
Locomotion of a Mobile Robot in a 2D Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Model
According to the desired freedom degrees, a wide range of locomotion
model exists

Each model consider a certain number of wheels (2, 3, 4, etc.)

and a certain kind of wheels (traction, free, steering, castor, omniball,
omnidirectional, etc.)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Two Wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Three Wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Three Wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Four Wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Four Wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Wheels and Dynamic Model
For each type of locomotion system, the kinematic and dynamic model
must consider the forces generated by the traction wheels
Such forces must then be transformated into F and T according to the
“generic” 2D robot model

In a similar way, according to the model, position sensors are tied to
the wheels

so they do not generate directly {xR , yR , θR} and a proper
transformation is needed also in this case

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Indipendent Wheels

Two Indipendent Wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Two indipendent traction wheels (in red)

Two indipendent encoders (with free wheels, in black) to track the
position

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Dynamic Model
Since we drive the traction wheels, we need a transformation from
(Fleft ,Fright) to (F ,T)

We have:

F = Fleft + Fright

T = L (Fright − Fleft)

where L is the (estimated) distance between the two traction wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Dynamic Model
Indeed, wheel motors generate torques that then are transformed in
forces on the basis of the radius the traction wheels:

Fleft =
MOleft

RMleft

Fright =
MOright

RMright

where RMxxxx is the radius of the wheel and MOxxxx is the torque
generated by the motor

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Kinematic Model
Since we measure the two wheels, we need a transformation from
(vleft , vright) to (v , ω)

We have:

v =
vleft + vright

2
ω =

vright − vleft

B

vleft = v − ωB
2

vright = v +
ωB
2

where B (wheelbase) is the (estimated) distance between the two
measurement wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Measurement Wheels

Encoders are digital sensors able to
measure rotation angles (rather than
speed)

For each ∆T each encoder can provide
the (relative) rotation angle of the wheel,
i.e. ∆θleft , ∆θright

Given rleft , rright the radius of each wheel
we can compute the distance travelled
by each wheel:

∆pleft = ∆θleft rleft ∆pright = ∆θright rright

Speed can be thus computed as:

vleft =
∆pleft

∆T
vright =

∆pright

∆T

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Kinematic Model (Odometry or Dead-reckoning)
The final kinematics is given by:

∆pleft = ∆θleft rleft ∆pright = ∆θright rright

vleft =
∆pleft

∆T
vright =

∆pright

∆T

v =
vleft + vright

2
ω =

vright − vleft

B

∆p =
∆pleft + ∆pright

2
∆θ =

∆pright −∆pleft

B

xR = xR + ∆p cos(θR +
∆θ

2
)

yR = yR + ∆p sin(θR +
∆θ

2
)

θR = θR + ∆θ

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

The
(real)
Robot

ODOMETRY

The Robot and the Sensors
We can intervene on the robot by modulating the torques generated by
left and right motors

We can sense the robot by gathering data sampled by encoders in
terms of angle variation of left and right measurement wheels

The other kinematic paramaters are then computed by means of the
odometry algorithm

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

The
(real)
Robot

ODOMETRY

Approximation introducted by the Odometry Algorithm
Encoders are digital sensors so ∆θleft and ∆θright are approximated
according to a certain resolution

The algorithm assumes that rleft and rright are known, but the real
radius depends on the load on each sensing wheel

The algorithm assumes that vleft and vright are constant during ∆T , and
this may not be the case

The algorithm assumes that the mass’ center of the robot is placed in
the middle point of the traction axis, but if the weight is not uniformly
distributed the reality is quite different

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Indipendent Wheels

Model and Simulation

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

The
(real)
Robot

According to the study made so far we can model our robot with two
independent wheels

We consider the robot as a system with two inputs, the torques
generated by the motors ...

... and two outputs, the angles traveled by left and right sensing wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Traction Wheels

Dynamic
Model

Sensing
Wheels

Left
Encoder

Right
Encoder

Fleft =
MOleft

RMleft

Fright =
MOright

RMright

F = Fleft + Fright T = L (Fright − Fleft)

v̇ = − b
M

v +
1
M

F

ω̇ = − 2β
Mr 2ω +

2
Mr 2 T

vleft = v − ωB
2

vright = v +
ωB
2

θ̇left =
vleft

rleft
θ̇right =

vright

rright

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels
Traction Wheels

Dynamic
Model

Sensing
Wheels

Left
Encoder

Right
Encoder

Encoders, the matter of resolution

θ̇left =
vleft

rleft
θ̇right =

vright

rright

∆θleft =
vleft

rleft
∆T ∆θright =

vright

rright
∆T

Encoders are digital sensors so they feature a certain specific
resolution which is given as the minimum angle (variation) ε they can
percieve

The real sensed data is therefore:

∆θleft =
⌊vleft

rleft
∆T

1
ε

⌋
ε ∆θright =

⌊vright

rright
∆T

1
ε

⌋
ε

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Traction Wheels

Dynamic
Model

Sensing
Wheels

Left
Encoder

Right
Encoder

The
(real)
Robot

ODOMETRY

The Code
See:

lib/models/cart2d.py

tests/cart 2d two wheels/test robot odometry 1.py

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Indipendent Wheels

Motion Control

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

The
(real)
Robot

ODOMETRY
PIDSat
(Right)

PIDSat
(Left)

Speed Control
We can control each wheel in speed by comparing the actual speed
vleft/right with the relevant reference v left/right

To this aim, we use two different PID controllers, one for each wheel

The output of each controller is the command for the motors, i.e. the
torque in our case

(see tests/cart 2d two wheels/test speed control.py and
tests/cart 2d two wheels/test speed control ramp.py)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

The
(real)
Robot

ODOMETRY
PIDSat
(Right)

PIDSat
(Left)

Speed Control
If we add a transformation block from (v , ω) to (vleft , vright), we can
control the robot using the speeds of the rigid body

(see tests/cart 2d two wheels/test speed control polar.py)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

The
(real)
Robot

ODOMETRY
PIDSat
(Right)

PIDSat
(Left) Position

Control
Algorithm

Position Control
In turn, we can easily apply all position control algorithms
we studied (polar, speed profile, etc.)

(see tests/cart 2d two wheels/test position control.py)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Ackermann Steering

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

It is the locomotion model of the cars

It is based on a (rear or front) single traction actuator (motor) plus a
mechanism to steer front wheels

The traction (rear in figure) is connected to a gearbox called differential
that allow traction wheels to rotate at different speeds during turns

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Geometric Model
ICR: Instantaneous Center of Rotation

R: Radius of Rotation

B: Wheelbase

L: Lateral Wheelbase

αi : Inner wheel steering angle

αo: Outer wheel steering angle

αc : Center (virtual) wheel steering angle

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Kinematics
In Ackermann steering vehicle the speeds of the rigid body (v , ω) are
not independent

ω depends on v and the steering angle αc

ω =
v
R

R =
L

tanαc

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

T

Dynamics
In Ackermann steering vehicle the motor generates a torque T that, on
the basis of the radius of traction wheels, becomes a traction force

The dynamics can be modeled in a similar way as to what we did for the
cart

F =
T

rwheel
v̇ = − b

M
v +

1
M

F

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

lib/models/cart2d.py�
class AckermannSteering:

def __init__(self, _mass, _lin_friction,
_r_traction, _lateral_wheelbase):

self.M = _mass
self.b = _lin_friction
self.r_wheels = _r_traction
self.l_wb = _lateral_wheelbase
self.v = 0
self.w = 0
self.x = 0
self.y = 0
self.theta = 0

def evaluate(self, delta_t, torque, steering_angle):
_force = torque / self.r_wheels
new_v = self.v * (1 - self.b * delta_t / self.M) + \

delta_t * _force / self.M
if steering_angle == 0:

new_w = 0
else:

curvature_radius = self.l_wb / math.tan(steering_angle)
new_w = new_v / curvature_radius

self.x = self.x + self.v * delta_t * math.cos(self.theta)
self.y = self.y + self.v * delta_t * math.sin(self.theta)
self.theta = self.theta + delta_t * self.w
self.v = new_v
self.w = new_w
� �

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Ackermann
Vehicle

PID
(Speed Control)

Speed Control
The linear speed v can be directly controlled using a classical PID

Angular speed ω cannot be directly controlled since it depends on both
the steering angle and the linear speed

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

tests/ackermann 2d/test speed ackermann.py�
class AckermannRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
Mass = 10kg
side = 15cm
wheels radius = 2cm
friction = 0.8
self.car = AckermannSteering(10, 0.8, 0.02, 0.15)

5 Nm max, antiwindup
self.speed_controller = PIDSat(2.0, 2.0, 0, 5, True)

def run(self):
(v, w) = self.get_speed()
vref = 1.5

Torque = self.speed_controller.evaluate(self.delta_t, vref, v)
Steering = 0

self.car.evaluate(self.delta_t, Torque, Steering)
...
� �

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Ackermann
Vehicle

Linear Speed
Controller

+

-

Linear Position
Controller

Angular Position
Controller

Cartesian
To

Polar +

-

Position Control
The polar position control can be directly used by considering steering
angle instead of angular speed

The output of the angular position controller is not the target ω but the
steering angle αc

Remember that that both linear and angular position controllers are
P-controllers with saturation

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

tests/ackermann 2d/test polar ackermann.py�
class AckermannRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
Mass = 10kg
side = 15cm
wheels radius = 2cm
friction = 0.8
self.car = AckermannSteering(10, 0.8, 0.02, 0.15)

5 Nm max, antiwindup
self.speed_controller = PIDSat(2.0, 2.0, 0, 5, True)

kp_lin = 1, vmax = 2 m/s
kp_ang = 1, steering max = 45 deg
self.polar_controller = Polar2DController(1.0, 2.0,

1.0, math.pi/4)

def run(self):
(vref, steering) = self.polar_controller.evaluate(self.delta_t,

0.5, 0.5,
self.get_pose())

(v, w) = self.get_speed()

torque = self.speed_controller.evaluate(self.delta_t, vref, v)

self.car.evaluate(self.delta_t, torque, steering)
...
� �

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Ackermann
Vehicle

Linear Speed
Controller

+

-

Linear Position
Controller

Angular Position
Controller

Cartesian
To

Polar +

-

Trajectory Generator
(StraightLine2DMotion)

Trajectory Following
The polar position control can be in turn driven by the trajectory
generator in order to follow a certain straight line towards a final point

(see tests/ackermann 2d/test virtual robot ackermann.py)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Mobile Robot in a 2D Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

