Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, Italy
santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Posit nd Speed using Profiles

The Simple “P” Controller

— Target Speed

— current Speed

. Control Part 12

Physical ¢

P Controller
with Saturation

Prarget

Positi
I Sens

@ In the “simple-P” controller, the (real) speed shows a specific trend:
@ It has an initial acceleration phase
@ then there is a “cruise” phase at the maximum speed (saturation,

Vmax
@ And, when the P controller exits from saturation, the speed

gradually decreases (deceleration phase)
@ While the controller works (i.e. the target position is reached), we have
no control over acceleration and deceleration: in some cases this is
undesirable!

Corrado Santoro

The Speed Profile

A

v(t)

Umaz . fo.ooooi

@ Indeed, a more desirable situation is the one in which we can decide:

The final/target position prarget

@ The value of the acceleration acc

@ The maximum/cruise speed Vax

@ The value of decelration dec (that could be even equal to
acceleration)

@ In such a case, the aim of the controller is to ensure that when the
deceleration phase ends the robot is exactly in position prarget

= = —— = =

Corrado Santoro

Position and Speed Control

The Virtual Robot J

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

A

o(t)

VUmaz

\4
o~

tq ta te

@ Rather than dealing with the problem of “control”, let us concentrate on
how to create the profile above

@ To this aim, let us consider an “ideal” (virtual) robot that has to travel a
certain distance piager by following that speed profile

@ To model such a motion, we consider the cinematic equations related to
uniform motion and uniformly accelerated motion

Corrado Santoro Controlling Po: nd Speed using Profiles

The Virtual Robot
Uniformly Accelerated Motion

ait) = al(= const)
v(t) = v(t)+a-(t—1)
Pt = plo) + V() (t 1)+ 5-a-(t—)

Uniform Motion

v(t) = v (= const)
p(t) = p(to) +v-(t—1t)

Corrado Santoro Controlling Position and Speed using Profiles

The Virtual Robot

A

v(t)

Umaz . fo..ooo

@ We must simulate the motion of the ideal robot by applying the equation
above

@ However, we must identify when to change the motion (from
acceleration to cruise, and from cruise to deceleration)

@ In other words, we should determine the time instants t; and ¢, in which
the regime changes

@ This can be done by using the equations, however we must remember
that we then act in a “discretized” world!!

=) = = =

Corrado Santoro Controlling Po: nd Speed using Profiles

The Virtual Robot

Let’s implement the virtual robot

@ We can write a class that receives the desired parameters of the motion
and acts accordingly to the speed profile

@ The class embeds, in its attributes, the current speed and position of
the robot

@ Moreover, we need to somehow encode the phase in which our motion
is

~

class VirtualRobot:

ACCEL = 0

CRUISE = 1

DECEL = 2

TARGET = 3

def _ init_ (self, _p target, _vmax, _acc, _dec):
self.p _target = _p_target
self.vmax = _vmax
self.accel = _acc
self.decel = _dec
self.v = 0 # current speed
self.p = 0 # current position
self.phase = VirtualRobot.ACCEL

\S v

Corrado Santoro

The Virtual Robot

Let’s implement the virtual robot
@ In the evaluate method, let's implement the behavour of the motion

@ acceleration and cruise phases are easy to implement, and also their
transition can be easily idenfied

@ but... when we should start the deceleration?

def evaluate(self, delta_t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta t \
+ self.accel * delta t * delta t / 2
self.v = self.v + self.accel *x delta_t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = VirtualRobot.CRUISE

elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta_t
if ?7?27?2°7:

self.phase = VirtualRobot.DECEL

d Speed using Profiles

Corrado Santoro

The Deceleration Distance

@ Let’s consider the final part of the motion, from #, to the end .
@ We start at speed viax, at time {y
@ We end at speed 0, at time 1.

@ Let us apply the formulae of the uniformly accelerated (decelerated)
motion (let's suppose that dec is positive)

v(it) = v(b)+a-(t—h)
v(te) = Vv(ty) —dec- (te — tq)
0 = Vmax —dec-(te — ty)
Vmax
(t—ta) = dec

Corrado Santoro Controlling Posit nd Speed using Profiles

The Deceleration Distance

o(t)

@ Now let’s everything but final part of the motion
@ lts duration is Ty = fo — tg = ‘2

dec
@ Let’s suppose that it starts at position 0 and ends a position D

1
PO = pll) + V(D) (t=to) + 5 -a-(t—1)*
1
D = 0+vmaX~Td—§-dec-T§
Vmax 1 V1271ax
D = o s 1 . max
Vmax " Gec T 2 dec?

Corrado Santoro Controlling Po: nd Speed using Profiles

The Deceleration Distance

D — 1 . Vr2nax
2 dec

@ We obtained the deceleration distance

@ ltis the distance from the target at which we must start the
deceleration phase

@ Therefore, if Prarget — Peurrent < D, we are in the deceleration phase

class VirtualRobot:
ééé __init__ (self, _p_target, _vmax, _acc, _dec):
ééif.decel_distance = 0.5 * _vmax * _vmax / _dec
def evaluate(self, delta_t):
elif self.phase == VirtualRobot.CRUISE:
self.p = self.p + self.vmax * delta_t

if self.p target - self.p <= self.decel_distance:
self.phase = VirtualRobot.DECEL

Corrado Santoro i d Speed using Profiles

The Virtual Robot

@ And finally let’s implement the deceleration phase

def evaluate(self, delta_t):

elif self.phase == VirtualRobot .DECEL:
self.p = self.p + self.v * delta t \
- self.decel * delta_t » delta_t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0

self.p = self.p target

self.phase = VirtualRobot.TARGET

Corrado Santoro Controlling Po:

The Virtual Robot

rob = VirtualRobot (

max speed 1.5 m/s
accel 2 m/s2

, # distance 4 m
,
’
) # decel 2 m/s2

10 — Trget Speed
—— Current Speed

—— Virtual Robot Speed

08

06

04

0.2

0.0

time {seconds)

Corrado Santoro Controlling Po:

The Virtual Robot

rob = VirtualRobot (2, # distance 2 m
1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
»
2,001 — speed
—— Position
175
150
125
1.00
0.75
0.50
0.25
0.00
O.‘O 0:5 1:0 1:5 2:0
time
4

Corrado Santoro i i d Speed using Profiles

The Virtual Robot

rob = VirtualRobot (1, # distance 2 m
1.5, # max speed 1.5 m/s
2.0, # accel 2 m/s2
2.0) # decel 2 m/s2
.
—— speed
14 —— Position

0.0 0.2 0.4 0.6 0.8 1.0 12

Corrado Santoro

Virtual Robot

Phase Overlapping

@ When the distance is too short, phases may overlap

@ The deceleration distance is such that the deceleration phase should
begin before the acceleration phase is ended

@ So we should consider this particular case in our code

Corrado Santoro Controlling Po: nd Speed using Profiles

Testing the Code

@ At first sight, the code should be patched as follows:

def evaluate(self, delta t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v * delta t \
+ self.accel * delta t * delta t / 2
self.v = self.v + self.accel x delta t
if self.v >= self.vmax:
self.v = self.vmax
self.phase = VirtualRobot.CRUISE
elif self.p target - self.p <= self.decel distance:
self.phase = VirtualRobot.DECEL

— speed
— Position

o0 o0z o4 06 To 12 14

o8
time

The target is never reached!! Why??

g =

Corrado Santoro Controlling Position

Speed Profile and Distance

ace

@ As soon as the the target distance decreases, the cruise phase is
shortened and the deceleration phase “approaches” the acceleration
phase

@ Until the acceleration and deceleration phases overlap!

Corrado Santoro

Speed Profile and Distance

@ In this case, the deceleration distance is not the one computed before

@ But we must find the place in which the acceleration and deceleration
lines meet

Corrado Santoro Controlling Po: nd Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?

@ Let’s consider once again only the deceleration phase

@ Let us suppose that, at a certain time instant, we are at a distance d
from the target

@ Here we will start travelling at a certain speed v, and we will have the
distance d to cover

@ According to dec that distance will be covered in certain time t’
@ We have:

d = o+vd-r’—%-dec-ﬂ2

Corrado Santoro Controlling Posit nd Speed using Profiles

Speed Profile and Distance
Where do the acc and dec phases meet?

@ We have:
d = 0+vd~At/—%-dec-At’2 (1)
@ In the same time interval At’, our speed will go from vy (unknown) to 0,
So:

0 = vy—dec- At 2)

@ Let's compute At’ from (2) and substitute in (1):

Corrado Santoro Controlling Posit nd Speed using Profiles

Speed Profile and Distance

Where do the acc and dec phases meet?

NI BN 7
d = v dec 2 dec dec? “
@ Let's determine vy from (4):
Vg = V2-dec-d (5)

@ Formula (5) gives the expected speed v, when we are at a distance d
from the end of the motion

Corrado Santoro Controlling Posi nd Speed using Profiles

Speed Profile and Distance

o(t)

Umaz

ta it te

Resolving the Overlapping

@ Now, we are in the acceleration phase, and our speed is v

@ According to our initial computation of the deceleration distance we have that,
hypothetically, our deceleration should start at ¢;, can we really enter in that
phase?

@ Since we know the distance to be travelled d, let’s determine the expected speed
Vd

@ if vy > v, we are still in the acceleration phase, so continue to accelerate until
the condition becomes false

V.

Corrado Santoro i iti Speed using Profiles

The Virtual Robot

The final code

def evaluate(self, delta t):
if self.phase == VirtualRobot.ACCEL:
self.p = self.p + self.v x delta_t \

+ self.accel * delta_t * delta t / 2
self.v = self.v + self.accel * delta_t
distance = self.p_target - self.p
if self.v >= self.vmax:

self.v = self.vmax
self.phase = VirtualRobot.CRUISE
elif distance <= self.decel distance:
v_exp = math.sqrt (2 * self.decel * distance)
if v_exp < self.v:
self.phase = VirtualRobot.DECEL

elif self.phase VirtualRobot.CRUISE:
self.p = self.p + self.vmax x delta t
distance = self.p_target - self.p
if distance <= self.decel_distance:
self.phase = VirtualRobot .DECEL

elif self.phase == VirtualRobot.DECEL:
self.p = self.p + self.v * delta t \
— self.decel x delta t x delta t / 2

self.v = self.v - self.decel * delta_t
if self.p >= self.p_target:

self.v = 0

self.p = self.p_target

self.phase = VirtualRobot.TARGET

Corrado Santoro

Back to Position Control

Umaz acc dec Vmaz

Pl Controller
with Saturation

Virtual Robot p_+ PID Controller

Prarget | Trgiectory Generator A with Saturation

Speed
Sensor

Position
Sensor

From Virtual to Real

@ Now we have our virtual robot that travels according to a “path”
generated from our initial requirements (distance, maximum speed,
acceleration and deceleration)

@ How can we use it in our real position control?
@ The idea is to let the real robot “catch” the virtual robot

Corrado Santoro iti Speed using Profiles

Back to Position Control

Umaz acc dec

rT1 T

Virtual Robot p_+ PID Controller
Trajectory Generator A with Saturation

Pl Controller

Dtarget —>| with Saturation

B

Speed
Sensor

Position
Sensor

Catching the Virtual Robot

@ The trajectory generator (our VirtualRobot class) gives the position p of
the virtual robot time-by-time

@ pis the position in which we expect to find also the real robot, but this
will not be the case

@ Let’s determine the error p — p between expected and real position of
the real robot and use a PID controller to compute the speed needed to
reach p

@ In other words, the control system works in order to keep the error p — p
as non-zero in order to output a travelling speed (until p = prarget)

Corrado Santoro Controlling Po: nd Speed using Profiles

Catching the Virtual Robot

Umas acc dec Upmaz

l l

Virtual Robot p_+ PID Controller
Trajectory Generator A with Saturation

Prarget —

PI Controller
with Saturation

Cart

The Code

Se

Se

Speed

Position

ensor

ensor

trajectory = VirtualRobot (4.0, # 4 meters

0, # vmax =

1 m/s

0.5, 0.5) # acc = dec = 0.5 m/s

ctrl = PositionSpeedControl(2.0, 1.0

PositionController:

20.0, 10.0, 20.0)
Speed Controller: kp =20, ki = 10, sat

sat

1 m/s

20 N

(see examples/position_control/cart_position_control_virtual_robot.ipynb)

Corrado Santoro

Controlling Po:

Catching the Virtual Robot

Kp = 2.0

—— Target Speed 401 — Trget Pos
—— Current Speed
—— Virtual Robot Speed

= Current Pos

time {seconds) time (seconds)

The Role of Constants of the Position Controller

@ Kp controls the delay of the real robot with respect to the virtual robot

@ lItis only a delay not an error, since the target position is (sooner or
later) reached

Corrado Santoro Controlling Posit nd Speed using Profiles

Catching the Virtual Robot

Kp = 4.0

10 —— Target Speed 401 = Trget Pos
—— Current Speed 35| — Current Pos
08 —— Virtual Robot Speed
30
06 25
20
04 15
10
02
05
00 00
0 1 2 3 4 5 3 7 8 0 1 2 3 4 5 6 7 8

time (seconds) time {seconds)

The Role of Constants of the Position Controller

@ |Interesting.... but still slow

Corrado Santoro Controlling Posit nd Speed using Profiles

Catching the Virtual Robot

Kp = 8.0

10 —— Target Speed 401 — Trget Pos
—— Current Speed 35— Current Pos
08 — Virtual Robot Speed
30
06 25
20
04 15
10
0z
05
0o 00
o 1 2 3 4 5 3 7 8 o 1 2 3 4 5 & 7 8
time (seconds) time (seconds}

The Role of Constants of the Position Controller

@ Very nice!!

Corrado Santoro i itii ing Profiles

The Virtual Robot

Vmaz acc dec

Virtual Robot p_+

Prarget Trajectory Generator

Lesson Learned

@ The virtual robot is indeed a generator of the theoretical trajectory
that, during time, must be followed by the real system

@ Here we have a case with mono-dimensional motion and thus a single

U"IM
PID Controller
with Saturation

” | Pl Controller
with Saturation

Speed
Sensor

Position

(position) variable to control

@ However the same concepts can be applied when the trajectory is in a

plane or in space

Sensor

Corrado Santoro

d Speed using Profiles

Controlling Position and Speed using Profiles

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, Italy
santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling Posit nd Speed using Profiles

