Model and Control of a Mobile Robot in a 2D

Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

b

Robotic Systems

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

R 7 ?’GH

@ Let us consider a mobile robot acting in 2D space

@ Let us make no hypothesis on the driving system (two wheels, three
wheels, four wheels, omnidirectional wheels, etc.)

@ Let us consider the robot a rigid body with its mass center placed in
the geometric center, e.g. a cylinder with uniform density

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Yy Ay
o @ s
Yr ///f—~\\§'9 YR ;7\““_.« 0
JE R {\ N A R { IR0 IPPPROS .
" N
. ; -
TR .-T/R

Cinematic Model

@ From the cinematic point of view, the pose of the robot (position) is
characterised by the 2D coordinates and the orientation:

{Xr, YR, OR}

@ The robot’s speed is characterised by the linear speed of the mass’
center v and the rotational speed of the body w

v

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

YR

A Robot in a 2-Dimensional Space

Cinematic Model

@ The following relations hold:

@ where xg(t) and yr(t) the component of the linear speed v along x and

y axis

v(t) cos (1)
v(t)sin 6(t)
w(t)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Dynamic Model

From the dynamic point of view, we consider that the driving system is able to
apply:
@ A force F to the mass’ center

@ Atorque T for rotation along the vertical axis passing from the mass’
center

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Dynamic Model

To model the physics of a rigid body, we must consider the second Newton’s
law in both linear and rotational aspects:

@ Linear:) F = Ma= Mv

@ Rotational: > T; = /o where

@ T, is the i torque applied
@ /is the moment of inertia
@ w is the angular acceleration

(see https://en.wikipedia.org/wiki/List_of_moments_of_ inertia)

4

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

https://en.wikipedia.org/wiki/List_of_moments_of_inertia

A Robot in a 2-Dimensional Space

Dynamic Model

F—bv = Mv
T—0Bw = Il

where § is the rotational friction coefficient

Since | = S Mr? for a cylindric robot, we have:

F—bvr = Mv
T—Bw = %Mr%u

v

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

T
L D { %\9" e, { W\ﬁy“
\\“///,/ \—//

Dynamic Model

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

1
0 U - TS O AP (Jr\i“
\\;’) \\‘4
| |

It is a linear system with two inputs

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Yy Yy
v N v 7 N
I AT I\,g \ ﬂ On
e

Model Discretization

vk +1) = v(k)—biA/lTv(kHAWTF(k)
wlk+1) = wk)— DTk + 20T T(k)
xa(k+1) = xg(k)+ v(k)AT cos6(k)
yr(k+1) = yr(k)+ v(k)ATsin0(k)

Ok +1) = 6(k) +w()AT

V.

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Imple ting the Cart in 2D

~
class Cart2D:

def _ init_(self, _mass, _radius, _lin friction, _ang friction):
self.M = _mass
self.b = _1lin_friction
self .beta = _ang friction

self.Iz = 0.5 * _mass x _radius * _radius

Iz = moment of inertia (the robot is a cylinder)
self.v = 0

self.w = 0

self.x = 0

self.y = 0

self.theta = 0

def evaluate(self, delta_t, _force, _torque):
new v = self.v * (1 - self.b » delta t / self.M) \
+ delta t * force / self.M
new w = self.w * (1 — self.beta * delta t / self.Iz) \
+ delta_t * _torque / self.Iz

self.x = self.x + self.v * delta t * math.cos(self.theta)
self.y = self.y + self.v x delta_t * math.sin(self.theta)
self.theta = self.theta + delta_t * self.w
self.v = new_v
self.w = new w
~ |

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Position and Speed Control

Controlling the Speed)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Speed Control in a 2-Dimensional Space

v + o~ error =v—v Linear Speed F , > g
B A Controller Cart2D > z
w4 T error =w —w | Angular Speed T N a > y

‘ 0

R Controller
v

w

Controlling the speed is quite straightforward
v and w are independent

v depends only on F

w depends only on T

We can use two independent speed controllers, one for each speed

They can also be tuned independently

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Position and Speed Control

Controlling the Position)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Polar Position Control

@ Let us consider a robot with pose {xg, Vg, 0r}
@ We want the robot reach position {xr, yr}

@ The theoretical trajectory is the blue line

@ So we can consider two different targets

@ The distance pr
@ The heading 01

@ And we want to control both simultaneously

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Polar Position Control

Linear Position v F

i rror=v-v i F—~—"—0

oy —>{ Cartesian [— | Controller SOrer=vy) LinearSpeed | w

To Controller Cart2d N

—> Polar Angular Speed | T .

v Controller 1 y
v

@ We can consider

@ pr as a distance error
@ The heading difference 61 — 6r as the heading error

@ p7 can drive a linear position controller giving the target v
@ 01 — O can drive a linear angular controller giving the target w

Corrado Santoro Model and C | of a Mobile Robot in a 2D Space

The Polar Position Control

Linear Position F

. L
oy —> Cartesian Controller LlnceartS:eed w

To Anguarspeed| T | Can2d :
yr —> Polar Controller >] Y

Cartesian to Polar

pr = VO —xr)?2+ (Y1 — yr)?
0r = arctan St
XT — XR
Ocror = 0766R

Corrado Santoro Model and C | of a Mobile Robot in a 2D Space

The Polar Position Control
The Sign of the Distance

V(X1 = Xg)2 + (Y1 — ¥r)?

pT =
0r = arctan yr—JYr
XT — XR

gerror - HT © 9FI

@ According to the formula above, the distance is always positive

But, what does it happen if the robot overcomes the target?

@ We expect that the distance becomes negative, but, with those
formulas, this is not the case!

@ We can instead use the heading error: if the target (and thus Oerror) is
in the second or third quadrant, the target is behind the robot, and we
can change:

@ The sign of pr
@ 07 by adding =

(see Polar2DController in 1ibs/controllers/control2d.py)

R RRRRRRRRRRRRRRERRERRRRRRRRREERRRRRRRRRRRERERREREREEREEREEEE—=——————————=m
Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Implementing the Polar Controller

class Polar2DController:

def _ init__ (self, KP_linear, v_max, KP_heading, w_max):
self.linear = PIDSat(KP_linear, 0, 0, v_max)
self.angular = PIDSat (KP_heading, 0, 0, w_max)

def evaluate(self, delta_t, xt, yt, current_pose):

(x, y, theta) = current_pose
dx = xt - x
dy = yt -y

target_heading = math.atan2(dy , dx)

distance = math.sqgrt (dxxdx + dy=*dy)
heading_error = normalize_ angle (target_heading - theta)

if (heading error > math.pi/2)or (heading _error < -math.pi/2):
distance = -distance
heading error = normalize_angle (heading error + math.pi)

self.linear.evaluate_error (delta_t, distance)
self.angular.evaluate_error (delta t, heading error)

v_target
w_target

return (v_target, w_target)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Position Control

Following a Trajectory |

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Following a Trajectory

& final z7 Linear Position @ o P

T > Cartesian Controller error=v Y Linear Speed | —

Controller Car2D
Angular Speed | T’

Controller] Y

Trajectory Generator To
(Virtual Robot)

Yfinal yr

@ The polar control uses two P controllers to control position, therefore it

does not give the possibiity to specify acceleration or deceleration
ramps

@ In these cases, a trajectory generator can be used to give the
(moving) target position (virtual robot) that has to be reached
time-by-time by the (real) robot

Corrado Santoro Model and C | of a Mobile Robot in a 2D Space

Following a Trajectory

@ Let us consider the robot in the initial position {Xstart, Vstart } @and that we
want to reach position { Xiinas, Viinai} USING @ straight line

@ We can consider a change in the reference frame with the x” along the
straight line and a virtual robot moving along such a line

@ The 1D-virtual robot algorithm gives the position x’(t) of the virtual
robot at time instant ¢

@ Then it is roto-translated to the {x, y} frame thus generating the
couple {xr, yr} to be provided to the Polar Controller

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

lib/controllers/control2d.py

class StraightLine2DMotion:

def _ init__ (self, _vmax, _acc, _dec):

self.vmax = _vmax
self.accel = _acc
self.decel = _dec

def start_motion(self, start, end):
(self.xs,self.ys) = start
(self.xe,self.ye) = end

dx
dy

= self.xe - self.xs

= self.ye - self.ys

self.heading = math.atan2(dy , dx)
self.distance = math.sqgrt (dxxdx + dy=xdy)

self.virtual robot = VirtualRobot (self.distance,
self.vmax, self.accel, self.decel)

def evaluate(self, delta_t):
self.virtual robot.evaluate(delta_ t)

self.xs + self.virtual robot.p * math.cos(self.heading)
self.ys + self.virtual robot.p * math.sin(self.heading)

xt
yt

return (xt, yt)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Using the Virtual Robot in 2D

class Cart2DRobot (RoboticSystem) :

def _ _init__ (self):
super () ._ _init_(le-3) # delta t = le-3
Mass = 1lkg, radius = 15cm, friction = 0.8
self.cart = Cart2D(1, 0.15, 0.8, 0.8)

self.linear_ speed controller = PIDSat (10, 3.5, 0, 5) # 5 newton
self.angular_speed controller = PIDSat (6, 10, 0, 4)

self.polar_controller = Polar2DController (0.5, 2, 2.0 , 2)
self.trajectory = StraightLine2DMotion (1.5, 2, 2)

(x,y,_) = self.get_pose()
self.trajectory.start_motion((x,y), (0.5, 0.2))

def run(self):
(x_target, y_target)
(v_target, w_target)

self.trajectory.evaluate (self.delta t)
self.polar_controller.evaluate(self.delta t,
x_target, y target, self.get_pose())

Force = self.linear speed controller.evaluate(self.delta t,
v_target, self.cart.v)

Torque = self.angular_speed_controller.evaluate(self.delta t,
w_target, self.cart.w)

self.cart.evaluate(self.delta_t, Force, Torque)

return True

Corrado Santoro Model and C ol of a Mobile Robot in a 2D

Following a More Complex Trajectory

@ But if we want to follow a generic path?

@ A basic solution is to split the path into a sequence of segments and
follow each segment

@ Once an intermediate point is reached, we start following the next
segment

@ However, in checking the arrival to a point, a threshold is always needed

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Path Follower

class Path2D:

def _ init__ (self, _vmax, _acc, _dec, _threshold):
self.threshold = _threshold
self.path = []
self.trajectory = StraightLine2DMotion (_vmax, _acc, _dec)

def set_path(self, path):
self.path = path

def start(self, start_pos):
self.current_target = self.path.pop(0)
self.trajectory.start_motion(start_pos, self.current_target)

def evaluate(self, delta t, pose):
(x, y) = self.trajectory.evaluate(delta t)
target_distance = math.hypot (pose[0] - self.current_target[0],
pose[l] - self.current_target[1l])
if target_distance < self. threshold:
if len(self.path) ==
return None
else:
self.start((x,y))

return (x,y)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Using the Path Follower

p

~
class Cart2DRobot (RoboticSystem) :

def _ init__ (self):

super () .__init__ (le-3) # delta_t = le-3
self.cart = Cart2D(1, 0.15, 0.8, 0.8)
self.linear_speed _controller = PIDSat (10, 3.5, 0, 5) # 5 newton
self.angular_speed controller = PIDSat (6, 10, 0, 4) # 4 newton * m|
self.polar_controller = Polar2DController(0.5, 2, 2.0 , 2)
self.path _controller = Path2D(1.5, 2, 2, 0.01) # tolerance lcm
self.path_controller.set path([(0.5, 0.2),

(0.5, 0.4),

(0.2, 0.2) 1)
(x, y, _) = self.get_pose()

self.path_controller.start((x,y))

run (self) :
target = self.path_controller.evaluate (

if target is None:

return False
(x_target, y_target) =
(v_target, w_target) =
Force =
Torque =
self.cart.evaluate (self.delta_t, Force,
return True

target

self.delta_t,
self.get_pose())

= self.polar controller.evaluate(self.delta_t]
self.linear speed controller.evaluate(self.delta t, v_targ]
self.angular speed controller.evaluate(self.delta t, w_ta

Torque)

\

etro

x_ta
et, se
rget,

Corrado Santoro

Model and Control of a Mo

le Robot in a 2D Space

Following a Speed Profile

Linear Speed | _F
Controller
Angular Speed | T Cart2D
|__Controller | }

Tfinal ————> .
Linear and Angular Speed

Profile Generator

ee 8 g

Yfinal ————>

TR Yr ‘ BJ

@ Similarly to the 1-D case, we can generate the v and @ directly from
distance and heading errors

@ This implies merging the Trajectory Generator, Cartesian-To-Polar and
Position Controllers into a unique control block

Corrado Santoro Model and C | of a Mobile Robot in a 2D Space

Following a Speed Profile

Linear Speed

<l

T final Distance and Profile Generator
Heading Error
Yfinal Calculation Angular Speed o
T T T Profile Generator
zr Yr Or

@ Starting from the comparison between the target and the pose, the
distance and the heading error are computed

@ They are then passed to the two blocks that (according to the error)
generate the proper speed using the trapezoidal profile

(see class SpeedProfileGenerator2D in
lib/models/virtual _robot.py and
tests/cart_2d/test_robot _speed profile.py)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Model and Control of a Mobile Robot in a 2D

Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

b

Robotic Systems

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

