Principles of System Control

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Modelling the Cart

Let's start (once again) from the model based on differential equations:

$$\begin{cases} \dot{V} = -\frac{b}{M}V + \frac{1}{M}f \\ \dot{p} = V \end{cases}$$

Controlling the Cart: Questions

- Given a certain speed \overline{v} , what is the force f that we must apply to let the cart travelling at the speed \overline{v} ?
- ② Given a certain position \overline{p} , at what time instant we must **stop** the cart in order to let it stop at \overline{p} ?

The Analytical Way

$$\begin{cases} \dot{V} = -\frac{b}{M}V + \frac{1}{M}f \\ \dot{p} = V \end{cases}$$

If we consider the use of a *constant* force F and the cart not moving at t = 0, i.e. v(0) = 0, we can solve the equations analytically:

$$v(t) = \frac{F}{b}(1 - e^{-\frac{b}{M}t})$$

$$p(t) = \frac{F}{b}(1 - e^{-\frac{b}{M}t})t$$

The Algorithmical Way

- Given a certain speed v̄, what is the force f that we must apply to let the cart travelling at the speed v̄?
- Measure the current speed v
- **2** Compute the error with respect to target speed $error = \overline{V} V$
- 3 Given the error use a **proper function** F = control(error) that is able to **reduce and cancel the error**
- Apply F
- Go to step 1

The Algorithmical Way

- Given a certain position p
 , at what time instant we must stop the cart in order to let it stop at p?
- Measure the current position p
- **2** Compute the error with respect to target position $error = \overline{p} p$
- Given the error use a proper function F = control(error) that is able to anticipate the cart inertia (and thus reduce and cancel the error)
- Apply F
- Go to step 1

The Control System Model: Feedback

 The algorithms above can be represed as the following data-flow diagram:

- This is the typical scheme to control dynamic systems and is called feedback
- The advantage is that the exact model of the system is not needed but only its behaviour, in a qualitative way
- The problem here is instead in the control block that must be properly designed

Position Control

Position Control

- We can make the following "generic" assumptions:
 - If we are *far* from the target position (*error* is large), we can apply a large *F*
 - As soon as we approach the target, it's better to reduce F accordingly, thus anticipating the behaviour of the system and stop the cart in the target position
- In other words, we can try to control the system by applying a F that is directly proportional to the error:

$$F = K_P error$$

with K_P a constant determined in a sperimental way

examples/simple_control/cart_position_control.ipynb

Effect of K_P

6

time

Too much!!! The cart overcomes the target and go back

2

14

10 12

Effect of K $K_P = 0.5$ 3 2 Target **Current Position**

Still too much!!! The cart overcomes the target and go back

6

time

2

12

10

14

Effect of K

- In a Proportional Controller, K_P controls the "speed" (dyamics) of the system
- If K_P is small, the system reaches "slowly" the target
- If K_P is large, the system is "fast" to reach the target but if it is "too much", the target is overcome and the system oscillates
- therefore...
- for each system to be controlled, there is a K_P limit L; if K_P > L, the system oscillates
- we cannot have a system "fast" and "not oscillating", but always a compromise between these two aspect

Controlling the Ball

Controlling the Ball

Controlling the Ball

Controlling the (Godot) Ball

- We use the same algorithm to ensure that the ball reaches a certain position
- We consider a target position of 1000 pix

see examples/simple_control/godot_ball_position_control.ipynb

Controlling Ball Position

Controlling Ball Position

Controlling Ball Position

Position Control

- We observe that, at a certain time instant, the force is ≠ 0 (because there is still an error), but the ball does not move
- This is due to the fact that the force is not enough to overcome static frictions
- Indeed this is what happens in real systems
- But not in the cart modeled, since we did not consider static friction forces
- What shall we do?

Infinite Force or Limited Force?

- Another aspect of the schema above is related to the output of the controller
- The use of $out = K_P(target current)$ implies that the output is as large as the error, but **can the** out **be any value** (also very large)?
- Indeed, considering that the out is the force that we want the motors to apply, it cannot be any value
- But, any motor (actuator) can provide a maximum power and thus a maximum force

Infinite Force or Limited Force?

- Any motor (actuator) can provide a maximum power and thus a maximum force
- So we must include, in the control chain, a saturator, i.e. a block that limits the output of the controller in the interval [-MAX, MAX], where MAX is the limit of the system input
- The saturator is simply a couple of "if"s applied to the proportional output

(see

examples/simple_control/cart_position_control_saturation.ipynb)

Saturation

- Without saturation (left) vs. With saturation (right), $K_p = 1.0$, MAX = 0.5 N
- We notice that with saturation the overall system takes more time to reach the target
- This is a natural consequence since reducing time implies to have more "power"

Controlling the speed of the cart

Speed Control

$$F = K_p$$
 error

- Is the proportional controller enough for speed control?
- Let's analyse the output of the controller w.r.t. the trend of the error
- When error $\neq 0$ we must "push" the cart and thus generate a $F \neq 0$
- But what happens when the target speed is reached?
- In this case, error = 0 thus, according to the formula above, F = 0, the cart stops!!!!!

Thinking analytically ...

- Let's assume that the cart is moving (thanks to a certain F) and that, at a certain point, the target speed \overline{v} is reached
- We have error = 0, meaning that our force is "good enough" to push the cart at the target speed
- But to maintain that speed we should not change F
- In other words, when error = 0, the F must be constant!!
- If we think to the "basic systems" (proprtional, integrator, derivator), that condition is met by an **integrator**:

$$F(t) = \int_0^t error(au) d au$$

Thinking practically ...

- When the error > 0 is large, we must largely increase the F in order to gain speed
- When the error > 0 is small, we must increase the F of a small amount in order to not overcome the target speed
- If error < 0 the target speed has been overcome, and thus we must reduce F
- If error = 0, we must not change the F
- In other words, *F* must be a **weighted accumulator** of *error*:

$$F(k+1) = F(k) + const \cdot error(k)$$

Once again, this is an integrator

Speed Control - The Integral Controller

$$F(t) = K_I \int_0^t error(\tau) d\tau$$

 We can use an integrator including a constant K_i that is able to weight the contribution of the integral

(see examples/simple_control/cart_speed_control.ipynb)

Controlling the speed of a rotating ball

See:

- godot/rolling_ball
- examples/simple_control/godot_ball_speed_control.ipynb

Controlling Ball Speed

Effect of K

mmmmm....

Controlling Ball Speed

The Integral Controller

Effect of K

- The integrator is an **accumulator** of the error
- The constant K_l controls the rate of accumulation
- If K_I is high, the output of the controller increases fastly: this is good when the error is high, but bad when the error becomes small (too much accumulation)
- If K_I is low, the output of the controller increases slowly: this is bad when the error is low, but good when the error becomes small

The Proportional-Integral Controller

PI Control

- We can combine the effects of both P and I controllers
- The P controller reacts immediatelly, but does not have memory
- It can be used when the error is large in order to speed-up the control
- The I controller reacts in the long term, it has memory
- It can be used when the P controller has no more effect (error is small), given that it has accumulated sufficient control action
- Let's see the effect....

(see examples/simple_control/godot_ball_speed_control_Pl.ipynb)

PI Control

In the initial part the response is "fast", in the long term is "slow", let's increase K_l

PI Control

In the initial part the response is "fast", in the long term is "good", let's see if we can have a better behaviour...

PI Control

An overshot appears... too much K_l

PI Control

Still the overshot...

PI Control

Good!

PI Control

 K_P is small, so the system is slower than previous, and here the contribution of K_I is too much

PI Control

The system slower but still too much K_l

PI Control

Too slow!!!

PI Control

Too slow!!!

PI Control

Good enough!!

The Role of Saturation

- Also in PI controllers a saturation block is worth, since the system cannot overcome certain limits and the controller output must be limited accordingly
- But the use of saturator with and integrator has some side effects that must be considered

The Role of Saturation

- Also in PI controllers a saturation block is worth, since the system cannot overcome certain limits and the controller output must be limited accordingly
- But the use of saturator with and integrator has some side effects that must be considered
- Let us consider the last set-up but with a saturation of 90 N

The Role of Saturation

- The role of saturator is clear
- Saturation appears in the first part (indeed the error is high so the output is high)
- An overshot appears, why??

The Anti Wind-up Optimisation

- The overshot is due to the fact that, in the first part, the controller tries to "push the system towards the target", but there is a limit thus the system cannot perform as desired
- The error does not decrease as expected
- It is worth to accumulate the error, given that there is no way to a have more performances???
- The Anti Wind-up optimisation, checks if the output is saturated and, in this case, avoids integrating the error until we exit from the saturation phase

The Anti Wind-up Optimisation

PI Control + Saturation

(see examples/simple_control/godot_ball_speed_PI_sat_aw_control.ipynb)

- The system is in saturation for less time than the previous case (this is good!!)
- The overshot disappers
- Parameters can be tuned in order to have a better response (if needed)

Summary

- The feedback is right way to "control a system", i.e. to make the system behave as desired
- A simple proportional controller can do the job but not in all cases
- If, when error = 0, we need a constant output ≠ 0, an integrator must be added
- The actions of P and I controllers can be combined to have better response performances
- The P controller acts immediately (and thus works well in the first part)
- The I controller acts after (and thus works well in the long term)
- Saturation is always needed (any real system has limits)

Principles of System Control

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems