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Behaviour, Reasoning and Planning

Models and algorithms studied till now allow us :
To drive the robot’s actuators on the basis of a certain kinematic
model
To consider the constraints of the environment and create proper
paths

However, the various movements must be coordinated with the aim of
executing more complex actions

The set of coordinated movements is then part of a strategy that
makes the robot achieveing a precise goal

However, given a certain goal, different strategies may exist: a
planning process is thus needed to select the strategy which is more
suitable in that moment
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Environment and Perception

The environnment is always dynamic and uncontrollable

During behaviour programming we are not interested in
“control aspects” (such as state variables, system model,
etc) ...

... but in aspect like “how the environment is made?” o
“what is happening in this moment”

Modelling the environment thus becomes one of the
fundamental aspects of robot behaviour programming

Environment modelling is also strictly tied to the type of
sensors used
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Perception and Environment State

Perception and Environment State
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Perception and Environment

A physical environment is pervaded by:
inanimate objects, unable to perform autonomous actions,
animated objects (humans, other robots), which are autonomous

They are characterised by suitable properties like shape, color,
position, etc.

Some properties are immutable (shape, color), other could vary during
time (position)

Modelling the environment implies to define proper computer
entities (classes, objects, variables, etc.) able to represent the objects
of the environment and the related properties

These informations must be percepted by the sensors chosen for the
robot
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Case-Study: The Block World

The Block World
Let us consider an enviroment populated by solids with different shape,
color and position

Peroperties:
Shape: prism, sphere, cylinder
Color: yellow, red, green, black, white
Dimensions: small, big
Position: (x , y , z)

Possible representation in C/C++�
typedef enum { PRISM, SPHERE, CYLINDER } t_shape;
typedef enum { YELLOW, RED, GREEN, BLACK, WHITE } t_color;
typedef enum { SMALL, LARGE } t_size;
typedef struct {
t_shape shape;
t_color color;
t_size size;
float x, y, z;

} t_block;

t_block my_blocks[....];
� �
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Case-Study: The Block World

The Block World
If the blocks can be stacked, this characteristic must be modelled:

by means of a boolean function that uses the coordinates of the
blocks, ...

Possible representation in C/C++�
typedef enum { PRISM, SPHERE, CYLINDER } t_shape;
typedef enum { YELLOW, RED, GREEN, BLACK, WHITE } t_color;
typedef enum { SMALL, LARGE } t_size;
typedef struct {
t_shape shape;
t_color color;
t_size size;
float x, y, z;

} t_block;

t_block my_blocks[....];

bool upon(t_block * block1, t_block * block2)
{

//....
}
� �
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Case-Study: The Block World

The Block World
If the blocks can be stacked, this characteristic must be modelled:

... or by adding another property that rappresents the link
between two blocks

Possible representation in C/C++�
typedef enum { PRISM, SPHERE, CYLINDER } t_shape;
typedef enum { YELLOW, RED, GREEN, BLACK, WHITE } t_color;
typedef enum { SMALL, LARGE } t_size;
typedef struct t_block {
t_shape shape;
t_color color;
t_size size;
float x, y, z;
struct t_block * upon_block;

} t_block;

t_block my_blocks[....];

bool upon(t_block * block1, t_block * block2)
{
return block1->upon_block == block2;

}
� �
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Case-Study: The Block World

The Block World
If the blocks are captured, also this condition must be modelled:

by means of two arrays

Possible representation in C/C++�
typedef enum { PRISM, SPHERE, CYLINDER } t_shape;
typedef enum { YELLOW, RED, GREEN, BLACK, WHITE } t_color;
typedef enum { SMALL, LARGE } t_size;
typedef struct t_block {
t_shape shape;
t_color color;
t_size size;
float x, y, z;
struct t_block * upon_block;

} t_block;

t_block free_blocks[....], captured_blocks[....];
� �
Corrado Santoro Intelligence of an autonomous robot



Case-Study: The Block World

The Block World
If the blocks are captured, also this condition must be modelled:

... or by adding a boolean property that indicates whether the
block has been captured

Possible representation in C/C++�
typedef enum { PRISM, SPHERE, CYLINDER } t_shape;
typedef enum { YELLOW, RED, GREEN, BLACK, WHITE } t_color;
typedef enum { SMALL, LARGE } t_size;
typedef struct t_block {
t_shape shape;
t_color color;
t_size size;
float x, y, z;
struct t_block * upon_block;
bool captured;

} t_block;

t_block my_blocks[....];
� �
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“Object-Oriented” Representation

Since the physical enviroment is pervaded by objects, a representation
widely used is the object-oriented one

Indeed the object-orientation was born in 1965, within the AI, just to
represent the “worlds” of artificial systems
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Ontologies

The object-oriented model can be used to represent not only the
things that are in enviroment but also the relationships among them

The result is a conceptual map, named ontology, that represents the
reference enviroment/context in which the robot operates
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The Knowledge Bases

Any representation of the enviroment must be “queryable” in order to
allow the robot to reason in some way

For example, if the robot would capure the green object plaed in the
white table, the robot must be able to obtain the related (computer)
object (instance of Block) in order to reach the (physical) object

Given an ontology (or a similar representation), the information must be
organised in a knowledge base that can be easily queried
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The Knowledge Bases

A Knowledge Base is thus a data structure that memorises the
knowledge the robot has on the reference enviroment

It is made by concepts that the robot believes true (beliefs)

It has to support queries, browsing and inferencing new knowledge
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Representation by means of First-Order Logic

The logic model is a classical model to represent the knowledge

It is based on the definition of facts (beliefs) represented as predicates
in first-order logic

The inference and query is based on proper logic formulas

There are programming languages, like PROLOG, that natively
supports this type of model
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Elements of PROLOG

Elements of PROLOG
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Elements of PROLOG

PROLOG (PROgramming in LOGic) is a programming language based
on logic predicates

Among the classical numeric types, PROLOG introduces the concept of
atom: if is a literal that starts with lowercase letter, and is a
indivisible symbol (if is not a “string”!)

A literal that starts with Uppercase letter is instead a variable:

cube is an atom
Cube is a variable
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Representation by means of “Facts” (Beliefs)

Facts or Beliefs
In PROLOG, the knowledge base is made by facts represented
by atomic formulae

Example
The cylinder, prism and sphere are “blocks”:
block(cylinder)
block(prism)
block(sphere)

The cylinder is red, the prism is white, the shpere is black:
color(cylinder, red)
color(prism, white)
color(sphere, black)

The cylinder is upon table 1, the prism and the sphere are upon the
table 2:
upon(desk1, cylinder)
upon(desk2, prism)
upon(desk2, sphere)
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Representation by means of “Facts” (Beliefs)

Knowledge Base

To populate the knowledge base the PROLOG assert is used:

�
?- assert(block(cylinder)).
true.

?- assert(block(prism)).
true.

?- assert(upon(prism,green_desk)).
true.

?-
� �
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Queries and Derived Knowledge

Queries on the Knowledge Base
The knowledge base can be queried to understand whether a
fact is true o false�
?- block(cylinder).
true.

?- block(cube).
false.

?- block(sphere).
true.
� �
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Queries and Derived Knowledge

Queries on the Knowledge Base
The knowledge base can be also queried using variables
universally quantified�
?- assert(block(cylinder)).
true.

?- assert(block(prism)).
true.

?- assert(block(sphere)).
true.

?- block(X).
X = cylinder ;
X = prism ;
X = sphere.
� �
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Queries and Derived Knowledge

Queries on the Knowledge Base
The knowledge base can be also queried using variables
universally quantified�
?- block(X).
X = cylinder ;
X = prism ;
X = sphere.
� �
The query block(X) is equal to:

∀x : block(x)

Corrado Santoro Intelligence of an autonomous robot



Queries and Derived Knowledge

Queries on the Knowledge Base

Queries can be combined by using the comma “,” that as the
role of AND connective:�
?- block(Obj),color(Obj,Col).
Obj = cylinder,
Col = red ;
Obj = prism,
Col = white ;
Obj = sphere,
Col = black.
false.

?-
� �
All the objects with the related color
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Queries and Derived Knowledge

Queries on the Knowledge Base

Queries can be combined by using the comma “,” that as the
role of AND connective:�
?- block(Obj),upon(desk2,Obj),color(Obj,Col).
Obj = prism,
Col = white ;
Obj = sphere,
Col = black.
false.

?-
� �
All the objects, with the related color, that are on “desk2”
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Queries and Derived Knowledge

Derived Knowledge
By means of first-order clauses, new predicates can be defined
to derive new knowledge

Example: let’s define the predicate “black object”:�
black_object(X) :- block(X), color(X, black).

?- black_object(Obj).
Obj = sphere.

?-
� �
The definition is equivalent to the logic implication:

∀x : block(x) ∧ color(x ,black)⇒ black object(x)
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Queries and Derived Knowledge

Queries on the Knowledge Base

Queries can be combined by using the comma “,” that as the
role of AND connective:�
?- block(Obj),upon(desk2,Obj),color(Obj,Col).
Obj = prism,
Col = white ;
Obj = sphere,
Col = black.
false.

?-
� �
All the objects, with the related color, that are on “desk2”
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Queries and Derived Knowledge

Derived Knowledge
By means of first-order clauses, new predicates can be defined
to derive new knowledge

Example: let’s define the predicate “black object”:�
black_object(X) :- block(X), color(X, black).

?- black_object(Obj).
Obj = sphere.

?-
� �
The definition is equivalent to the logic implication:

∀x : block(x) ∧ color(x ,black)⇒ black object(x)

Indeed, the PROLOG symbol “:-” is somewhat the symbol “⇐”
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Queries and Derived Knowledge

Derived Knowledge and Negation
Negations can also be defined

Example: let’s define the predicate “free desk”: it is true if no object is on that
desk:�
free_desk(Desk) :- \+upon(Desk, _).

?- free_desk(desk1).
false.

?- free_desk(desk2).
false.

?- free_desk(desk3).
true.
� �
Equivalent to:

free desk(x) ⇐ @y : upon(y , x)
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Example: the Genealogic Tree

James I

Charles I Elisabeth

Catherine Charles II James II Sophie

George I
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Example: the Genealogic Tree

James I

Charles I Elisabeth

Catherine Charles II James II Sophie

George I

Facts
male(X) → X is a man

female(X) → X is a woman

parent(X, Y) → X is the parent of Y
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Example: the Genealogic Tree

Fatti�
:-

assert(male(james1)),
assert(male(charles1)),
assert(male(charles2)),
assert(male(james2)),
assert(male(george1)),

assert(female(catherine)),
assert(female(elizabeth)),
assert(female(sophia)),

assert(parent(james1, charles1)),
assert(parent(james1, elizabeth)),
assert(parent(charles1, charles2)),
assert(parent(charles1, catherine)),
assert(parent(charles1, james2)),
assert(parent(elizabeth, sophia)),
assert(parent(sophia, george1)).
� �
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Example: the Genealogic Tree

Derived Knowledge
father(X, Y) → X is the Y’s father:

∀x , y : parent(x , y) ∧ male(x) ⇒ father(x , y)

mother(X, Y) → X is the Y’s mother:

∀x , y : parent(x , y) ∧ female(x) ⇒ mother(x , y)

�
father(X,Y) :- parent(X,Y), male(X).

mother(X,Y) :- parent(X,Y), female(X).
� �
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Example: the Genealogic Tree

Derived Knowledge
sibling(X, Y) → X is the sibling of Y (X and Y have the same
parent):

∃p, ∀x , y : parent(p, x) ∧ parent(p, y) ∧ x 6= y ⇒ sibling(x , y)

�
sibling(X,Y) :- parent(P, X), parent(P, Y), X \= Y.
� �
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Esempio: L’Albero Genealogico

Conoscenza Derivata
brother(X, Y) → X is the Y’s brother:

∀x , y : sibling(x , y) ∧ male(x) ⇒ brother(x , y)

sister(X, Y) → X is the Y’s sister:

∀x , y : sibling(x , y) ∧ female(x) ⇒ sister(x , y)

�
brother(X,Y) :- sibling(X,Y), male(X).
sister(X,Y) :- sibling(X,Y), female(X).
� �
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Behaviour, Goals, Planning

Behaviour, Goals, Planning
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Reactivity and Proactivity

In an autonomous robot, there are two kind of behaviours:
reactive
proactive
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Reactivity and Proactivity

Reactivity
Execution of a prefixed sequence of actions on the basis
of the occurence of a sporadic event
It is equivalent to the instintual reaction of humans
Examples

Stopping a robot when a distance sensor detects an
obstacle
Activating an arm when an object is near
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Reactivity and Proactivity

Proactivity
To plan the proper sequence of actions that lead to the
achievement of a specific goal
It is equivalent to the human reasoning
Examples

To identify and gather an object
To adopt proper maneuvers to avoid a collision
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Reactive Tasks

Reactive Tasks
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Reactivity and Paradigm “ECA”

Event-Condition-Action
Reactive is usually programmed by using the paradigm
Event-Condition-Action (ECA)

E, triggering event
C, condition (predicate) that must be met by event
parameters, enviroment state, and system state
A, action (computation) that must be executed given that
the condition is true

Example: Obstacle Detection
Event, data sampled from the distance sensor

Condition, check on the distance that must be less than a certain
threshold

Action, robot stop
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Reactivity and Paradigm “ECA”

ECA: Implementation
The implementation of reactive tasks is based, in general,
on “callback” functions, involked on the basis of a specific
event
The event can be a sensor sampling or the production of
data by another task of the control system
The condition (in general) is a predicate (if) applied to the
representation of the system/environment (knowledge
base)
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Reactivity and Paradigm “ECA”

ECA: Temporal Constraints
In some cases, reactive tasks can be characterised by
temporal constraints

Obstacle detection is one of these cases: it needs the
event to be processed tempestively, or, better, within a
certain temporal “deadline”

“Real-time” requirements seen for periodic control tasks
are applied (in some cases) also to reactive tasks, which
(according to the terminology used in real-time systems)
are called sporadic tasks
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Proactivity, Goals and Reasoning

Proactivity, Goals and Reasoning
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Reasoning and Planning

1 Given a certain goal

2 Let’s percieve the environment to determinate its state
and check if the goals has not yet been achieved

3 Then let’s determine the strategy (set of actions) that
could lead to goal achievement

4 Let’s Execute the actions

5 Go back to step 1
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Perception, Representation and Goals
A goal represent a well-defined environment state that the robot aims
to reach
A goal can be thus represented as a predicate on the variables that
represent the environment (knowledge base)

The Block World
Goal: To capture all the blocks
The goals is reached when all the fields captured of each element of
the array my blocks are true

Possible C/C++ representation�
typedef struct t_block {
....
bool captured;

} t_block;

t_block my_blocks[....];

bool goal_done()
{

for (i = 0; i < NUM_OF_BLOCKS; i++) if (!my_blocks[i].captured) return false;
return true;

}
� �
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Goals and sub-goals

Achieving a goal implies to execute a certain set of actions

But sometimes a goal hides, in its internals, some sub-goals

Example: capturing all the blocks implies capturing them one by
time

Goal: to capture all the blocks

Sub-goals: to capture the shpere, to capture the cylinder, to capture the
prism, etc.

Sub-goals must not be executed according to a prefixed sequence

However some sub-goals could not be feasible (example: the cylinder
cannot be captured because the prism is on the top of it)

A planning/selection of sub-goals is thus needed
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Goals with planning and “simple” Goals

Planning is not always required

Goals: to capture all the blocks

Sub-goals: to capture the sphere, to capture the cylinder,
to capture the prism, etc.

To capture all the blocks
Planning the proper sequence of sub-goals, or
Selecting, one by one, the most opportune sub-goal

To Capture X
To execute the proper sequence of actions to capture
object X
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Goals that do not require planning

Plans
These goals are made of a sequence of actions, each corresponding to
the activation of an actuator (arms, wheels, etc.)

The execution of a sequence often implies to wait for the completion of
each action (success) or that the condition the impedes the action’s
success (failire) are detected

The goals that have these characteristics are often called plans (piani)

From the implementation point of view, plans can be thought as the
sequence:

function call 1
if/switch-case on the outcome of call 1
function call 2
if/switch-case on the outcome of call 2
...

The model is thus similar to a finite-state machine, FSM
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Plans

Example: the Block World�
bool gather_object(const char *object_type)
{

float x,y,z;
if (!knowledge_base.get_object_position(object_type, &x, &y, &z) {

// uh? I don’t know object’s position, let us try to find it
if (!camera_sensor.detect(object_tpe, &x, &y, &z))

return false; // cannot detect object, the sub-goal fails
knowledge_base.update_object_position(object_type, x, y, z);

}

robot.drive_to(x, y, z);
while(true) {

if (robot.position_reached(x,y,z)) break; // we got the position
if (robot.motion_blocked()) return false; // goal failed
if (timeout()) return false; // goal failed

}

robot.pick_the_object();
while(true) {

if (robot.object_picked()) break; // we got the object
if (timeout()) return false; // goal failed

}

knowledge_base.mark_object_picked(object_type);
return true;

}
� �
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Reasoning and Deliberation

Goals and Planning
In the behaviour of a robot, often a goal requires the choice among
different plans p1, ..., pn

AND-Plans: achieving the goal implies to execute all the plans pi , but
their order is chosen at run-time

XOR-Plans: achieving the goal implies to execute (at least) one the
plans pi , according to a proper choice

The choice implies a selection based on contextual information that
include aspects like:

plan feasibility
importance/priority
environment state
robot state
etc.
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Reasoning and Deliberation

Example: Goal “Gather Objects”
AND-composition of plans:

gather object(PRISM)
gather object(CYLINDER)
gather object(CUBE)

Planning and Deliberation Criteria
Which plan to choose?
Example: “the one relative to the nearest object”
We must have to know (time by time)

the robot pose
the position of each object (that could also vary during time)

We must base our code on robot and environment state
information obtained by sensors
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Reasoning and Deliberation Process Model
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Reasoning and Deliberation

Plan Model

plan ::= {feasibility(·),opportunity(·), task(·),post condition(·)}

feasibility: pre-condition to evaluate whether, if this instant,
there are the conditions to execute the plan

opportunity: numeric evaluation of the importance to
execute this plan before another plan

task: set of commands to execute the plan

post condition: condition (on the state of the
robot/environment) that must be met in order to consider
the plan successful
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Deliberative Systems

The Paradigm “Belief-Desire-Intention” (BDI)
Three base concepts: Beliefs, Desires, Intentions

Beliefs, what the system believes, i.e. the information
about the state of the robot and the environment,
perceived by the sensors and/or elaborated according to
an inference process

Desires, what the system desire to do, i.e. the goals of the
robot

Intentions, what the system intend to do to achive the
goals, i.e. the plans (computational part)
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Deliberative Systems

BDI: Deliberative Process
1 Update of the beliefs on the basis of data coming from sensors

2 Analysis of the goals and detection (on the basis of the beliefs) of the
ones that could be achieved

3 Extraction of the intentions (plans) from the goals and selection of plan
to execute

4 Execution of the plan and update of the derived beliefs
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