
identified by a topic

Tasks interested in a certain topic call a subscribe function by
specifying the topic itself

Data Distribution Middleware

TASK 1 TASK 2 TASK 3

subscribe(topic1) subscribe(topic1) subscribe(topic2)subscribe(topic2)

Corrado Santoro Software Aspects in Control Systems

Communication Middleware for Control Systems

Publisher/Subscriber Model (Data Distribution Model)

The tasks producing a data with a certain topic calls a publish function,
specifying topic and data

Tasks which have a subscription receive notify with published data

Data Distribution Middleware

TASK 1 TASK 2 TASK 3

publish(topic2,data2) notify(topic1,data1) notify(topic2,data2)publish(topic1,data1)

notify(topic2,data2) notify(topic1,data1)

Corrado Santoro Software Aspects in Control Systems

Some Communication Middlewares

uORB: communication middleware for embedded systems (centralised)

CORBA-DDS (Data Distribution Service): communication middleware
based on a standard by the Object Management Group (centralised and
distributed)

ROS (Robot Operating System: communication middleware
specifically designed for robotic systems (centralised and distributed)

MQTT (Message Queue Telemetry Transport): a lightweigth standard
communication protocol (publisher/subscriber) specifically designed for
IoT systems (centralised and distributed)

Corrado Santoro Software Aspects in Control Systems

Control System using the Publisher/Subscriber Model

S1 S2
in1 out1

out2
in2

Task S1

while True do
On each ∆T1;
in1← read input1();
out1← compute S1();
publish(”mydata”, out1);

end

Task S2

subscribe(”mydata”);
while True do

in2← wait data(”mydata”);
out2← compute S2();
write output2(out2);

end

Corrado Santoro Software Aspects in Control Systems

Real-Time Operating Systems

Real-Time Operating Systems

Corrado Santoro Software Aspects in Control Systems

Real-Time Operating Systems

The execution of control tasks requires guaranteed times, otherwise
the consequences may be dangerous (above all when the system is
safety-critical)

If ∆Tc is the “worst-case” execution times of a task and ∆T its period,
then the following must be met: ∆Tc < ∆T

However, the remaning time ∆T −∆Tc must be such that the system
can perform other activities

Corrado Santoro Software Aspects in Control Systems

Real-Time Operating Systems

Feasibility Condition

Feasibility condition of N periodic tasks:

N∑
i=1

∆Tci

∆Ti
< 1

where ∆Tci is worst-case execution time of the task i and ∆Ti is the
periodo of the task i

Corrado Santoro Software Aspects in Control Systems

Real-Time Operating Systems

Characteristics of Schedulers in Multi-tasking RTOSs

Task Scheduling in RTOS is performed by means of task priorities

Priorities are fixed and does not change as it happens instead in
“general-purpose” operating systems

The priority is assigned (statically or dynamically) on the basis of the
time characteristics of the task (i.e. the more “urgent” the task the
higher its priority)

Corrado Santoro Software Aspects in Control Systems

Real-Time Operating Systems

Scheduling Policies in RTOS

Round-Robin (RR) with Priority: the scheduler selects the READY
task with the highest priority and executes it, preempting it at the next
“scheduling tick” (or if the task goes autonomously in “sleep” due to a
blocking system call)

FIFO (with Priority): the scheduler selects the READY task with the
highest priority and executes it, preempting it only due to a blocking
system call

Corrado Santoro Software Aspects in Control Systems

Real-Time Operating Systems

Some RTOSs

FreeRTOS. Real-time Kernel for embedded systems (open-source)

NuttX. Real-time Kernel for embedded systems (open-source, used in
autopilots of drones)

RTAI. Real-time Linux Kernel (open-source)

QNX. Real-time Kernel Unix-like (proprietario)

VxWorks. Real-time Kernel Unix-like (proprietario)

Corrado Santoro Software Aspects in Control Systems

Soft Real-Time Scheduling in Linux

Soft Real-Time Scheduling in Linux

Corrado Santoro Software Aspects in Control Systems

Linux System Call to control Scheduling

Set of the Scheduling Policy
int sched setscheduler(pid t pid, int policy,

struct sched param * param);

pid, the process idenitifier of which we want to change the scheduling
policy (0 = “this process”)

policy, the scheduling policy: SCHED OTHER, SCHED RR,
SCHED FIFO

param, additional parameters, among them the priority (from 1 to 99)

Priority
struct sched param {
...
int sched priority;
...
};

Corrado Santoro Software Aspects in Control Systems

Custom Scheduling Example

A main that runs 3 children�
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sched.h>

int child_process(int id)
{
...

}

int main(int argc, char **argv)
{

int i, status;
printf("Starting 3 children...\n");

for (i = 0; i < 3;i++) {
pid_t pid = fork();
if (pid == 0) {

child_process(i);
exit(0);

}
}

printf("Waiting...\n");
while (wait(&status) > 0) {};
printf("End...\n");

}
� �
Corrado Santoro Software Aspects in Control Systems

Custom Scheduling Example

�
int child_process(int id)
{

struct sched_param params;
int i,k;

#ifdef FIFO
params.sched_priority = sched_get_priority_max(SCHED_FIFO);
if (sched_setscheduler(0, SCHED_FIFO, ¶ms) < 0) {

perror("cannot set the scheduler");
}
printf("Setting priority %d\n", params.sched_priority);

#endif

#ifdef RR
params.sched_priority = sched_get_priority_max(SCHED_RR);
if (sched_setscheduler(0, SCHED_RR, ¶ms) < 0) {

perror("cannot set the scheduler");
}
printf("Setting priority %d\n", params.sched_priority);

#endif

usleep(500000);
printf("Child %d started\n", id);
for (i = 0;i < 10;i++) { /* 10 iterations */

printf("Child %d, iteration %d\n", id, i);
for (k = 0; k < 100000000;k++) {} /* losing time ... */

}
return 0;

}
� �
Corrado Santoro Software Aspects in Control Systems

Custom Scheduling Example

Test with SCHED OTHER
$ taskset --cpu-list 1 sudo ./sched_test
Starting 3 children...
Waiting...
Child 2 started
Child 2, iteration 0
Child 1 started
Child 1, iteration 0
Child 0 started
Child 0, iteration 0
Child 1, iteration 1
Child 2, iteration 1
Child 0, iteration 1
Child 2, iteration 2
Child 0, iteration 2
Child 1, iteration 2
Child 2, iteration 3
Child 0, iteration 3
Child 1, iteration 3
Child 2, iteration 4
....
End...

Corrado Santoro Software Aspects in Control Systems

Custom Scheduling Example

Test with SCHED FIFO
$ taskset --cpu-list 1 sudo ./sched_test
Starting 3 children...
Waiting...
Setting priority 99
Setting priority 99
Setting priority 99
Child 2 started
Child 2, iteration 0
Child 2, iteration 1
Child 2, iteration 2
...
Child 2, iteration 9
Child 1 started
Child 1, iteration 0
Child 1, iteration 1
Child 1, iteration 2
...
Child 1, iteration 9
Child 0 started
Child 0, iteration 0
Child 0, iteration 1
Child 0, iteration 2
...
Child 0, iteration 9
End...

Corrado Santoro Software Aspects in Control Systems

Real-Time Linux

Real-Time Linux

Corrado Santoro Software Aspects in Control Systems

Real-Time Linux

Latencies & RTLinux
The scheduling policies allow a developer the implementation of soft
real-time tasks in Linux

But some parts of the Linux kernel are not pre-emptible thus
uncontrallable latencies can occour

For example, the management of virtual memory (swapping) introduces
unpredictable latencies

RTLinux overcomes such limits by patching some parts of Linux kernel
thus allowing the execution of hard real-time tasks

Corrado Santoro Software Aspects in Control Systems

Real-Time Linux

RTAI
RTAI is widley used to support real-time processes on Linux

It is a kernel patch that uses the “virtualisation” model

The Linux kernel is replaced by a micro-kernel upon which the both the
“classic” Linux kernel and the real-time Kernel (added by RTAI) run

HARDWARE

MICRO-KERNEL

KERNEL LINUXKERNEL REAL-TIME

PROCESSO
LINUX

PROCESSO
LINUX

PROCESSO
LINUX

PROCESSO
LINUX

PROCESSO
LINUX

PROCESSO
REAL-TIME

PROCESSO
REAL-TIME

PROCESSO
REAL-TIME

PROCESSO
REAL-TIME

PROCESSO
REAL-TIME

Corrado Santoro Software Aspects in Control Systems

Real-Time Linux

PREEMPT RT Patch
From the release 3.0, the Linux kernel has been made preemptible
through a patch provided by te Linux Foundation(*)

This patch, with the preemption, offers a series of systems calls to
support real-time tasks:

Suppor for timer and timer-based task
Scheduling policies
Stack control
Memory control

(*) = https://wiki.linuxfoundation.org/realtime/start

Corrado Santoro Software Aspects in Control Systems

Software Aspects in Control Systems

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Software Aspects in Control Systems

