
Model and Control of a Mobile Robot in a 2D
Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Model
Let us consider a mobile robot acting in 2D space

Let us make no hypothesis on the driving system (two wheels, three
wheels, four wheels, omnidirectional wheels, etc.)

Let us consider the robot a rigid body with its mass center placed in
the geometric center, e.g. a cylinder with uniform density

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Cinematic Model
From the cinematic point of view, the pose of the robot (position) is
characterised by the 2D coordinates and the orientation:

{xR , yR , θR}

The robot’s speed is characterised by the linear speed of the mass’
center v and the rotational speed of the body ω

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Cinematic Model
The following relations hold:

ẋR(t) = v(t) cos θ(t)

ẏR(t) = v(t) sin θ(t)

θ̇(t) = ω(t)

where ẋR(t) and ẏR(t) the component of the linear speed v along x and
y axis

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Dynamic Model
From the dynamic point of view, we consider that the driving system is able to
apply:

A force F to the mass’ center

A torque T for rotation along the vertical axis passing from the mass’
center

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Dynamic Model
To model the physics of a rigid body, we must consider the second Newton’s
law in both linear and rotational aspects:

Linear:
∑

Fi = Ma = Mv̇

Rotational:
∑

Ti = Iω̇ where
Ti is the i th torque applied
I is the moment of inertia
ω̇ is the angular acceleration

(see https://en.wikipedia.org/wiki/List_of_moments_of_inertia)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

https://en.wikipedia.org/wiki/List_of_moments_of_inertia

A Robot in a 2-Dimensional Space

Dynamic Model

F − bv = Mv̇

T − βω = Iω̇

where β is the rotational friction coefficient

Since I = 1
2 Mr 2 for a cylindric robot, we have:

F − bv = Mv̇

T − βω =
1
2

Mr 2ω̇

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Dynamic Model

v̇ = − b
M

v +
1
M

F

ω̇ = − 2β
Mr 2ω +

2
Mr 2 T

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Dynamic Model[
v̇
ω̇

]
=

[
− b

M 0
0 − 2β

Mr2

][
v
ω

]
+

[1
2 0
0 2

Mr2

] [
F
T

]

It is a linear system with two inputs

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

A Robot in a 2-Dimensional Space

Model Discretization

v(k + 1) = v(k)− b∆T
M

v(k) +
∆T
M

F (k)

ω(k + 1) = ω(k)− 2β∆T
Mr 2 ω(k) +

2∆T
Mr 2 T (k)

xR(k + 1) = xR(k) + v(k)∆T cos θ(k)

yR(k + 1) = yR(k) + v(k)∆T sin θ(k)

θ(k + 1) = θ(k) + ω(t)∆T

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Implementing the Cart in 2D

The Code�
class Cart2D:

def __init__(self, _mass, _radius, _lin_friction, _ang_friction):
self.M = _mass
self.b = _lin_friction
self.beta = _ang_friction
self.Iz = 0.5 * _mass * _radius * _radius
Iz = moment of inertia (the robot is a cylinder)
self.v = 0
self.w = 0
self.x = 0
self.y = 0
self.theta = 0

def evaluate(self, delta_t, _force, _torque):
new_v = self.v * (1 - self.b * delta_t / self.M) \

+ delta_t * _force / self.M
new_w = self.w * (1 - self.beta * delta_t / self.Iz) \

+ delta_t * _torque / self.Iz
self.x = self.x + self.v * delta_t * math.cos(self.theta)
self.y = self.y + self.v * delta_t * math.sin(self.theta)
self.theta = self.theta + delta_t * self.w
self.v = new_v
self.w = new_w
� �

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Position and Speed Control

Controlling the Speed

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Speed Control in a 2-Dimensional Space

Cart2D

Linear Speed
Controller

+

-
Angular Speed

Controller
+

-

Controlling the speed is quite straightforward

v and ω are independent

v depends only on F

ω depends only on T

We can use two independent speed controllers, one for each speed

They can also be tuned independently

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Position and Speed Control

Controlling the Position

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Polar Position Control

Let us consider a robot with pose {xR , yR , θR}
We want the robot reach position {xT , yT}
The theoretical trajectory is the blue line

So we can consider two different targets
The distance ρT

The heading θT

And we want to control both simultaneously

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Polar Position Control

Cart2D

Linear Speed
Controller

+

-
Angular Speed

Controller
+

-

Linear Position
Controller

Angular Position
Controller

Cartesian
To

Polar +

-

We can consider
ρT as a distance error
The heading difference θT − θR as the heading error

ρT can drive a linear position controller giving the target v

θT − θR can drive a linear angular controller giving the target ω

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Polar Position Control

Cart2D

Linear Speed
Controller

+

-
Angular Speed

Controller
+

-

Linear Position
Controller

Angular Position
Controller

Cartesian
To

Polar +

-

Cartesian to Polar

ρT =
√

(xT − xR)2 + (yT − yR)2

θT = arctan
yT − yR

xT − xR

θerror = θT 	 θR

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Polar Position Control

The Sign of the Distance

ρT =
√

(xT − xR)2 + (yT − yR)2

θT = arctan
yT − yR

xT − xR

θerror = θT 	 θR

According to the formula above, the distance is always positive

But, what does it happen if the robot overcomes the target?

We expect that the distance becomes negative, but, with those
formulas, this is not the case!

We can instead use the heading error: if the target (and thus θerror) is
in the second or third quadrant, the target is behind the robot, and we
can change:

The sign of ρT

θT by adding π
(see Polar2DController in libs/controllers/control2d.py)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Implementing the Polar Controller

lib/controllers/control2d.py�
class Polar2DController:

def __init__(self, KP_linear, v_max, KP_heading, w_max):
self.linear = PIDSat(KP_linear, 0, 0, v_max)
self.angular = PIDSat(KP_heading, 0, 0, w_max)

def evaluate(self, delta_t, xt, yt, current_pose):
(x, y, theta) = current_pose

dx = xt - x
dy = yt - y

target_heading = math.atan2(dy , dx)

distance = math.sqrt(dx*dx + dy*dy)
heading_error = normalize_angle(target_heading - theta)

if (heading_error > math.pi/2)or(heading_error < -math.pi/2):
distance = -distance
heading_error = normalize_angle(heading_error + math.pi)

v_target = self.linear.evaluate_error(delta_t, distance)
w_target = self.angular.evaluate_error(delta_t, heading_error)

return (v_target, w_target)
� �
Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Position Control

Following a Trajectory

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Following a Trajectory

Cart2D

Linear Speed
Controller

+

-
Angular Speed

Controller
+

-

Linear Position
Controller

Angular Position
Controller

Cartesian
To

Polar +

-

Trajectory Generator
(Virtual Robot)

The polar control uses two P controllers to control position, therefore it
does not give the possibiity to specify acceleration or deceleration
ramps

In these cases, a trajectory generator can be used to give the
(moving) target position (virtual robot) that has to be reached
time-by-time by the (real) robot

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Following a Trajectory

Let us consider the robot in the initial position {xstart , ystart} and that we
want to reach position {xfinal , yfinal} using a straight line

We can consider a change in the reference frame with the x ′ along the
straight line and a virtual robot moving along such a line

The 1D-virtual robot algorithm gives the position x ′(t) of the virtual
robot at time instant t

Then it is roto-translated to the {x , y} frame thus generating the
couple {xT , yT} to be provided to the Polar Controller

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Implementing Virtual Robot in 2D

lib/controllers/control2d.py�
class StraightLine2DMotion:

def __init__(self, _vmax, _acc, _dec):
self.vmax = _vmax
self.accel = _acc
self.decel = _dec

def start_motion(self, start, end):
(self.xs,self.ys) = start
(self.xe,self.ye) = end

dx = self.xe - self.xs
dy = self.ye - self.ys

self.heading = math.atan2(dy , dx)
self.distance = math.sqrt(dx*dx + dy*dy)

self.virtual_robot = VirtualRobot(self.distance,
self.vmax, self.accel, self.decel)

def evaluate(self, delta_t):
self.virtual_robot.evaluate(delta_t)

xt = self.xs + self.virtual_robot.p * math.cos(self.heading)
yt = self.ys + self.virtual_robot.p * math.sin(self.heading)

return (xt, yt)
� �
Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Using the Virtual Robot in 2D

tests/cart 2d/test robot trajectory.py�
class Cart2DRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
Mass = 1kg, radius = 15cm, friction = 0.8
self.cart = Cart2D(1, 0.15, 0.8, 0.8)

self.linear_speed_controller = PIDSat(10, 3.5, 0, 5) # 5 newton
self.angular_speed_controller = PIDSat(6, 10, 0, 4)

self.polar_controller = Polar2DController(0.5, 2, 2.0 , 2)
self.trajectory = StraightLine2DMotion(1.5, 2, 2)

(x,y,_) = self.get_pose()
self.trajectory.start_motion((x,y), (0.5, 0.2))

def run(self):
(x_target, y_target) = self.trajectory.evaluate(self.delta_t)
(v_target, w_target) = self.polar_controller.evaluate(self.delta_t,

x_target, y_target, self.get_pose())
Force = self.linear_speed_controller.evaluate(self.delta_t,

v_target, self.cart.v)
Torque = self.angular_speed_controller.evaluate(self.delta_t,

w_target, self.cart.w)
self.cart.evaluate(self.delta_t, Force, Torque)
return True
� �

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Following a More Complex Trajectory

But if we want to follow a generic path?

A basic solution is to split the path into a sequence of segments and
follow each segment

Once an intermediate point is reached, we start following the next
segment

However, in checking the arrival to a point, a threshold is always needed

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

The Path Follower 2D

lib/controllers/control2d.py�
class Path2D:

def __init__(self, _vmax, _acc, _dec, _threshold):
self.threshold = _threshold
self.path = []
self.trajectory = StraightLine2DMotion(_vmax, _acc, _dec)

def set_path(self, path):
self.path = path

def start(self, start_pos):
self.current_target = self.path.pop(0)
self.trajectory.start_motion(start_pos, self.current_target)

def evaluate(self, delta_t, pose):
(x, y) = self.trajectory.evaluate(delta_t)
target_distance = math.hypot(pose[0] - self.current_target[0],

pose[1] - self.current_target[1])
if target_distance < self.threshold:

if len(self.path) == 0:
return None

else:
self.start((x,y))

return (x,y)
� �
Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Using the Path Follower

tests/cart 2d/test robot path.py�
class Cart2DRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
self.cart = Cart2D(1, 0.15, 0.8, 0.8)
self.linear_speed_controller = PIDSat(10, 3.5, 0, 5) # 5 newton
self.angular_speed_controller = PIDSat(6, 10, 0, 4) # 4 newton * metro
self.polar_controller = Polar2DController(0.5, 2, 2.0 , 2)
self.path_controller = Path2D(1.5, 2, 2, 0.01) # tolerance 1cm
self.path_controller.set_path([(0.5, 0.2),

(0.5, 0.4),
(0.2, 0.2)])

(x, y, _) = self.get_pose()
self.path_controller.start((x,y))

def run(self):
target = self.path_controller.evaluate(self.delta_t,

self.get_pose())
if target is None:

return False
(x_target, y_target) = target
(v_target, w_target) = self.polar_controller.evaluate(self.delta_t, x_target, y_target, self.get_pose())
Force = self.linear_speed_controller.evaluate(self.delta_t, v_target, self.cart.v)
Torque = self.angular_speed_controller.evaluate(self.delta_t, w_target, self.cart.w)
self.cart.evaluate(self.delta_t, Force, Torque)
return True
� �

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Following a Speed Profile

Cart2D

Linear Speed
Controller

+

-
Angular Speed

Controller
+

-

Linear and Angular Speed
Profile Generator

Similarly to the 1-D case, we can generate the v and ω directly from
distance and heading errors

This implies merging the Trajectory Generator, Cartesian-To-Polar and
Position Controllers into a unique control block

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Following a Speed Profile

Distance and
Heading Error

Calculation

Linear Speed
Profile Generator

Angular Speed
Profile Generator

Starting from the comparison between the target and the pose, the
distance and the heading error are computed

They are then passed to the two blocks that (according to the error)
generate the proper speed using the trapezoidal profile

(see class SpeedProfileGenerator2D in
lib/models/virtual robot.py and
tests/cart 2d/test robot speed profile.py)

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

Model and Control of a Mobile Robot in a 2D
Space

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Model and Control of a Mobile Robot in a 2D Space

