
Handling System Limits
PID Control with Saturation

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro PID Control with Saturation

The Proportional-Integral-Derivative Controller

Physical

System

target +

-

PID Controller

+

+

+

The Controller Output
The output of the PID is somewhat proportional to the error (in a direct,
integral o derivative “way”)

If the error is large, the controller output may be very large (and also
increasing in the presence of the integrator)

But, in real life, can we provide a “driving signal” to a system that is as
large as we want?

Are systems subject to certain limits that cannot be overcome?

Corrado Santoro PID Control with Saturation

System Limits

Back to the Cart
In the “cart example”, the force is due to the power of the motors that, in
turn, is generated according to the voltage applied to motors themselves

Increasing the voltage, increases motor power and thus the pushing
force

But can we increase such a voltage indefinitely?

NO! There are two kind of limits:

1 The electronics driving the motor cannot provide a voltage greater
than the power supply

2 Supposing that the former limit does not occur, if we overcome the
limits for what the motors are designed, we easly burn them!

Corrado Santoro PID Control with Saturation

The PID Controller with Saturation

Physical

System

target +

-

PID Controller

+

+

+ Saturator

Handling Limits
In other words, we need to saturate the controller output according to a
certain limit OUTmax

This objective is achieved by including a saturation block that ensure
the output is always in the range [−OUTmax ,OUTmax]

Corrado Santoro PID Control with Saturation

The PID Controller with Saturation

Physical

System

target +

-

PID Controller

+

+

+ Saturator

Handling Limits
From the implementation point of view, a saturation block if simply a
couple of “ifs”�

...
if output > OUT_MAX:

output = OUT_MAX
elif output < -OUT_MAX:

output = -OUT_MAX
else the output is unchanged
...
� �

Corrado Santoro PID Control with Saturation

System Limits

Back to the Cart
Let us consider that in our Cart, the motors are not able to provide a
push greater than 0.5 N

Let’s see the implementation of the position control with saturation�
...
self.controller = PIDSat(0.2, 0, 0, 0.5)
Kp = 0.2, saturation 0.5 Newton
...

class PIDSat:

def __init__(self, kp, ki, kd, saturation):
...
self.saturation = saturation

def evaluate(self, delta_t, target, current):
...
if output > self.saturation:

output = self.saturation
elif output < -self.saturation:

output = - self.saturation
return output
� �

Corrado Santoro PID Control with Saturation

Cart Position Control with Saturation

Without saturation With saturation

Corrado Santoro PID Control with Saturation

Speed Control with Saturation

Back to the Cart
Also in the case of speed control we must consider the presence of
system limits and thus saturation

Let’s consider the cart with 0.5 N of maximum push

Let’s test the speed control algoritm using the same parameters of the
case without saturation�

...
self.controller = PIDSat(3.0, 2.0, 0.0, 0.5)
Kp = 3, Ki = 2, Sat = 0.5 N
self.target_speed = 1.5 # 1.5 m/s
...
� �

Corrado Santoro PID Control with Saturation

Cart Speed Control with Saturation

Without saturation With saturation (0.5 N)

The system is constantly in saturation and there is no way to
achieve the target speed of 1.5 m/s

Corrado Santoro PID Control with Saturation

Cart Speed Control with Saturation

Let’s change our motors with more powerfull ones that are able to provide up
to 2 N

Without saturation
KP = 3,KI = 2

With saturation (2 N)
KP = 3,KI = 2

It works!! But...an overshot appeared!!! Why?

Corrado Santoro PID Control with Saturation

Speed Control with Saturation

With saturation (2 N)
KP = 3,KI = 2

The Overshot...
Even if we used the same parameters, in the presence of saturation the
overall system is different, so a different behaviour is expected

Above all, the saturator is a non-linear block

Indeed, the overshot is due to the integrator that accumulates the error

Corrado Santoro PID Control with Saturation

Speed Control with Saturation

The Anti-Wind-up Optimisation
Accumulating the error is necessary to obtain an adequate long-term
output able to let the system reach the target

But, when we are in the “saturation area”, does it make sense to
accumlate the error in any case?

After all, since we have reached the system limits, increasing the
accumulated value (above the system limits) does not help in any way

Worstly, if the accumulated value is too high (and the target is
overcome) we must wait more time for its reduction (and this is the
overshot!)

Corrado Santoro PID Control with Saturation

Speed Control with Saturation

The Anti-Wind-up Optimisation
So, let’s check when we are in the saturation area and, if this is the
case, do not call the integrator (see standard.py, class PIDSat)�

def evaluate(self, delta_t, target, current):
error = target - current
derivative = (error - self.prev_error) / delta_t
self.prev_error = error

if not(self.in_saturation):
self.i.evaluate(delta_t, target, current)

output = self.p.evaluate(target, current) + self.i.output + \
derivative * self.kd

if output > self.saturation:
output = self.saturation
self.in_saturation = True

elif output < -self.saturation:
output = - self.saturation
self.in_saturation = True

else:
self.in_saturation = False

return output
� �
Corrado Santoro PID Control with Saturation

Cart Speed Control with Saturation

Without saturation
KP = 3,KI = 2

With saturation (2 N) and Anti-Wind-up
KP = 3,KI = 2

Corrado Santoro PID Control with Saturation

Handling System Limits
PID Control with Saturation

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro PID Control with Saturation

