
Declarative Programming in Python using
PHIDIAS

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Declarative Programming in Python using PHIDIAS

PHIDIAS

PHIDIAS (PytHon Interactive Declarative Intelligent Agent
System) is a Python tool to program autonomous systems
using the declarative paradigm

The aim is to offer an all-in-one programming environment
that allows a developer to write together both imperative
and declarative code

It is available on github:
http://github.com/corradosantoro/phidias

Corrado Santoro Declarative Programming in Python using PHIDIAS

http://github.com/corradosantoro/phidias

PHIDIAS

PHIDIAS is based on the paradigm
belief-desire-intention (BDI) and allows a developer to
specify, within Python code, of behaviours based on:

Knwoledge (base and derived)

“Reattive” rules (event-condition-action model)

“Rroattive” rules

Corrado Santoro Declarative Programming in Python using PHIDIAS

Knwoledge in PHIDIAS

Knwoledge in PHIDIAS

Corrado Santoro Declarative Programming in Python using PHIDIAS

Knwoledge in PHIDIAS—Beliefs

The knowledge model in PHIDIAS is similar to that of Prolog

The basic knowledge is specified through Beliefs (equivalent to Prolog
“facts”)

The Beliefs must be declared by subclassing the base class Belief

Then they can be expressed by means of the classical syntax based on
atomc formulae with ground terms:

position(150,60)
block("red")
stack("cube","pyramid")

Beliefs can be added to or removed from the Knowledge Base (KB)

The KB can be queried to check the presence of certain facts and
behave accordingly

Corrado Santoro Declarative Programming in Python using PHIDIAS

Knowledge in PHIDIAS—Goals

The derived knowledge is represented by Goals
Goals must be declared by subclassing the base class
Goal

Then they can be used by means of logic formualae with
AND connectives, in first-order logic

Formulae can contains variables (universally quantified) or
ground terms

But used variables must be declared (not the type but their
“presence”)

Corrado Santoro Declarative Programming in Python using PHIDIAS

Example: the Genealogic Tree

James I

Charles I Elisabeth

Catherine Charles II James II Sophie

George I

Beliefs
male(X)→ X is a man

female(X)→ X is a woman

parent(X, Y)→ X is parent of Y

Corrado Santoro Declarative Programming in Python using PHIDIAS

Example: the Genealogic Tree

Derived Knowledge: Goals
father(X, Y)→ X is Y’s father:

∀x , y : parent(x , y) ∧male(x)⇒ father(x , y)

mother(X, Y)→ X is Y’s mother:

∀x , y : parent(x , y) ∧ female(x)⇒ mother(x , y)

Corrado Santoro Declarative Programming in Python using PHIDIAS

Example: the Genealogic Tree (1)�
library imports
from phidias.Types import *
from phidias.Main import *
from phidias.Lib import *

definizione dei beliefs
class parent(Belief): pass
class male(Belief): pass
class female(Belief): pass

definizione dei goal
class father(Goal): pass
class mother(Goal): pass

definizione delle variabili usate
nel programma (occhio agli apici!)
def_vars(’X’,’Y’)

definizione dei goal come predicati logici
father(X,Y) << (parent(X,Y) & male(X))
mother(X,Y) << (parent(X,Y) & female(X))

....
� �
Corrado Santoro Declarative Programming in Python using PHIDIAS

Example: the Genealogic Tree (2)�
...
inserimento iniziale nella knowledge base
PHIDIAS.assert_belief(male(’james1’)),
PHIDIAS.assert_belief(male(’charles1’))
PHIDIAS.assert_belief(male(’charles2’))
PHIDIAS.assert_belief(male(’james2’))
PHIDIAS.assert_belief(male(’george1’))
PHIDIAS.assert_belief(female(’catherine’))
PHIDIAS.assert_belief(female(’elizabeth’))
PHIDIAS.assert_belief(female(’sophia’))
PHIDIAS.assert_belief(parent(’james1’, ’charles1’))
PHIDIAS.assert_belief(parent(’james1’, ’elizabeth’))
PHIDIAS.assert_belief(parent(’charles1’, ’charles2’))
PHIDIAS.assert_belief(parent(’charles1’, ’catherine’))
PHIDIAS.assert_belief(parent(’charles1’, ’james2’))
PHIDIAS.assert_belief(parent(’elizabeth’, ’sophia’))
PHIDIAS.assert_belief(parent(’sophia’, ’george1’))

start dell’engine di PHIDIAS
PHIDIAS.run()

start della shell interattiva
PHIDIAS.shell(globals())
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Run Example: the Genealogic Tree

PHIDIAS Release 1.1.0
Autonomous and Robotic Systems Laboratory
Department of Mathematics and Informatics
University of Catania, Italy (santoro@dmi.unict.it)

eShell: main > kb
male(’james1’) male(’charles1’)
male(’charles2’) male(’james2’)
male(’george1’) female(’catherine’)
female(’elizabeth’) female(’sophia’)
parent(’james1’, ’charles1’) parent(’james1’, ’elizabeth’)
parent(’charles1’, ’charles2’) parent(’charles1’, ’catherine’)
parent(’charles1’, ’james2’) parent(’elizabeth’, ’sophia’)
parent(’sophia’, ’george1’)
eShell: main >

Corrado Santoro Declarative Programming in Python using PHIDIAS

Run Example: the Genealogic Tree (2)

eShell: main > father(X,Y)
father(’james1’, ’charles1’)
father(’james1’, ’elizabeth’)
father(’charles1’, ’charles2’)
father(’charles1’, ’catherine’)
father(’charles1’, ’james2’)
eShell: main > mother(X,Y)
mother(’elizabeth’, ’sophia’)
mother(’sophia’, ’george1’)
eShell: main >

Corrado Santoro Declarative Programming in Python using PHIDIAS

Example: the Genealogic Tree (3)

Derived Knowledge
sibling(X, Y)→ X is Y’s sibling (X and Y have the same parent):
∃p,∀x , y : parent(p, x) ∧ parent(p, y) ∧ x 6= y ⇒ sibling(x , y)

brother(X, Y)→ X is Y’s brother:
∀x , y : sibling(x , y) ∧male(x)⇒ brother(x , y)

sister(X, Y)→ X is Y’s sister:
∀x , y : sibling(x , y) ∧ female(x)⇒ sister(x , y)

�
sibling(X,Y) << (parent(P, X) & parent(P, Y) & neq(X,Y))

brother(X,Y) << (sibling(X,Y) & male(X))

sister(X,Y) << (sibling(X,Y) & female(X))
� �
neq(X,Y) (not-equal) is a special belief (ActiveBelief) that checks whether the
arguments (X,Y) are different

Corrado Santoro Declarative Programming in Python using PHIDIAS

Inside PHIDIAS

Inside PHIDIAS

Corrado Santoro Declarative Programming in Python using PHIDIAS

Inside PHIDIAS

The expression:�
sibling(X,Y) << (parent(P, X) & parent(P, Y) & neq(X,Y))
� �
is interpreted by Python in the following way:

Since sibling, parent and neq are Python classes, parent(X,Y)
is the creation of an object instance of the relevant class

Variables X and Y are defined by def vars(...), a function that
creates, at runtime, objects of the type Variable, assigning the
relative name so they can be used in the expressions

By means of operator overloading, the use of << e & runs the proper
methods of base classes Goal and Belief, whose code creates,
inside PHIDIAS engine, a proper data structure that represent the goal

The PHIDIAS engine analyses this data structure and intrepretates
properly the expressions (like a Prolog predicate, in this case)

Corrado Santoro Declarative Programming in Python using PHIDIAS

Behaviour Programming

Behaviour Programming in PHIDIAS

Corrado Santoro Declarative Programming in Python using PHIDIAS

Behaviour in PHIDIAS

A behaviour in PHIDIAS is implemented by means of plans
that can be:

reactive based on the paradigm
Event-Condition-Actions

proactive based on procedures constrained by a
pre-condition

Corrado Santoro Declarative Programming in Python using PHIDIAS

Reactive Programming

Reactive Programming with PHIDIAS

Corrado Santoro Declarative Programming in Python using PHIDIAS

Reactive Plans

Reactive Plans are specified by means of the following syntax:
event ′′/′′ condition ′′ >>′′ ′′[′′ list of actions ′′]′′

The event can be the assertion of a belief +bel(...)
the retraction of a belief -bel(...)

The condition is a predicate specified on one or more beliefs present in
the knowledge base and/or on the variables

It can contain free variables (that are assigned according to the
extracted belief) and can also use Goals previously defined

The list of actions reppresents the “things to do” when the plan is
executed; the list can contain one of the following statement
(comma-separated):

assertion of a belief +bel(...)
retraction of a belief -bel(...)
procedure call proc(...)
library/user-defined actions go to(X, Y)
Python expression "X = X + 1"

Corrado Santoro Declarative Programming in Python using PHIDIAS

A “rational” example: Students and Graduated

We want to represent a world in which we have students that (sooner or
later) become graduated
Once the student is graduated, s/he is no more “student”
Let’s defined two beliefs:

student(X) to represent the fact that “X” is a student
graduated(X) to represent the fact that “X” is graduated

Let’s impose the following “knowledge rules”:
“X”, to become graduated(X), s/he must be before a
student(X)
When “X” becomes graduated(X), s/he is no more
student(X)�

class student(Belief): pass
class graduated(Belief): pass

def_vars(’X’)
+graduated(X) / student(X) >> [-student(X),

show_line("yeah ", X, "is now graduated!")]
+graduated(X) >> [show_line(X, "is not a student"),

-graduated(X)]
� �
Corrado Santoro Declarative Programming in Python using PHIDIAS

Let’s analyse the example...

�
class student(Belief): pass
class graduated(Belief): pass

def_vars(’X’)
+graduated(X) / student(X) >> [-student(X),

show_line("yeah ", X, "is now graduated!")]
+graduated(X) >> [show_line(X, "is not a student"),

-graduated(X)]
� �
Both the plans have the same triggering event: +graduated(X)
These two plans represent a group because they have the same event

But only one plan of a group can be executed

The selection is made on the basis of the writing order:
the first plan that satisfy the condition is executed

Corrado Santoro Declarative Programming in Python using PHIDIAS

A “rational” example: Students and Graduated

Let’s add a further consistency rule to the knowledge:
A degree cannot become a student again�

class student(Belief): pass
class graduated(Belief): pass

def_vars(’X’)
+graduated(X) / student(X) >> [-student(X),

show_line("yeah ", X, " is now graduated!")]
+graduated(X) >> [show_line(X, " is not a student"),

-graduated(X)]
+student(X) / graduated(X) >> \

[show_line(X, " is graduated and cannot be a student again"),
-student(X)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Reactive Programming: the Sieve of Erathostenes

Algorithm
The algorithm of the “Sieve of Erathostenes” to find the prime numbers
operates by considering all the numbers from 1 to N, and proceeds by
“deleting” multiples

The remaining numbers (not deleted) will be the prime numbers

Implementation in PHIDIAS
Let’s consider each number represented by the belief number(X)

Let’s use a rule that is activated on the basis of the event “assertion of a
belief number(X)”

The condition specifies the search for a number Y that is a sub-multiple
of X : if it exists, the number X has to be removed from the knowledge
base

Corrado Santoro Declarative Programming in Python using PHIDIAS

Reactive Programming: the Sieve of Erathostenes

Implementation in PHIDIAS
Let’s consider each number represented by the belief number(X)

Let’s use a rule that is activated on the basis of the event “assertion of a
belief number(X)”

The condition specifies the search for a number Y that is a sub-multiple
of X : if it exists, the number X has to be removed from the knowledge
base�

from phidias.Types import *
from phidias.Main import *
from phidias.Lib import *

class number(Belief): pass

def_vars("X","Y")
+number(X) / (number(Y) & neq(X, Y) & (lambda: (X % Y) == 0)) >> [-number(X)]

instantiate the engine
PHIDIAS.run()

populate the KB (and run the rules)
for i in range(2,100):

PHIDIAS.assert_belief(number(i))

run the engine shell
PHIDIAS.shell(globals())
� �Corrado Santoro Declarative Programming in Python using PHIDIAS

Reactive Programming: the Sieve of Erathostenes

Implementation in PHIDIAS and Execution Semantics
The computational part of the algorithm is in the rule:�

+number(X) / (number(Y) & neq(X, Y) & (lambda: (X % Y) == 0))
>> [-number(X)]
� �

When a number X is asserted, the condition implies to find all the
numbers Y sub-multiple of X

For each number Y found, an instance (intention) of possible execution
of the plan is created

However, only the first instance (intention) is executed

Corrado Santoro Declarative Programming in Python using PHIDIAS

Reactive Programming: the Sieve of Erathostenes

Execution Example�
+number(X) / (number(Y) & neq(X, Y) & (lambda: (X % Y) == 0))

>> [-number(X)]
� �
The belief +number(6) is asserted

The system identifies the following intentions:�
+number(6) / (number(2) & neq(6, 2) & (lambda: (6 % 2) == 0))

>> [-number(6)]
� ��
+number(6) / (number(3) & neq(6, 3) & (lambda: (6 % 3) == 0))

>> [-number(6)]
� �
The first intention is executed�

+number(6) / (number(2) & neq(6, 2) & (lambda: (6 % 2) == 0))
>> [-number(6)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Predicates and ActiveBeliefs

Predicates and ActiveBeliefs

Corrado Santoro Declarative Programming in Python using PHIDIAS

Lambda ad ActiveBeliefs

The algorithm of the Sieve of Erathostenes requires the presence of two
conditions:

the number extracted Y must be different than X

The number extracted Y must be sub-multiple of X

These conditions can be expressed by means of lambdas:�
+number(X) /
(number(Y) & (lambda : X != Y) & (lambda: (X % Y) == 0))

>> [-number(X)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Lambda and ActiveBeliefs

�
+number(X) /
(number(Y) & (lambda : X != Y) & (lambda: (X % Y) == 0))

>> [-number(X)]
� �
But there may cases in which:

The condition to specify is more complex than a simple comparison and
we would like to use an ad-hoc boolean function, or...

(for example) we would like to bind a variable to data sampled by a
sensor

In all of these cases, we can use an object of the type ActiveBelief:

It does not represent a knowledge (it cannot be added to the KB)

It implements a predicate/comparison in the method evaluate which
returns a boolean

Corrado Santoro Declarative Programming in Python using PHIDIAS

Lambda and ActiveBeliefs

�
class Multiple(ActiveBelief):

def evaluate(self, x, y):
return (x() % y()) == 0

+number(X) / (number(Y) & (lambda : X != Y) & Multiple(X,Y))
>> [-number(X)]
� �

The example show an ActiveBelief Multiple which evaluates if the
first argument is multiple of the second

It is used in the condition of the plan

In the method evaluate, the argments are special objects, so the
real variable values must be “extracted” by using x()

Corrado Santoro Declarative Programming in Python using PHIDIAS

Library of ActiveBeliefs

The PHIDIAS library includes a set of ActiveBeliefs that implement
classical comparisons:

eq(X,Y) X == Y
neq(X,Y) X ! = Y
gt(X,Y) X > Y
geq(X,Y) X >= Y
lt(X,Y) X < Y
leq(X,Y) X <= Y

If we use only ActiveBeliefs, the Sieve of Erathostenes becomes:�
class Multiple(ActiveBelief):

def evaluate(self, x, y):
return (x() % y()) == 0

+number(X) / (number(Y) & neq(X, Y) & Multiple(X,Y))
>> [-number(X)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Proactive Programming

Proactive Programming in PHIDIAS

Corrado Santoro Declarative Programming in Python using PHIDIAS

Proactive Plans

Proactive plans are specified with:
procedura ′′/′′ condizione ′′ >>′′ ′′[′′ lista di azioni ′′]′′

The procedure specify the way in which the plan is invoked

It is declared as a subclass of Procedure and can contain variables or
ground terms

The condition is a predicate on one or more beliefs present in the KB
and/or on the variables

It can contain free variables (that are assigned on the basis of the
extracted belief) and also use Goals previously defined

The list of actions represents the “things to do” when the plan is
executed; the list can contain the following statements
(comma-separated):

belief assertion +bel(...)
belief retraction -bel(...)
procedur call proc(...)
library or user-defined action go to(X, Y)
Python expression "X = X + 1"

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Hello World” in PHIDIAS

Implementation in PHIDIAS�
from phidias.Types import *
from phidias.Main import *
from phidias.Lib import *

class say_hello(Procedure): pass

say_hello() >> [show_line("Hello world from Phidias")]

PHIDIAS.run()
PHIDIAS.shell(globals())
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Conditional Constructs and Iteration

PHIDIAS does not provide explicit conditional constructs (if), nor
iteration (for/while)

However, the use of conditions can overcome the problem

Example: factorial�
from phidias.Types import *
from phidias.Main import *
from phidias.Lib import *

class fact(Procedure): pass

def_vars("Acc", "N")
fact(N) >> [fact(N, 1)]
fact(1, Acc) >> [show_line("the resulting factorial is = ", Acc)]
fact(N, Acc) >> \

[
"Acc = N * Acc",
"N = N - 1",
fact(N, Acc)

]

PHIDIAS.run()
PHIDIAS.shell(globals())
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Conditional Constructs and Iteration

Example: computing the maximum�
from phidias.Types import *
from phidias.Main import *
from phidias.Lib import *

import random

class number(Belief): pass

class compute_max(Procedure): pass

def_vars(’X’,’TempMax’)

compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]

populate the KB
for i in range(1,50):

PHIDIAS.assert_belief(number(random.uniform(0,50)))

instantiate the engine
PHIDIAS.run()

run the engine shell
PHIDIAS.shell(globals())
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Computing the Maximum

Knowledge Base�
number(5) number(8) number(2)
number(10) number(3) number(4)
� �
Execution example�
compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]
� �
The procedure compute max() is invoked, the runtime identifies the
following intentions:�
compute_max() / number(5) >> [compute_max(5)]
compute_max() / number(8) >> [compute_max(8)]
compute_max() / number(2) >> [compute_max(2)]
compute_max() / number(10) >> [compute_max(10)]
compute_max() / number(3) >> [compute_max(3)]
compute_max() / number(4) >> [compute_max(4)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Computing the Maximum

Knowledge Base�
number(5) number(8) number(2)
number(10) number(3) number(4)
� �
Execution example�
compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]
� �
The first intention is executed:�
compute_max() / number(5) >> [compute_max(5)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Computing the Maximum

Knowledge Base�
number(5) number(8) number(2)
number(10) number(3) number(4)
� �
Execution example�
compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]
� �
When procedure compute max(5) is invoked the runtime identifies the
following intentions:�
compute_max(5) / (number(8) & gt(8, 5)) >> [compute_max(8)]
compute_max(5) / (number(10) & gt(10, 5)) >> [compute_max(10)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Computing the Maximum

Knowledge Base�
number(5) number(8) number(2)
number(10) number(3) number(4)
� �
Execution example�
compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]
� �
The first intention is executed:�
compute_max(5) / (number(8) & gt(8, 5)) >> [compute_max(8)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Computing the Maximum

Knowledge Base�
number(5) number(8) number(2)
number(10) number(3) number(4)
� �
Execution example�
compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]
� �
When procedure compute max(8) is invoked the runtime identifies the
following intention:�
compute_max(8) / (number(10) & gt(10, 8)) >> [compute_max(10)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Computing the Maximum

Knowledge Base�
number(5) number(8) number(2)
number(10) number(3) number(4)
� �
Execution example�
compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]
� �
The intention is executed:�
compute_max(8) / (number(10) & gt(10, 8)) >> [compute_max(10)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Computing the Maximum

Knowledge Base�
number(5) number(8) number(2)
number(10) number(3) number(4)
� �
Execution Example�
compute_max() / number(X) >> [compute_max(X)]
compute_max(TempMax) / (number(X) & gt(X, TempMax)) >> [compute_max(X)]
compute_max(TempMax) >> [show_line("The maximum is ", TempMax)]
� �
When procedure compute max(10) is invoked the runtime identifies the
following intention and the program terminates:�
compute_max(10) >> [show_line("The maximum is ", 10)]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Case Study
SHRDLU: the Block World

Corrado Santoro Declarative Programming in Python using PHIDIAS

SHRDLU World

SHRDLU is one of the first AI programs (1968-1970), it supported the
reasoning/planning and natural language processing

SHRDLU “lives” in a virtual environment made of some “blocks” with
different colors and shapes (cubes, pyramids, prisms, cylinders, ecc.)

The program was able to understand commands such as “Pick up a big
red block” or “Grasp the pyramid” and to behave accordingly

The strange name SHRDLU comes from the sequence ETAOIN
SHRDLU which is the key sequence of the “Linotype” (the sequenza
was based on the frequency of the letters in the English language)

Corrado Santoro Declarative Programming in Python using PHIDIAS

The Linotype and the sequence SHRDLU

Corrado Santoro Declarative Programming in Python using PHIDIAS

SHRDLU and PHIDIAS

Let’s implement a small version of SHRDLU with PHIDIAS (file
“SHRDLU.py”)

Our world is composed of objects of the type: cube, cylinder, prism

These objects are on a table and can be captured by a robot

Objects can be stacked, one upon another, thus forming a tower

An object can be captured only if it is free, i.e. it has no other object
upon it

Corrado Santoro Declarative Programming in Python using PHIDIAS

SHRDLU and PHIDIAS

BELIEFS
obj(X), represents the presence of the block X on the table

owned(X), represents the fact that block X has been caught by the
robot

upon(X,Y), block X is placed on block Y

PROCEDURES
pick(X), request to pick block X, if possible

put(X), request to put block X on the table

put(X,Y), request to put block X upon block Y

Corrado Santoro Declarative Programming in Python using PHIDIAS

SHRDLU plans: capturing objects

Object X is on the table, but another object Y is on X, then X cannot be
captured�

pick(X) / (obj(X) & upon(Y, X)) >> \
[show_line("Cannot pick ", X, " since it is under the ", Y)]
� �

If the previous condition if false, object is on the table or upon another
one, in any case can be captured�

pick(X) / (obj(X) & upon(X, Y)) >> \
[

show_line(X, " has been picked"),
-obj(X), -upon(X, Y), +owned(X)

]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

SHRDLU plans: capturing objects

If the previous condition if false, object is on the table and can be
captured�

pick(X) / obj(X) >> [show_line(X, " picked"),
-obj(X), +owned(X)]
� �

If the previous condition is false and object X is already owned by the
robot, it cannot be captured again�

pick(X) / owned(X) >> [show("you’ve still got ", X)]
� �
If all the previous conditions are false, the last plan will be executed:
this implies that object X does not exist�

pick(X) >> [show_line("cannot pick ", X,
" since it is not present")]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

SHRDLU plans: releasing objects

Putting an object on the table
If the object X is owned by the robot, then we put X on the table�

put(X) / owned(X) >> [show_line(X, " is now on the table"),
-owned(X), +obj(X)]
� �

If the object X is on the table, then there is nothing to do�
put(X) / obj(X) >> [show_line(X, " is already on the table")]
� �

If object X is not owned by robot nor placed on the table
then the object does not exist�

put(X) >> [show_line(X, " does not exist")]
� �
Corrado Santoro Declarative Programming in Python using PHIDIAS

SHRDLU plans: releasing objects

Putting an object X upon another object Y
Object X is owned by the robot, and the object Y is on the table, but Y
has another object Z upon it: we cannot do the action�

put(X, Y) / (owned(X) & obj(Y) & upon(Z, Y)) \
>> [show_line(Y, " has ", Z, " on its top")]
� �
ObjectX is owned by the robot, the object Y is on the table but since the
previous condition is false, Y free, then we can put X upon Y�

put(X, Y) / (owned(X) & obj(Y)) >> \
[-owned(X), +obj(X), +upon(X, Y),

show_line("done")]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Case Study
“Change Coins”

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins”

We want to automate the procedure of erogating the change by a food
and beverage dispenser machine

The machine has tanks for the coins:
50 cent
20 cent
10 cent
5 cent

Given M the amount of money to change, the system will provide
proper coins, always starting from those with the highest value and
considering the possibiliy of empty tanks

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins”

Let’s use the following beliefs that indicate the number of coins in the
relevant tanks:

fifty(N) number of 50 cent coints
twenty(N) number of 20 cent coints
ten(N) number of 10 cent coints
five(N) number of 5 cent coints

Let’s define a procedure change(M) that has the aim of providing che
change coin by coin

It will be a recursive procedure that identifies the coin with the highest
value, provides the coin and updates the beliefs accordingly

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins”

The procedure change(M)

Let’s think in terms of “single coin value”

Let C the number of coins of value t , then...

... if M >= t and C > 0, we can provide a coin of value t , decrement C,
and recursively call procedure change(M − t):

Procedure Change(M);
if (M >= t) ∧ (C > 0) then

C := C − 1;
M := M − t ;
Change(M);

end

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins”

The procedure change(M)�
check 50 cent coins
change(M) / (fifty(C) & geq(M, 50) & gt(C, 0)) >> \

[
show_line("50 cent"),
-fifty(C), "C = C - 1", +fifty(C),
"M = M - 50", change(M)

]

check 20 cent coins
change(M) / (twenty(C) & geq(M, 20) & gt(C, 0)) >> \

[
show_line("20 cent"),
-twenty(C), "C = C - 1", +twenty(C),
"M = M - 20", change(M)

]

...
� �
Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins”

The procedure change(M)�
...
check 10 cent coins
change(M) / (ten(C) & geq(M, 10) & gt(C, 0)) >> \

[
show_line("10 cent"),
-ten(C), "C = C - 1", +ten(C),
"M = M - 10", change(M)

]

check 5 cent coins
change(M) / (five(C) & geq(M, 5) & gt(C, 0)) >> \

[
show_line("5 cent"),
-five(C), "C = C - 1", +five(C),
"M = M - 5", change(M)

]

change(M) >> \
[

show_line("End of change, remaning ", M, " cents")
]
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins” and SingletonBeliefs

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins” and SingletonBeliefs

The various plans tied to procedure “change” need to update the
parameter of the belief that represents the value of che coin to provide

To this aim, the piece of code used is:�
...

-ten(C), "C = C - 1", +ten(C),
...
� �

We remove belief, change the parameter and assert again the same
belief

This is needed because the parameter of a belief cannot be changed

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins” and SingletonBeliefs

However, the beliefs:
fifty(N)
twenty(N)
ten(N)
five(N)

are characterised by the fact that they can exist in single instance
Indeed from the application point of view, having two beliefs five with
different parameters does not make sense

In these cases, the beliefs that can exist in single instance can be
declared as SingletonBelief

Indeed, the operation “add” (+) on a belief of this type provokes the
update of the single instance (if it is already present)

Corrado Santoro Declarative Programming in Python using PHIDIAS

“Change Coins”

change(M) with SingletonBelief�
class fifty(SingletonBelief): pass
class twenty(SingletonBelief): pass
class ten(SingletonBelief): pass
class five(SingletonBelief): pass

check 50 cent coins
change(M) / (fifty(C) & geq(M, 50) & gt(C, 0)) >> \

[
show_line("50 cent"),
"C = C - 1", +fifty(C),
"M = M - 50", change(M)

]

check 20 cent coins
change(M) / (twenty(C) & geq(M, 20) & gt(C, 0)) >> \

[
show_line("20 cent"),
"C = C - 1", +twenty(C),
"M = M - 20", change(M)

]
...
� �

Corrado Santoro Declarative Programming in Python using PHIDIAS

Declarative Programming in Python using
PHIDIAS

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Declarative Programming in Python using PHIDIAS

