
Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Position and Speed using Profiles

The Simple “P” Controller

CartPI Controller

with Saturation

+

-

Control Part

Physical System

Speed

Sensor

P Controller

with Saturation

Position

Sensor

-

+

In the “simple-P” controller, the (real) speed shows a specific trend:
It has an initial acceleration phase
then there is a “cruise” phase at the maximum speed (saturation,
vmax

And, when the P controller exits from saturation, the speed
gradually decreases (deceleration phase)

While the controller works (i.e. the target position is reached), we have
no control over acceleration and deceleration: in some cases this is
undesirable!

Corrado Santoro Controlling Position and Speed using Profiles

The Speed Profile

Indeed, a more desirable situation is the one in which we can decide:
The final/target position ptarget

The value of the acceleration acc
The maximum/cruise speed vmax

The value of decelration dec (that could be even equal to
acceleration)

In such a case, the aim of the controller is to ensure that when the
deceleration phase ends the robot is exactly in position ptarget

Corrado Santoro Controlling Position and Speed using Profiles

Position and Speed Control

The Virtual Robot

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Rather than dealing with the problem of “control”, let us concentrate on
how to create the profile above

To this aim, let us consider an “ideal” (virtual) robot that has to travel a
certain distance ptarget by following that speed profile

To model such a motion, we consider the cinematic equations related to
uniform motion and uniformly accelerated motion

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Uniformly Accelerated Motion

a(t) = a (= const)
v(t) = v(t0) + a · (t − t0)

p(t) = p(t0) + v(t0) · (t − t0) +
1
2
· a · (t − t0)2

Uniform Motion

v(t) = v (= const)
p(t) = p(t0) + v · (t − t0)

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

We must simulate the motion of the ideal robot by applying the equation
above

However, we must identify when to change the motion (from
acceleration to cruise, and from cruise to deceleration)

In other words, we should determine the time instants ta and td in which
the regime changes

This can be done by using the equations, however we must remember
that we then act in a “discretized” world!!

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Let’s implement the virtual robot
We can write a class that receives the desired parameters of the motion
and acts accordingly to the speed profile

The class embeds, in its attributes, the current speed and position of
the robot

Moreover, we need to somehow encode the phase in which our motion
is

�
class VirtualRobot:

ACCEL = 0
CRUISE = 1
DECEL = 2
TARGET = 3
def __init__(self, _p_target, _vmax, _acc, _dec):

self.p_target = _p_target
self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.p = 0 # current position
self.phase = VirtualRobot.ACCEL
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Let’s implement the virtual robot
In the evaluate method, let’s implement the behavour of the motion

acceleration and cruise phases are easy to implement, and also their
transition can be easily idenfied

but... when we should start the deceleration?

�
def evaluate(self, delta_t):

if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta_t \

+ self.accel * delta_t * delta_t / 2
self.v = self.v + self.accel * delta_t
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta_t
if ?????:

self.phase = VirtualRobot.DECEL
...
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Deceleration Distance

Let’s consider the final part of the motion, from td to the end te

We start at speed vmax , at time td
We end at speed 0, at time te

Let us apply the formulae of the uniformly accelerated (decelerated)
motion (let’s suppose that dec is positive)

v(t) = v(t0) + a · (t − t0)

v(te) = v(td)− dec · (te − td)

0 = vmax − dec · (te − td)

(te − td) =
vmax

dec

Corrado Santoro Controlling Position and Speed using Profiles

The Deceleration Distance

Now let’s everything but final part of the motion

Its duration is Td = te − td = vmax
dec

Let’s suppose that it starts at position 0 and ends a position D

p(t) = p(t0) + v(t0) · (t − t0) +
1
2
· a · (t − t0)2

D = 0 + vmax · Td −
1
2
· dec · T 2

d

D = vmax ·
vmax

dec
−

1
2
· dec ·

v2
max

dec2

D =
1
2
·

v2
max

dec

Corrado Santoro Controlling Position and Speed using Profiles

The Deceleration Distance

D =
1
2
·

v2
max

dec

We obtained the deceleration distance

It is the distance from the target at which we must start the
deceleration phase

Therefore, if ptarget − pcurrent ≤ D, we are in the deceleration phase�
class VirtualRobot:

...
def __init__(self, _p_target, _vmax, _acc, _dec):

...
self.decel_distance = 0.5 * _vmax * _vmax / _dec

def evaluate(self, delta_t):
...
elif self.phase == VirtualRobot.CRUISE:

self.p = self.p + self.vmax * delta_t
if self.p_target - self.p <= self.decel_distance:

self.phase = VirtualRobot.DECEL
...
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

And finally let’s implement the deceleration phase�
def evaluate(self, delta_t):

...
elif self.phase == VirtualRobot.DECEL:

self.p = self.p + self.v * delta_t \
- self.decel * delta_t * delta_t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0
self.p = self.p_target
self.phase = VirtualRobot.TARGET

...
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Testing the Code�
rob = VirtualRobot(4, # distance 4 m

1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Testing the Code�
rob = VirtualRobot(2, # distance 2 m

1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
� �

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Phase Overappling�
rob = VirtualRobot(1, # distance 2 m

1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
� �

The target is reached but the final speed is not 0!!

Corrado Santoro Controlling Position and Speed using Profiles

Virtual Robot

Phase Overlapping
When the distance is too short, phases may overlap

The deceleration distance is such that the deceleration phase should
begin before the acceleration phase is ended

So we should consider this particular case in our code

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

Testing the Code
At first sight, the code should be patched as follows:�

def evaluate(self, delta_t):
if self.phase == VirtualRobot.ACCEL:

self.p = self.p + self.v * delta_t \
+ self.accel * delta_t * delta_t / 2

self.v = self.v + self.accel * delta_t
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif self.p_target - self.p <= self.decel_distance:
self.phase = VirtualRobot.DECEL
� �

The target is never reached!! Why??

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

As soon as the the target distance decreases, the cruise phase is
shortened and the deceleration phase “approaches” the acceleration
phase

Until the acceleration and deceleration phases overlap!

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

In this case, the deceleration distance is not the one computed before

But we must find the place in which the acceleration and deceleration
lines meet

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?
Let’s consider once again only the deceleration phase

Let us suppose that, at a certain time instant, we are at a distance d
from the target

Here we will start travelling at a certain speed vd and we will have the
distance d to cover

According to dec that distance will be covered in certain time t ′

We have:

d = 0 + vd · t ′ − 1
2
· dec · t ′2

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?
We have:

d = 0 + vd ·∆t ′ − 1
2
· dec ·∆t ′2 (1)

In the same time interval ∆t ′, our speed will go from vd (unknown) to 0,
so:

0 = vd − dec ·∆t ′ (2)

Let’s compute ∆t ′ from (2) and substitute in (1):

d = vd · vd

dec
− 1

2
· dec · (vd

dec
)2 (3)

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?

d = vd · vd

dec
− 1

2
· dec · v2

d

dec2 (4)

Let’s determine vd from (4):

vd =
√

2 · dec · d (5)

Formula (5) gives the expected speed vd when we are at a distance d
from the end of the motion

Corrado Santoro Controlling Position and Speed using Profiles

Speed Profile and Distance

Resolving the Overlapping
Now, we are in the acceleration phase, and our speed is v

According to our initial computation of the deceleration distance we have that,
hypothetically, our deceleration should start at td , can we really enter in that
phase?

Since we know the distance to be travelled d , let’s determine the expected speed
vd

if vd > v , we are still in the acceleration phase, so continue to accelerate until
the condition becomes false

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

The final code�
def evaluate(self, delta_t):

if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta_t \

+ self.accel * delta_t * delta_t / 2
self.v = self.v + self.accel * delta_t
distance = self.p_target - self.p
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif distance <= self.decel_distance:
v_exp = math.sqrt(2 * self.decel * distance)
if v_exp < self.v:

self.phase = VirtualRobot.DECEL

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta_t
distance = self.p_target - self.p
if distance <= self.decel_distance:

self.phase = VirtualRobot.DECEL

elif self.phase == VirtualRobot.DECEL:
self.p = self.p + self.v * delta_t \

- self.decel * delta_t * delta_t / 2
self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0
self.p = self.p_target
self.phase = VirtualRobot.TARGET
� �

Corrado Santoro Controlling Position and Speed using Profiles

Back to Position Control

CartPI Controller

with Saturation

+

-

Speed

Sensor

PID Controller

with Saturation

Position

Sensor

-

+Virtual Robot

Trajectory Generator

From Virtual to Real
Now we have our virtual robot that travels according to a “path”
generated from our initial requirements (distance, maximum speed,
acceleration and deceleration)

How can we use it in our real position control?
The idea is to let the real robot “catch” the virtual robot

Corrado Santoro Controlling Position and Speed using Profiles

Back to Position Control

CartPI Controller

with Saturation

+

-

Speed

Sensor

PID Controller

with Saturation

Position

Sensor

-

+Virtual Robot

Trajectory Generator

Catching the Virtual Robot
The trajectory generator (our VirtualRobot class) gives the position p of
the virtual robot time-by-time

p is the position in which we expect to find also the real robot, but this
will not be the case

Let’s determine the error p − p between expected and real position of
the real robot and use a PID controller to compute the speed needed to
reach p

In other words, the control system works in order to keep the error p − p
as non-zero in order to output a travelling speed (until p = ptarget)

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

CartPI Controller

with Saturation

+

-

Speed

Sensor

PID Controller

with Saturation

Position

Sensor

-

+Virtual Robot

Trajectory Generator

The Code�
...

trajectory = VirtualRobot(4.0, # 4 meters
1.0, # vmax = 1 m/s
0.5, 0.5) # acc = dec = 0.5 m/s

ctrl = PositionSpeedControl(2.0, 1.0, # PositionController: sat = 1 m/s
20.0, 10.0, 20.0)

Speed Controller: kp =20, ki = 10, sat = 20 N
...
� �

(see examples/position control/cart position control virtual robot.ipynb)

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

KP = 2.0

The Role of Constants of the Position Controller
KP controls the delay of the real robot with respect to the virtual robot

It is only a delay not an error, since the target position is (sooner or
later) reached

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

KP = 4.0

The Role of Constants of the Position Controller
Interesting.... but still slow

Corrado Santoro Controlling Position and Speed using Profiles

Catching the Virtual Robot

KP = 8.0

The Role of Constants of the Position Controller
Very nice!!

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

CartPI Controller

with Saturation

+

-

Speed

Sensor

PID Controller

with Saturation

Position

Sensor

-

+Virtual Robot

Trajectory Generator

Lesson Learned
The virtual robot is indeed a generator of the theoretical trajectory
that, during time, must be followed by the real system

Here we have a case with mono-dimensional motion and thus a single
(position) variable to control

However the same concepts can be applied when the trajectory is in a
plane or in space

Corrado Santoro Controlling Position and Speed using Profiles

Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Position and Speed using Profiles

