
Introduction to Dynamic Systems

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Dynamic Systems

Systems

System
A system is a set of elements, that can be considered as a whole, that
interact with each other and with the environment according to a certain law.

A system can be represented as a black box that interacts with the
environment through an input (the stimulus u), producing a certan effect
(onto the environment) which is the output (that we call y)

u(t), the input, that is any physical quantity that varies during time

f , the law, y(t) = f (u(t))

y(t), the output that depends on u(t) and f

Corrado Santoro Dynamic Systems

The Law of a Systems

u(t), the input

f , the law, y(t) = f (u(t))

y(t), the output

The law depends on:

Characteristics of parts of the system

Composition of the parts

How the parts interact

f can be a mathematical function, an algorithm, or any other abstraction that
can model/represent the behaviour of the system

Indeed, according to the nature of the law f , the system can be:

Static or Dynamic

Corrado Santoro Dynamic Systems

Example of Static Systems

A Combinatorial Circuit with Logic Gates

u = [a, b], the input ∈ {0, 1}
y , the output ∈ {0, 1}
f , the law, y = ab + ab

The output depends totally and only on the instantaneous value of the
input

If u varies during time (u(t)), the output behaves accordingly

Given two time instants t and t ′, t ̸= t ′, if u(t) = u(t ′) then y(t) = y(t ′)
(time has no effect)

Corrado Santoro Dynamic Systems

Example of Static Systems

A program computing the roots of quadratic equations

u = [a, b, c], the input ∈ R
y = [x1, x2], the output ∈ C
f , the law, the algoritm to solve quadratic equations

The output depends totally and only on the instantaneous value of the
input

If u varies during time (u(t)), the output behaves accordingly

Given two time instants t and t ′, t ̸= t ′, if u(t) = u(t ′) then y(t) = y(t ′)
(time has no effect)

Corrado Santoro Dynamic Systems

Example of Dynamic Systems

A soccer ball on a playing field

u = F (t), the force applied by the kick ∈ R, in Newton

y = [v , p], the output, speed and position of the ball ∈ R
f , the physic law that gives the speed and position for each time instant

When you kick the ball...

You are applying an impulsive force at time instant t = 0, but for t > 0
the input is null

The speed v increases suddently at t = 0 and then decrease gradually
for t > 0 (but input is 0), eventually reaching zero

The position p increases for t >= 0, eventually reaching a constant
value

Given two time instants t and t ′, t ̸= t ′, if u(t) = u(t ′) then y(t) can be
̸= (t ′) (time has effect)

Corrado Santoro Dynamic Systems

Analytical Representation of a Systems

u(t), the input

f , the law, y(t) = f (u(t))

y(t), the output

The law f :
In a static system, does not depends on time but only on u(t)
y(t) = f (u(t))

In a dynamic system, depends on time and on u(t)
y(t) = f (u(t), t)

A dynamic system is (analytically) expressed with (a system of)
differential equations

Corrado Santoro Dynamic Systems

Example

Example of a Dynamic System in Godot

(godot/ball)

Corrado Santoro Dynamic Systems

The Concept of “Discretisation”

We consider real-life systems, so they evolve during time
Time is a quantity belonging to R and evolves in a continuous way

But this concept cannot be modeled or implemented in a computer
system

We subdivide the time in Time Quanta, i.e. time intervals that are
very very small

and we consider the events that occur only each time quantum

In other words, we perform a sampling of the real (or simulated) world
using a specific sampling time ∆t that can be constant or variable
This operation is called discretisation
∆t is chosen so that between t = i∆t and t ′ = (i + 1)∆t “almost
nothing” happens

When we consider mechanical systems, ∆t can be in the order of
milliseconds

Corrado Santoro Dynamic Systems

Software

Tools and Software

Corrado Santoro Dynamic Systems

The Plotter

lib/data/dataplot.py
class DataPlotter

DataPlotter(), constructor

set x(descr:string)
sets the description of the X axis

add y(var:string,descr:string)
adds a variable with description to the Y axis

append x(value:float)
appends a new value to the X

append y(var:string,value:float)
appends a new value to the specified variable of Y axis

plot()
plots the graph

Corrado Santoro Dynamic Systems

Example

Example of a DataPlotter Usage

(examples/dataplot/dataplot example.ipynb)
(examples/dataplot/dataplot example 2.ipynb)

Corrado Santoro Dynamic Systems

Interacting with a System

Interacting with a System

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

input
generation

Computer
System output

sampling

In robotic systems, the physical system is connected to an electronic
system, that tries to make the system behave as desired

This electronic system is usually a computer system with a software
that continuously (or periodically) senses the output and generates
the proper input signal

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

Software output
sampling

Input
generation

SensorDriver

Output sensing is performed by proper electronic sensors that “sense”
the physical quantities needed and transform them into proper software
variables
Input driving is performed by proper electronic drivers that are able to
transform software variables into physical quantities

The software is implemented by means of an infinite loop that gets data
from sensors, processes them and sends processed data to the driver

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

Software output
sampling

Input
generation

SensorDriver

Timer-based sampling

while True do
On each ∆T ;
data← read sensors();
proc data← process(data,∆T);
send to driver(proc data);

end

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

Software output
sampling

Input
generation

SensorDriver

Sensor-based Timing

while True do
data← wait sensors();
Compute ∆T ;
proc data← process(data,∆T);
send to driver(proc data);

end

Corrado Santoro Dynamic Systems

Simulation

Our Godot-based System Simulation and
Interaction Framework

Corrado Santoro Dynamic Systems

Simulation

Godot
Engine

Communication Middleware

Interaction
Software

We will use Godot as a physical simulation engine
All data processing and driving will be made by means of an external
python program

The two worlds interact by means of a communication middleware
that acts as a data interchange channel

Corrado Santoro Dynamic Systems

Simulation

Godot
Engine

Communication Middleware

Interaction
Software

Exchaged data are variables characterised by:
Name (a literal, e.g. “position”, “speed”)
Type (int or float)
Value

Corrado Santoro Dynamic Systems

Interaction Protocol

Godot
Engine

Communication Middleware
DDS = Data Distribution Service

Interaction
Software

subscribe("speed")

publish("speed")

s = wait("speed")

s = read("speed")

Interaction protocol is based on a publish-subscriber mechanism:
A peer interested to a variable make a subscription to its name
The peer that produces the variable performs a publish
The interested peer can wait the publication or directly read (if
available) the variable value

Corrado Santoro Dynamic Systems

The Data Distribution Service

lib/dds/dds.py
class DDS

DDS(), constructor

start()
starts the DDS

subscribe(var list:list of strings)
performs a subscription to the specified variables

publish(name:string, value:float or int, type)
publishes a variable
type = DDS.DDS TYPE INT or DDS.DDS TYPE FLOAT

read(name:string)
reads a published variable

wait(name:string)
waits for a publication event and reads the given variable

Corrado Santoro Dynamic Systems

The Time Helper Class

lib/utils/time.py
class Time

Time(), constructor

start()
starts the time helper

get() → float
gets the current time (since object creation)

elapsed() → float
gets the time interval since last “elapsed” call

Corrado Santoro Dynamic Systems

Example

Example of Godot Interaction

(examples/godot plot/godot ball test.ipynb)
(examples/godot plot/godot ball test position.ipynb)

Corrado Santoro Dynamic Systems

Data Processing

Implementation of Basic Systems

Corrado Santoro Dynamic Systems

Basic Implementation Model of a System

�
class System:

def __init__(self):
initialise members

def evaluate(self, delta_t : float, _input : any): -> any
implement a delta_t computation step using _input
and generate _output
....
return _output
� �

Corrado Santoro Dynamic Systems

The Derivator

Software

SensorDriver

Let’s us consider that we have a position sensor but we need (also)
the speed
We must derivate the sensed data

Corrado Santoro Dynamic Systems

The Derivator

The “dotted” notation
A dot over a variable represents the derivative w.r.t time:

ṗ =
dp
dt

= v

Two dots over a variable represent the second derivative w.r.t
time:

p̈ =
d2p
dt2 = v̇ = a

Corrado Santoro Dynamic Systems

The Derivator

u̇ =
du(t)

dt
To implement a derivator we approximate the derivative with the
incremental ratio:

u̇ =
du(t)

dt
≃ u(t +∆T)− u(t)

∆T
=

u(t)− u(t −∆T)

∆T

Corrado Santoro Dynamic Systems

The Derivator

�
class Derivator:

def __init__(self):
self.prev_input = 0

def evaluate(self, delta_t, _input):
out = (_input - self.prev_input) / delta_t
self.prev_input = _input
return out
� �

Corrado Santoro Dynamic Systems

Example

Example of Derivative

(examples/basic/godot ball test derivative.ipynb)

Corrado Santoro Dynamic Systems

The Integrator

Software

SensorDriver

Let’s us consider that we have a speed sensor but we need (also) the
position
We must integrate the sensed data

Corrado Santoro Dynamic Systems

The Integrator

y =

∫ t

0
du(τ)dτ

To implement an integrator we compute the inverse function
that is a derivative:

u(t) =
dy(t)

dt
≃ y(t +∆T)− y(t)

∆T

Corrado Santoro Dynamic Systems

The Integrator

To implement an integrator we compute the inverse function
that is a derivative:

u(t) =
y(t +∆T)− y(t)

∆T

y(t +∆T) = y(t) + u(t)∆T

Corrado Santoro Dynamic Systems

The Integrator

�
class Integrator:

def __init__(self):
self.prev_output = 0

def evaluate(self, delta_t, _input):
out = self.prev_output + _input * delta_t
self.prev_output = out
return out
� �

Corrado Santoro Dynamic Systems

Example

Example of Integral

(examples/basic/godot ball test integral.ipynb)

Corrado Santoro Dynamic Systems

The Gain (Proportional System)

Software

SensorDriver

Let’s us consider that we have a sensor that gives data in a measure
unit different than what we need

We must apply a proportional factor to the sensed data

Corrado Santoro Dynamic Systems

The Gain (Proportional System)

y(t) = Kpu(t)

�
class Proportional:

def __init__(self, _kp):
self.kp = _kp

def evaluate(self, delta_t, _input):
return _input * self.kp
� �

Corrado Santoro Dynamic Systems

The Summary

Any dynamic system (linear, time-invariant) can be represented
as a linear combination of the basic systems:

Proportional

Integral

Derivative

Corrado Santoro Dynamic Systems

Composition of Systems

Composition of Systems

Corrado Santoro Dynamic Systems

Series Composition of Systems

S1 S2

�
class Series:

def __init__(self):
self.s1 = System(...)
self.s2 = System(...)

def evaluate(self, delta_t, _input):
out_s1 = self.s1.evaluate(delta_t, _input)
out_s2 = self.s2.evaluate(delta_t, out_s1)
return out_s2
� �

Corrado Santoro Dynamic Systems

Parallel Composition of Systems

S1

S2

�
class Parallel:

def __init__(self):
self.s1 = System(...)
self.s2 = System(...)

def evaluate(self, delta_t, _input):
out_s1 = self.s1.evaluate(delta_t, _input)
out_s2 = self.s2.evaluate(delta_t, _input)
out = out_s1 + out_s2
return out
� �

Corrado Santoro Dynamic Systems

Parallel Composition of Systems

S1

S2

�
class Parallel:

def __init__(self):
self.s1 = System(...)
self.s2 = System(...)

def evaluate(self, delta_t, _input):
out_s1 = self.s1.evaluate(delta_t, _input)
out_s2 = self.s2.evaluate(delta_t, _input)
out = out_s1 - out_s2
return out
� �

Corrado Santoro Dynamic Systems

Feedback

S1

S2

The presence of a Feedback implies the concept of memory
We must consider the previous value of the variable in feedback

Indeed the input to S1 is the current value of u plus the output of S2
given the previous value of y as input

Therefore we must save the previous value of y

Corrado Santoro Dynamic Systems

Feedback

S1

S2

�
class Feedback:

def __init__(self):
self.s1 = System(...)
self.s2 = System(...)
self.prev_out = 0

def evaluate(self, delta_t, _input):
out_s2 = self.s2.evaluate(delta_t, self.prev_out)
input_s1 = out_s2 + _input
out = self.s1.evaluate(delta_t, input_s1)
self.prev_out = out
return out
� �

Corrado Santoro Dynamic Systems

A Compound System

S2

S1

S3

S4

�
class Compound:

def __init__(self):
self.s1 = Proportional(K1)
self.s2 = Proportional(K2)
self.s3 = Derivator()
self.s4 = Integrator()
self.y1 = 0

...
� �
Corrado Santoro Dynamic Systems

A Compound System

S2

S1

S3

S4

�
...

def evaluate(self, delta_t, _input):
out_s1 = self.s1.evaluate(delta_t, _input)

out_s3 = self.s3.evaluate(delta_t, self.y1)
out_s2 = self.s2.evaluate(delta_t, out_s3)

y1 = out_s1 - out_s2
y2 = self.s4.evaluate(delta_t, y1)

self.y1 = y1
return (y1, y2)

...
� �
Corrado Santoro Dynamic Systems

Introduction to Dynamic Systems

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Dynamic Systems

