Locomotion of a Mobile Robot in a 2D Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

S

Robotic Systems

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

@ According to the desired freedom degrees, a wide range of locomotion
model exists

@ Each model consider a certain number of wheels (2, 3, 4, etc.)

@ and a certain kind of wheels (traction, free, steering, castor, omniball,
omnidirectional, etc.)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Two Wheels

2 One steering wheel in the front, | Bicycle, motorcycle
— & one traction wheel in the rear
Two-wheel differential drive Cye personal robot
| —

with the center of mass (COM)
below the axle

[

Corrado Santoro i i bot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Three Wheels

3 Two-wheel centered differen- | Nomad Scout, smartRob
tial drive with a third point of | EPFL
contact
Two independently driven Many indoor robots,
= wheels in the rear/front, 1 including the EPFL robots

O unpowered omnidirectional Pygmalion and Alice
wheel in the front/rear

Two connected traction wheels | Piaggio minitrucks
(differential) in rear, 1 steered
& free wheel in front

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Three Wheels

—

Two free wheels in rear, 1
steered traction wheel in front

Neptune (Carnegie Mellon
University), Hero-1

Three motorized Swedish or
spherical wheels arranged in a

Stanford wheel
Tribolo EPFL,

triangle; omnidirectional move- | Palm Pilot Robot Kit
ment is possible (CMU)

Three synchronously motorized | “Synchro drive”

and steered wheels; the orienta- | Denning MRV-2, Geor-
gia Institute of Technol-
ogy, [-Robot B24, Nomad
200

tion is not controllable

Corrado Santoro

omotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Four Wheels

4 Two motorized wheels in the Car with rear-wheel drive

rear, 2 steered wheels in the
front; steering has to be differ-
ent for the 2 wheels to avoid
slipping/skidding.

Two motorized and steered Car with front-wheel drive

= wheels in the front, 2 free
wheels in the rear; steering has
to be different for the 2 wheels

to avoid slipping/skidding.

Four steered and motorized Four-wheel drive, four-
wheels wheel steering Hyperion
(CMU)

Corrado Santoro omotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Four Wheels
Two traction wheels (differen- | Charlie (DMT-EPFL)
tial) in rear/front, 2 omnidirec-
tional wheels in the front/rear
—
- - Four omnidirectional wheels Carnegie Mellon Uranus
[Z771 [7771
(2771 12771
= Two-wheel differential drive EPFL Khepera, Hyperbot
with 2 additional points of con- | Chip
0 O |w
—

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Robot in a 2-Dimensional Space

Wheels and Dynamic Model

@ For each type of locomotion system, the kinematic and dynamic model
must consider the forces generated by the traction wheels

@ Such forces must then be transformated into F and T according to the
“generic” 2D robot model

@ In a similar way, according to the model, position sensors are tied to
the wheels

@ so they do not generate directly {xg. yr, 0z} and a proper
transformation is needed also in this case

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Indipendent Wheels

Two Indipendent Wheels)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

@ Two indipendent traction wheels (in red)

@ Two indipendent encoders (with free wheels, in black) to track the
position

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Dynamic Model

@ Since we drive the traction wheels, we need a transformation from
(Flett, Frignt) to (F, T)

@ We have:

F = Fiew + Frignt
T = L (Frignt — Fiert)

where L is the (estimated) distance between the two traction wheels

y

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Mo
Ry

Dynamic Model

@ Indeed, wheel motors generate torques that then are transformed in
forces on the basis of the radius the traction wheels:

F _ Moleft
left — T
Miert
,_— Monght
right =
9! RM

right

where Ry,,,, is the radius of the wheel and Mo,,,, is the torque
generated by the motor

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Kinematic Model

@ Since we measure the two wheels, we need a transformation from
(Vieft, Vrignt) 1o (v, w)

@ We have:
_ Viet + Vright - — Vright — Vieft
2 B
wB wB
Vieft = V — o Viight = V + 3

where B (wheelbase) is the (estimated) distance between the two
measurement wheels

v

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Measurement Wheels

@ Encoders are digital sensors able to
measure rotation angles (rather than
speed)

@ For each AT each encoder can provide
the (relative) rotation angle of the wheel,
i.e. Abes, Aeright

@ Given rer, rign: the radius of each wheel
we can compute the distance travelled
by each wheel:

Apret = AOjet Nert APright = AOright Tright

@ Speed can be thus computed as:

Aple)‘t Vo _ Apright
AT T AT

Vieft =

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Kinematic Model (Odometry or Dead-reckoning)

The final kinematics is given by:

APt = DOjett et

_ Viett + Vright
a 2
APt + Aprignt

Ap 5

XR

YR
Or

Apright = AbOright Itight

— Viight — Viett

a B

_ Aprignt — APert
a B

YA
Xr + Apcos(0r + 7)

. A0
YR+ Apsin(fg + 7)
Or + AO

Al

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

The
(real)
Mo, Robot

Abest
| eft,

L
Abright

The Robot and the Sensors

@ We can intervene on the robot by modulating the torques generated by

left and right motors

@ We can sense the robot by gathering data sampled by encoders in
terms of angle variation of left and right measurement wheels

@ The other kinematic paramaters are then computed by means of the

odometry algorithm

ODOMETRY

> Uleft

5 Uright

—

—

—

—

—

v
w
T
Yr
Or

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

> Vet

> Uright

A6,
B T i — v
(real) ODOMETRY — >
Mo, 5 Robot | L, oz
Abyigh

— > Ur

> Ok

Approximation introducted by the Odometry Algorithm

@ Encoders are digital sensors so Afj; and A,y are approximated
according to a certain resolution

@ The algorithm assumes that rie; and ryjgn: are known, but the real
radius depends on the load on each sensing wheel

@ The algorithm assumes that vi; and v;gn; are constant during AT, and
this may not be the case

@ The algorithm assumes that the mass’ center of the robot is placed in
the middle point of the traction axis, but if the weight is not uniformly
distributed the reality is quite different

<

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Indipendent Wheels

Model and Simulation |

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

MOlcft E— The

(real)
Moy Robot

right ————>1

Al
—

———
A eri ght

@ According to the study made so far we can model our robot with two

independent wheels

@ We consider the robot as a system with two inputs, the torques

generated by the motors ...

@ ... and two outputs, the angles traveled by left and right sensing wheels

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Traction Wheels

Two Independent Wheels

Flegt v Left | A9
Mo,,, —> R, v left ‘ ‘ left
o o Dynamic Sensing | Encoder |
Model Wheels [Right |
Mo,iyi—> By T | w right | Encoder | Afyigr
F _ Mo/eft F o Morigh[
left — T right — R
Miert Miight
IF = Fleft a4 Fright =y (Fright - F/efr)
. b 1
v = ——v+—F
M M
. 28 2
w = ———w+—=T
Mr? Mr?
wB wB
Vieft = V — 5 Vright = V + 5
. Vieft 2 Vright
O = —~ Oright = —2
Teft lf right

Corrado Santoro

of a Mobile Robot i

a 2D Space

Two Independent Wheels

‘Traction Wheels

jun’h;’ HMN ‘Ffi’ Dynamic
lﬂam,a R.U,W ﬁ Model
Encoders, the matter of resolution
. Vi . Vri
Ore = —2 Oright = .
Teft Tright
Viett — Viight
Nt = ZLAT Abright = AT
Teft Iy right

@ Encoders are digital sensors so they feature a certain specific
resolution which is given as the minimum angle (variation) e they can
percieve

@ The real sensed data is therefore:

1 Vi 1
Abjery = {%ATEJ € Agn = {r"’g::ATEJ e
eft rigi

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

o Inde dent Wheels

Traction Wheels

Flege
Mo, — Raip =l
Dynamic
y 7 Model
Oyight —> Mgt
" Fight
> Ueft
> Vright
Mo, Abrejt L
e I T e
(real) ODOMETRY ——> w
Mo,,, | Robot Ao [
right

— > Ur

— 6y

The Code

See:
@ lib/models/cart2d.py

@ tests/cart_2d two_wheels/test_robot_odometry_1.py

Corrado Santoro of a Mobile Robot in a 2D Space

Two Indipendent Wheels

Motion Control J

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Uright

Mo, A
2 PIDSat ieft left
Vieft —> — Th
+ (Left) e
(real) ODOMETRY
= + PIDSat Robot
vright Right) | Mo, Abright

Speed Control

@ We can control each wheel in speed by comparing the actual speed
Viert/right With the relevant reference Ve /rignt

@ To this aim, we use two different PID controllers, one for each wheel
@ The output of each controller is the command for the motors, i.e. the
torque in our case

(see tests/cart_2d two wheels/test_speed control.py and
tests/cart_2d two_wheels/test_speed control_ramp.py)

4

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Two Independent Wheels

Vieft —L teft

— Uleft =V —

Uright
Mo, AW,
25 PIDSat et et
2 ¥ (Left The
=5 (real) ODOMETRY
_ . ' PIDSat Robot
W ——> Trigh =0+ ——
right (Right) Mo, .. Abright

Speed Control

@ If we add a transformation block from (v, w) to (Vier, Viignt), We can
control the robot using the speeds of the rigid body

(see tests/cart_2d two wheels/test _speed control polar.py)

Corrado Santoro

Locomoti f a Mobile Robot in a 2D Space

Two Independent Wheels

——l> Vleft

Vright
v Dop =5 9B PIDSat Mo, Abe st
Position Vieft =V =5 (Lefty The
Control (real) ODOMETRY
Algorithm _ _, wB + PIDSat Robot
= =v+ — i 2
® 'right 2 5Tiqm 4 (Right) MoMM Agriyht

Vright

Position Control

@ In turn, we can easily apply all position control algorithms
we studied (polar, speed profile, etc.)

(see tests/cart_2d two wheels/test position control.py)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Ackermann Steering)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

@ |t is the locomotion model of the cars

@ |tis based on a (rear or front) single traction actuator (motor) plus a
mechanism to steer front wheels

@ The ftraction (rear in figure) is connected to a gearbox called differential
that allow traction wheels to rotate at different speeds during turns

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Geometric Model

@ /CR: Instantaneous Center of Rotation
R: Radius of Rotation

B: Wheelbase

L: Lateral Wheelbase

«j: Inner wheel steering angle

«o: Outer wheel steering angle

ac: Center (virtual) wheel steering angle

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

Kinematics

@ In Ackermann steering vehicle the speeds of the rigid body (v,w) are
not independent

@ w depends on v and the steering angle o

Z L
R "~ tan o

w =

<

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

@ In Ackermann steering vehicle the motor generates a torque T that, on
the basis of the radius of traction wheels, becomes a traction force

@ The dynamics can be modeled in a similar way as to what we did for the
cart

<

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

lib/models/cart2d.py

class AckermannSteering:

def _ init__ (self, _mass, _1lin_friction,
_r_traction, _lateral_wheelbase):

self.M = _mass

self.b = _lin friction

self.r wheels = _r_traction
self.l wb = _lateral wheelbase
self.v = 0

self.w = 0

self.x = 0

self.y = 0

self.theta = 0

def evaluate(self, delta_t, torque, steering_angle):
force = torque / self.r wheels
new v = self.v * (1 - self.b x delta t / self.M) + \
delta_t x _force / self.M

if steering angle ==
new w = 0

else:
curvature_radius = self.l _wb / math.tan(steering_angle)
new_w = new_v / curvature_radius

self.x = self.x + self.v * delta_t * math.cos(self.theta)
self.y = self.y + self.v x delta t * math.sin(self.theta)
self.theta = self.theta + delta_t * self.w

self.v = new_v

self.w = new_w

Corrado Santoro i a 2D Space

Ackermann Steering

_ o+ PID T

_ (Speed Control) Ackermann L

Vehicle
v Qe —> T:

@ The linear speed v can be directly controlled using a classical PID

£ cow 8

Speed Control

@ Angular speed w cannot be directly controlled since it depends on both
the steering angle and the linear speed

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

tests/ackermann 2d/test _speed ackermann.py

class AckermannRobot (RoboticSystem) :

def _ _init__ (self):
super () .__init__ (le-3) # delta t = le-3
Mass = 10kg
side = 15cm
wheels radius = 2cm
friction = 0.8
self.car = AckermannSteering (10, 0.8, 0.02, 0.15)

5 Nm max, antiwindup
self.speed controller = PIDSat (2.0, 2.0, 0, 5, True)

def run (self):
(v, w) = self.get_speed()
vref = 1.5

Torque = self.speed controller.evaluate(self.delta t, vref, v)
Steering = 0

self.car.evaluate(self.delta t, Torque, Steering)

Corrado Santoro ion of a Mobile Robot in a 2D Space

Ackermann Steering

Linear Position
Controller

Linear Speed
Controller

Ty —> Cartesian

T
i a, Vehicle
yr —> Polar + [Angular Position| 3 ‘ :
Controller { y

Position Control

@ The polar position control can be directly used by considering steering
angle instead of angular speed

@ The output of the angular position controller is not the target w but the
steering angle o,

@ Remember that that both linear and angular position controllers are
P-controllers with saturation

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Ackermann Steering

tests/ackermann_2d/test _polar_ackermann.py

~
class AckermannRobot (RoboticSystem) :

def _ init_(self):
super () .__init__ (le-3) # delta t = le-3
Mass = 10kg
side = 15cm
wheels radius = 2cm
friction = 0.8
self.car = AckermannSteering (10, 0.8, 0.02, 0.15)

5 Nm max, antiwindup
self.speed controller = PIDSat (2.0, 2.0, 0, 5, True)

kp_lin = 1, vmax = 2 m/s
kp_ang = 1, steering max = 45 deg
self.polar_controller = Polar2DController(1.0, 2.0,

1.0, math.pi/4)

def run (self):
(vref, steering) = self.polar_ controller.evaluate(self.delta_t,
5, 0.5,
self.get_pose())

(v, w) self.get_speed()

torque = self.speed controller.evaluate(self.delta_t, vref, v)

self.car.evaluate(self.delta t, torque, steering)

Corrado Santoro ion of a Mobile Robot in a 2D Space

Ackermann Steering

T
@r ’ Linear Position M
Z final ———>| > Cartesian Controller Linear Speed w
Trajectory Generator o 01 Controller Ackermann :
(StraightLine2DMotion) 5 H nguiar Posit ac Vehicle
olar gular Position Y
Yfinal >) Controller g

Trajectory Following

@ The polar position control can be in turn driven by the trajectory
generator in order to follow a certain straight line towards a final point

(see tests/ackermann 2d/test _virtual robot_ackermann.py)

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

Locomotion of a Mobile Robot in a 2D Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

S

Robotic Systems

Corrado Santoro Locomotion of a Mobile Robot in a 2D Space

