
Control Systems for Multi-rotors
Principles, Modeling and Software Design

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Corrado Santoro Control Systems for Multi-rotors

Multirotor Structure and Dynamics

Multirotor Structure and Dynamics

Corrado Santoro Control Systems for Multi-rotors

Multirotors: definition

A multirotor (a.k.a. “drone”) is an aerial vehicle characterised
by:

An even set of equal horizontal propellers (and motors), ≥ 4,
symmetrically placed in a circular shape

A symmetric/balanced airframe (even if not strictly mandatory)

VTOL (Vertical Take-off and Landing) capabilities

Four degrees of freedom, XYZ + Heading

No critical issues from the mechanical/aerodynamic point of view

Total control in software, no mechanical parts

Corrado Santoro Control Systems for Multi-rotors

Reference System

The body reference system usually employed is the one in figure

The system also define the Euler angles that represents the attitude:
roll, φ
pitch, θ
yaw, ψ

The pose of the multirotor is represented by:
{X ,Y ,Z , φ, θ, ψ}, in the Earth frame

Corrado Santoro Control Systems for Multi-rotors

Airframes and Constraints

Motors/propellers must be the same
Motors/propellers must be even ≥ 4
Motors/propellers must be placed in a circular shape
Propellers must rotate in opposite directions in-pair (third Newton’s
Law compensation)
Propellers must have opposite pitches in-pair
The number and position of propellers define the airframe model

Corrado Santoro Control Systems for Multi-rotors

Motion

Motion is achieved by modulating propeller speeds

We can assume a virtual pilot able to give the commands (as in an
airplane):

Thrust, the “power” to the motors (throttle control)
Roll and Pitch, the “control joke”
Yaw, the “pedals”

Let us assume that these commands are variables belonging to the
ranges:

thrust cmd ∈ [0,THmax]
roll cmd ∈ [−Rmax ,Rmax]
pitch cmd ∈ [−Pmax ,Pmax]
yaw cmd ∈ [−Ymax ,Ymax]

These commands must be “transferred” to the motors on the basis of
the specific airframe

Corrado Santoro Control Systems for Multi-rotors

Motion: Hovering and Z-translation

Vertical motion is achieved by keeping all propeller speeds the same and
proportional to a thrust command (we assume 1-proportionality):

ω1 = thrust cmd

ω2 = thrust cmd

ω3 = thrust cmd

ω4 = thrust cmd

Corrado Santoro Control Systems for Multi-rotors

Motion: Yaw rotation in X-shaped quads

Yaw rotation is achieved by modulating propeller speeds in-pairs 1− 3/2− 4,
proportional to a yaw command:

ω1 = thrust cmd − yaw cmd

ω2 = thrust cmd + yaw cmd

ω3 = thrust cmd − yaw cmd

ω4 = thrust cmd + yaw cmd

Corrado Santoro Control Systems for Multi-rotors

Motion: Roll rotation in X-shaped quads

Roll rotation is achieved by modulating propeller speeds in-pairs 1− 4/2− 3,
proportional to a roll command:

ω1 = thrust cmd − yaw cmd + roll cmd

ω2 = thrust cmd + yaw cmd − roll cmd

ω3 = thrust cmd − yaw cmd − roll cmd

ω4 = thrust cmd + yaw cmd + roll cmd

Roll rotation implies a decomposition of the thrust force: a drag force
appears that drives the frame in a translated flight along Y axis

Corrado Santoro Control Systems for Multi-rotors

Motion: Pitch rotation in X-shaped quads

Pitch rotation is achieved by modulating propeller speeds in-pairs 1− 2/3− 4,
proportional to a pitch command:

ω1 = thrust cmd − yaw cmd + roll cmd + pitch cmd

ω2 = thrust cmd + yaw cmd − roll cmd + pitch cmd

ω3 = thrust cmd − yaw cmd − roll cmd − pitch cmd

ω4 = thrust cmd + yaw cmd + roll cmd − pitch cmd

Pitch rotation implies a decomposition of the thrust force: a drag force
appears that drives the frame in a translated flight along X axis

Corrado Santoro Control Systems for Multi-rotors

Motion in Plus-shaped quads

ω1 = thrust cmd − yaw cmd + pitch cmd
ω2 = thrust cmd + yaw cmd − roll cmd
ω3 = thrust cmd − yaw cmd − pitch cmd
ω4 = thrust cmd + yaw cmd + roll cmd

Corrado Santoro Control Systems for Multi-rotors

Motion: the Mixer

The mixer is the software component that translates attitude
commands to motor commands
It depends airframe model and basically implements a matrix M such
that  ω1

ω2

· · ·
ωn

 = M

 roll cmd
pitch cmd
yaw cmd

thrust cmd


Corrado Santoro Control Systems for Multi-rotors

The Mixer: practical aspects

Practically, the outputs of the mixer are not the wn but the duty cycle
values of the motor PWM drivers PWM1

PWM2

· · ·
PWMn

 = M

 roll cmd
pitch cmd
yaw cmd

thrust cmd


PWM values are then saturated using a technique that avoids certain
side-effects

Corrado Santoro Control Systems for Multi-rotors

The Control System

The Control System of a Multirotor

Corrado Santoro Control Systems for Multi-rotors

Rate and Attitude Control

The mixer outputs PWM values and does not have control on the real
forces of the propellers

In order to ensure stability, proper sensors must be employed that
detects the attitude of the multirotor

The control of stability is achieved by means of two control loops:
Rate Control, controls angular speeds φ̇, θ̇, ψ̇, by means of a
3-axis gyro
Attitude Control, controls Euler angles φ, θ, ψ, by means of a
6-DOF or 9-DOF IMU

Corrado Santoro Control Systems for Multi-rotors

Rate Control: the “Acro” Mode

The Rate Control module performs a PID control on angular rates
φ̇, θ̇, ψ̇ on the basis of:

Target Rates, given as input
Current Rates, given by the gyro

When the target rates are given by the RC command, the mode is
called acrobatic

Corrado Santoro Control Systems for Multi-rotors

Rate Control: Practical Aspects

Rate Controllers are usually PI or PID controllers (the derivative part is
often filtered by a LPF)

Outputs are saturated to a specific value (usually 100% of PWM duty
cycle)

The anti-wind-up optimisation is included

Since controllers must operate only “in flight”, they are “activated” only
when the thrust command is greater than a threshold

Corrado Santoro Control Systems for Multi-rotors

Rate Control: Implementation

Rate Control module is implemented as a periodic task triggered by:
A Timer, with a specific period
The gyro sampling frequency

Periods are in the order of 200− 500Hz

The code implements the classical PID algorithm with anti-wind-up

Corrado Santoro Control Systems for Multi-rotors

Rate Control: Implementation

Pseudo-code

while True do
On each ∆T ;
{φ̇T , θ̇T , ψ̇T , thrust cmd} ← read remote control();
{φ̇, θ̇, ψ̇} ← read gyro();
// Control

roll cmd ← PID roll rate controller(φ̇T − φ̇);
pitch cmd ← PID pitch rate controller(θ̇T − θ̇);
yaw cmd ← PID yaw rate controller(ψ̇T − ψ̇);
// Mixer
PWM1 ← thrust cmd − yaw cmd + roll cmd + pitch cmd ;
PWM2 ← thrust cmd + yaw cmd − roll cmd + pitch cmd ;
PWM3 ← thrust cmd − yaw cmd − roll cmd − pitch cmd ;
PWM4 ← thrust cmd + yaw cmd + roll cmd − pitch cmd ;
// Driving
drive motor(PWM1,PWM2,PWM3,PWM4);

end

Corrado Santoro Control Systems for Multi-rotors

Rate and Attitude Control

Rate control ensures that real angular rates are the one desired but do
not provide guarantees on the attitude, i.e. that the pose of the airframe
is a specific one {φ, θ, ψ}

Moreover, starting from an horizontal pose φ = 0, θ = 0, if a “glitch”
moves suddenly the pitch angle to θ = 10◦, the system is stable from
the rate control point of view (there are no rotations), but (probably) the
attitude is not the desired one

An Attitude Controller is required, which drives the Rate Controllers
and ensures the respect of a certain pose, from the Euler angles point
of view

To this aim, the current attitude is estimated by integrating data from
gyros, accelerometers and magnetometers.

Corrado Santoro Control Systems for Multi-rotors

Attitude Control: Basic Schema

Attitude Controllers are (usually) simple P controllers
Outputs are saturated to a maximum angular speed, determined
experimentally
Attitude Control module is implemented as a periodic task (like the
Rate Control), with a period same as to (or greater than) that of Rate
Control

Corrado Santoro Control Systems for Multi-rotors

Attitude/Rate Control: Implementation

Pseudo-code

while True do
On each ∆T ;
{φT , θT , ψT , thrust cmd} ← read remote control();
{φ̇, θ̇, ψ̇} ← read gyro();
{αx , αy , αz} ← read accelerometer();
{µx , µy , µz} ← read magnetometer();
{φ, θ, ψ} ← attitute estimation({φ̇, θ̇, ψ̇}, {αx , αy , αz}, {µx , µy , µz});
// Control
...
// Mixer
...
// Driving
...

end

Corrado Santoro Control Systems for Multi-rotors

Attitude/Rate Control: Implementation

Pseudo-code

while True do
On each ∆T ;
...
{φ, θ, ψ} ← attitute estimation({φ̇, θ̇, ψ̇}, {αx , αy , αz}, {µx , µy , µz});
// Control

φ̇T ← PD roll controller(φT − φ);
θ̇T ← PD pitch controller(θT − θ);
ψ̇T ← PD yaw controller(ψT − ψ);

roll cmd ← PID roll rate controller(φ̇T − φ̇);
pitch cmd ← PID pitch rate controller(θ̇T − θ̇);
yaw cmd ← PID yaw rate controller(ψ̇T − ψ̇);
// Mixer
...
// Driving
...

end

Corrado Santoro Control Systems for Multi-rotors

Attitude/Rate Control: Implementation

Pseudo-code

while True do
On each ∆T ;
...
// Control
...
// Mixer
PWM1 ← thrust cmd − yaw cmd + roll cmd + pitch cmd ;
PWM2 ← thrust cmd + yaw cmd − roll cmd + pitch cmd ;
PWM3 ← thrust cmd − yaw cmd − roll cmd − pitch cmd ;
PWM4 ← thrust cmd + yaw cmd + roll cmd − pitch cmd ;
// Driving
drive motor(PWM1,PWM2,PWM3,PWM4);

end

Corrado Santoro Control Systems for Multi-rotors

Attitude Estimation

Attitude Estimation

Corrado Santoro Control Systems for Multi-rotors

Attitude Estimator

The most critical part of Attitude Control is the Sensor Fusion
algorithm that implements the Attitude Estimator

The literature reports a plethora of solutions:
Kalman Filters
Complementary Filters
Direction Cosine Matrix Algorithm
Gradient Descend
...

(Some) quality factors of the estimator:
Resilience to vibrations
Difference w.r.t. the real attitude
Rate of convergence

Corrado Santoro Control Systems for Multi-rotors

Attitude Estimator: Basics

The basic working scheme of the estimator is the following:

1 Wait sampling period
2 Update Euler angles using data from gyroscopes by performing

discrete integration
3 Adjust Pitch and Roll on the basis of data from accelerometers (−→g

vector)
4 Adjust Yaw on the basis of data from magnetometers (

−→
N vector)

The various algorithms differ in the way in which
adjustments (steps 2 and 3) are performed

Corrado Santoro Control Systems for Multi-rotors

The Complementary Filter Algorithm

Corrado Santoro Control Systems for Multi-rotors

The Direction Cosine Matrix Algorithm

The DCM is the rotation matrix from “Earth reference” and “Body
reference” of a rigid body whose attitude is expressed by means of
Euler angles θ, φ, ψ

Direction Cosine Matrix

DCM =

 cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ
−sθ sφcθ cφcθ


s = sin, c = cos

A vector v ′ = (x ′, y ′, z′) in local (body) frame is translated into global
(Earth) frame by multiplying it by the DCM: v = DCM · v ′

Corrado Santoro Control Systems for Multi-rotors

Direction Cosine Matrix

The DCM has some properties

It is orthogonal, its transpose is equal to its inverse:

DCM−1 = DCMT

DCM · DCMT = I

Orthogonality implies that the columns (rows)
are orthogonal vectors in-pair→ their cross product is zero
are vector with module equal to 1

Such properties must be always respected

Corrado Santoro Control Systems for Multi-rotors

The DCM Algorithm

Corrado Santoro Control Systems for Multi-rotors

Attitude Estimators: Improving the Quality

Sensor Calibration
Gyros: get (and store) offsets bw and remove them from
measures: ω = ω − bw

Accelerometers: get (and store) offsets ba and rotation matrix
RA remove them from measures: a = RA · (a− ba)
Magnetometers: get (and store) offsets bm and rotation matrix
RM remove them from measures: m = RM · (m − bm)

Sensor Filtering, low-pass filters (with order ≥ 2) are often used to
reduce the effect of motor/propeller vibrations

Mechanical Dampers, to decouple the flight control board from the
airframe to reduce the effect of motor/propeller vibrations

Dynamic g compensation, the contribution of accelerometers is
weighted according to the error |g − ‖a‖| in order to reduce the effect,
on a, of body translations

Corrado Santoro Control Systems for Multi-rotors

Summary of Basic Software Modules

Summary of basic Software Modules

Corrado Santoro Control Systems for Multi-rotors

In Summary... the Basic Software Modules

Corrado Santoro Control Systems for Multi-rotors

Other Kind of Controls

Other Kind of Controls

Corrado Santoro Control Systems for Multi-rotors

Altitude Control

Altitude Control
Altitude Z is estimated by means of proper sensors (barometer, in
some case integrated with measures from accelerometers, ultrasonic
sensors, etc.)

The Vertical Speed Vz is determined by a derivative of the altitude

Control is performed by means of two control loops that drive the thrust
command

An inner PI(D) speed controller driving the thurst
An outer P-(FF) position controller driving the speed controller

Corrado Santoro Control Systems for Multi-rotors

Position Control

Pose Estimator
GPS signal is used to determine (and control) the pose in the Earth
frame

An EKF estimator is used to fuse data from GPS and IMU to estimate:
Position {X ,Y ,Z}, in NED (or ENP) coordinates
Speeds {Vx ,Vy ,Vz}
Euler Angles {φ, θ, ψ}

The EKF is complex and CPU-time consuming (in PX4, it is a 22-state
estimator)

Corrado Santoro Control Systems for Multi-rotors

Position Control

Position Control
Position Control is performed by means of two pair of control loops
(North and East) that drive the target roll and pitch of the attitude
controller

An inner PI(D) speed controller driving the target attitude (roll and
pitch)
An outer P-(FF) position controller driving the speed controller

Corrado Santoro Control Systems for Multi-rotors

The Ground Control Station

Ground Control Station

Corrado Santoro Control Systems for Multi-rotors

The Ground Control Station

GCS
Most of the UAV flight stacks have the possibility of connecting a setup,
telemetry and maintenance GUI called Ground Control Station

It can be used for
Configuring the UAV and calibrating the sensor
Monitoring telemetry data
Planning the missions
Modifying all the parameters (gains of controllers or of the sensor
fusion algorithms, sensor configuration, RC commands, etc.)

Corrado Santoro Control Systems for Multi-rotors

The Ground Control Station

MAVLink
Communication between GCS and the Flight Stack is performed
through a standard protocol called MAVLink
It is designed to be used in serial links (wired or radio) or TCP/UDP
channels

It can be used not only for GCS-like activities but also to control the UAV
through an external on-board computer in order to do flight tasks:

Arming/Disarming
Triggering take-off and land
Sending specific set-points (NED positions, or Vx ,Vy ,Vz speeds)
Sending and triggering a mission

Corrado Santoro Control Systems for Multi-rotors

Overall Software Modules

Corrado Santoro Control Systems for Multi-rotors

The PX4 Autopilot

The PX4 Autopilot

Corrado Santoro Control Systems for Multi-rotors

The PX4 Autopilot

The PX4 Autopilot is a flight control software designed to drive a large
set of autonomous vehicles, including ground and aerial platforms

It is entirely written in C++ and includes two basic parts:
PX4 Flight Stack: modules that implement control algorithms,
estimators, etc. for manual and autonomous flight
PX4 Middleware: infrastructure for communication among all
software modules of the Flight Stack

PX4 runs on top of NuttX, a Unix-like real-time operating system
(developed by Gregory Nutt) that provides a support for:

pre-emptive thread scheduling
device drivers
virtual file system
a minimal shell

Corrado Santoro Control Systems for Multi-rotors

PX4 Middleware

Since software modules need to interact to each other, a
communication middleware is provided called uORB

It is based on a publisher/subscriber mechanism

Data is identified by a topic, so publishing, subscribing and data copy is
handled “by topic”

Structures of messages used in PX4 are defined in some text files in
the directory msg

Corrado Santoro Control Systems for Multi-rotors

PX4 uORB Messages
The msg directory�
...
output_pwm.msg
parameter_update.msg
position_setpoint.msg
pwm_input.msg
sensor_accel.msg
sensor_baro.msg
sensor_gyro.msg
sensor_mag.msg
...
� �
The sensor mag.msg file�
uint64 timestamp
uint64 error_count
float32 x
float32 y
float32 z
float32 range_ga
float32 scaling
float32 temperature

int16 x_raw
int16 y_raw
int16 z_raw

uint32 device_id
� �
Corrado Santoro Control Systems for Multi-rotors

PX4 Flight Stack

Source Directory Structure
drivers, abstraction layer for physical equipment (sensors, motors,
etc.), and specific device drivers for each supported equipment

modules, all software modules performing the control of the vehicle

lib, additional libraries for scalar and matrix math, coordinate system
handling, control system modules, filters, etc.

Corrado Santoro Control Systems for Multi-rotors

PX4 Driver Layer

Device Drivers
PX4 Device drivers must export a POSIX-compliant interface, with
callbacks for functions as open, close, read, ioctl

Devices handled are mainly sensors and the current version of PX4
supports a large number of them:�

./src/drivers:
gps mpu6050__
hc_sr04 mpu6500
hmc5883 mpu9250
irlock ms5611
l3gd20 oreoled
led pca8574
lis3mdl pca9685
ll40ls pwm_input
lps22hb pwm_out_sim
lsm303d sf0x
lsm6ds33 sf10a
mb12xx srf02
md25 srf02_i2c
meas_airspeed uart_esc
mpu6000
mpu6050
� �

Corrado Santoro Control Systems for Multi-rotors

PX4 Device Driver and Sensors

Multiple Sensors Handling
The PX4 firmware is able to use multiple sensors, also of the same
type (e.g. two or more gyros, accelerometers, magnetometers, etc.)

Data relevant to the same sensor type are gathered altogether

A data quality evaluator algorithm is employed in order to detect the
“best” data read and use it in subsequent computations

The evaluator is based on comparing the data stream with the same
stream filtered by a LPF and computing the error variance

Corrado Santoro Control Systems for Multi-rotors

PX4 Modules

The modules directory
PX4 modules are the main control blocks of the autopilot

Each module is a NuttX task that is started at system startup and
implements an infinite loop performing the activities:

1 waiting for the sampling period
2 retrieving subscribed data from uORB
3 executing the specific computation
4 publishing the result to uORB

Corrado Santoro Control Systems for Multi-rotors

PX4 Modules

The modules directory
Modules include:

attitude estimator ekf, EKF for attitude estimation
attitude estimator q, complementary filter for attitude estimation
commander, sensor calibration routines and GCS command handling
(through MAVLink)
ekf att pos estimator, EKF for position and attitude estimation
fw att control, attitude (and rate) controllers for fixed-wing UAVs
fw pos control l1, position controllers for fixed-wing UAVs
mavlink, MAVLink protocol routines
mc att control, attitude (and rate) controllers for multirotor UAVs
mc pos control, position controllers for multirotor UAVs
navigator, controller for handling autonomous missions
sdlog2, the logger
segway, attitude controllers for a segway
systemlib, system modules, including the mixer

Corrado Santoro Control Systems for Multi-rotors

The CDrone Flight Stack

The CDrone Flight Stack

Corrado Santoro Control Systems for Multi-rotors

CDrone Flight Stack

CDrone Basics
It is a flight stack developed at the DMI@UNICT for educational
purposes

Initially designed in C for Microchip dsPIC33F family MCUs

Then rewritten in C++ and ported to the STM32 architecture
(STM32F401RE)

It runs in bare metal, with a very light HAL layer written in C++

It includes only the basic modules of a UAV control system (those in
figure + the MAVLink interface)

Corrado Santoro Control Systems for Multi-rotors

CDrone HAL

Peripheral and Task Layers
CDrone is strongly object-based, so everything is defined as a class
The Peripheral layer includes some (abstract and concrete) classes
each representing a specific peripheral

The Task layer includes the abstract class PeriodicTask (the base
for the implementation of any periodic task) and the (non preemptive)
scheduler

Scheduling is triggered by a timer running at 400 Hz

Corrado Santoro Control Systems for Multi-rotors

CDrone HAL

Sensor Drivers
IMU Sensors are represented by a generic IMU abstract class that must
be extended into the class that implements the code to handle specific
sensors

A IMU X NUCLEO class that drives (via I2C) a X-NUCLEO-IKS01A1
add-on board

Corrado Santoro Control Systems for Multi-rotors

CDrone HAL

Control System Layer
Some (abstract and concrete) classes implementing

the PID algorithm (with derivative low-pass filter, anti-wind-up and
feedforward)
some filters, a 2nd order LowPass filter, and a 4nd order
Chebysev low-pass filter

Corrado Santoro Control Systems for Multi-rotors

CDrone Flight Control Classes

RemoteControl, interface with the RC

RateControl, angular rate control algorithms

AttitudeControl, control algorithms on Euler angles

AirFrame, abstract class representing an airframe

AirFrameQuadX, class representing an X-shaped quadcopter

AHRS, abstract class representing a generic sensor fusion algorithm

ComplementaryFilter, the complementary filter sensor fusion algorithm

DCM, the DCM sensor fusion algorithm

MAVLinkReceiver, MAVLink command handler

Corrado Santoro Control Systems for Multi-rotors

CDrone: Statistics

Loop-time: 2.5ms

I2C Sensor Polling: 930µs

DCM Sensor Fusion, Rate and Attitude Control: 410µs without FPU

DCM Sensor Fusion, Rate and Attitude Control: 290µs with FPU

Total processing time: 1.34ms without FPU

Total processing time: 1.22ms with FPU

Corrado Santoro Control Systems for Multi-rotors

CDrone TO-DO List

Re-designing/modifying the current airframe, it seems vibrating
too much

Porting the software to the STM32F7 flight control board

Including altitude control, with barometric and ultrasonic sensors

Including other form of navigation/stabilisation
GPS
Camera
...

Corrado Santoro Control Systems for Multi-rotors

Control Systems for Multi-rotors
Principles, Modeling and Software Design

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Corrado Santoro Control Systems for Multi-rotors

