Introduction to Dynamic Systems

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

Robotic Systems

Corrado Santoro

Systems

A system is a set of elements, that can be considered as a whole, that
interact with each other and with the environment according to a certain law.

A system can be represented as a black box that interacts with the
environment through an input (the stimulus v), producing a certan effect
(onto the environment) which is the output (that we call y)

@ u(t), the input, that is any physical quantity that varies during time
@ f,thelaw, y(t) = f(u(t))
@ y(t), the output that depends on u(t) and f

Corrado Santoro Dynamic Systems

The Law of a Systems

@ u(t), the input
@ f,the law, y(t) = f(u(t))
@ y(t), the output

The law depends on:
@ Characteristics of parts of the system
@ Composition of the parts
@ How the parts interact

f can be a mathematical function, an algorithm, or any other abstraction that
can model/represent the behaviour of the system

Indeed, according to the nature of the law f, the system can be:
@ Static or Dynamic

™ = = =

Corrado Santoro Dynamic Systems

Example of Static Systems
A Combinatorial Circuit with Logic Gates
A[OF—9
Y
B[O}—¢
@ u = [a, b], theinput € {0,1}

@ y, the output € {0, 1}
@ f,thelaw, y = ab+ ab

@ The output depends totally and only on the instantaneous value of the
input

@ If u varies during time (u(t)), the output behaves accordingly

@ Given two time instants t and t', t # t', if u(t) = u(t’) then y(t) = y(t)
(time has no effect)

Corrado Santoro Dynamic Systems

Example of Static Systems
A program computing the roots of quadratic equations

u Y

N I >

@ u=[ab,c],theinpute R
@ y = [x1, x2], the output € C
@ f, the law, the algoritm to solve quadratic equations

@ The output depends totally and only on the instantaneous value of the
input

@ If u varies during time (u(t)), the output behaves accordingly

@ Given two time instants t and t', t # t', if u(t) = u(t’) then y(t) = y(t)
(time has no effect)

Corrado Santoro Dynamic Systems

Example of Dynamic Systems
A soccer ball on a playing field

u Y

- f AN

@ u = F(t), the force applied by the kick € R, in Newton
@ y = [v, p], the output, speed and position of the ball € R
@ f, the physic law that gives the speed and position for each time instant

When you kick the ball...

@ You are applying an impulsive force at time instant ¢t = 0, but for t > 0
the input is null

@ The speed v increases suddently at t = 0 and then decrease gradually
for t > 0 (but input is 0), eventually reaching zero

@ The position p increases for { >= 0, eventually reaching a constant
value

@ Given two time instants t and t', t # ', if u(t) = u(t’) then y(t) can be
(1) (time has effect)

Corrado Santoro Dynamic Systems

Analytical Representation of a Systems

@ u(t), the input
@ f, the law, y(t) = f(u(t))
@ y(1), the output

@ In a static system, does not depends on time but only on u(t)
y(t) = f(u(t))

@ In a dynamic system, depends on time and on u(t)
y(t) = f(u(t), 1)

@ A dynamic system is (analytically) expressed with (a system of)
differential equations

Corrado Santoro Dynamic Systems

Example of a Dynamic System in Godot

(godot/ball)

Corrado Santoro Dynamic Systems

The Concept of “Discretisation”

@ We consider real-life systems, so they evolve during time
@ Time is a quantity belonging to R and evolves in a continuous way

@ But this concept cannot be modeled or implemented in a computer
system

@ We subdivide the time in Time Quanta, i.e. time intervals that are
very very small

@ and we consider the events that occur only each time quantum

@ In other words, we perform a sampling of the real (or simulated) world
using a specific sampling time Af that can be constant or variable

@ This operation is called discretisation

@ Atis chosen so that between t = iAtand t' = (i + 1)At “almost
nothing” happens

@ When we consider mechanical systems, Af can be in the order of
milliseconds

Corrado Santoro Dynamic Systems

Tools and Software

Corrado Santoro Dynamic Systems

The Plotter

lib/data/dataplot.py

class DataPlotter
@ DataPlotter (), constructor

@ set x(descr:string)
sets the description of the X axis

@ add y(var:string,descr:string)
adds a variable with description to the Y axis

@ append x(value:float)
appends a new value to the X

@ append.y(var:string,value:float)
appends a new value to the specified variable of Y axis

@ plot ()
plots the graph

Corrado Santoro Dynamic Systems

Example of a DataPlotter Usage

(examples/dataplot/dataplot_example.ipynb)
(examples/dataplot/dataplot_example_2.ipynb)

Corrado Santoro Dynamic Systems

Interacting with a System

Interacting with a System J

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

Computer

System output

sampling

input
generation

@ In robotic systems, the physical system is connected to an electronic
system, that tries to make the system behave as desired

@ This electronic system is usually a computer system with a software
that continuously (or periodically) senses the output and generates

the proper input signal)

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

Input Software

generation

output
sampling

@ Output sensing is performed by proper electronic sensors that “sense”
the physical quantities needed and transform them into proper software
variables

@ Input driving is performed by proper electronic drivers that are able to
transform software variables into physical quantities

@ The software is implemented by means of an infinite loop that gets data
from sensors, processes them and sends processed data to the driver

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

Input Software

generation

output
sampling

Timer-based sampling

while True do
On each AT;
data + read_sensors();
proc_data < process(data, AT);
send_to_driver(proc_data);

end

Corrado Santoro Dynamic Systems

Driving a (Dynamic) System

Input Software

generation

output
sampling

Sensor-based Timing

while True do
data < wait_sensors();
Compute AT;
proc_data < process(data, AT);
send_to_driver(proc_data);

end

.

Corrado Santoro Dynamic Systems

Our Godot-based System Simulation and
Interaction Framework

Corrado Santoro Dynamic Systems

Interaction
Software

1

Communication Middleware

1

Godot
Engine

@ We will use Godot as a physical simulation engine

@ All data processing and driving will be made by means of an external
python program

@ The two worlds interact by means of a communication middleware
that acts as a data interchange channel

Corrado Santoro amic Syste

Interaction
Software

1

Communication Middleware

1

Godot
Engine

@ Exchaged data are variables characterised by:

» o«

@ Name (a literal, e.g. “position”, “speed”)
@ Type (int or float)
@ Value

Corrado Santoro amic Systel

Interaction Protocol

Interaction
Software
;
=

7

‘ Communication Middleware

DDS = Data Distribution Service

T

Godot
Engine

@ Interaction protocol is based on a publish-subscriber mechanism:

@ A peer interested to a variable make a subscription to its name

@ The peer that produces the variable performs a publish

@ The interested peer can wait the publication or directly read (if
available) the variable value

Corrado Santoro amic Systel

The Data Distribution Service

class DDS
@ DDS (), constructor

@ start ()
starts the DDS

@ subscribe (var_list:list of strings)
performs a subscription to the specified variables

@ publish (name:string, value:float or int, type)
publishes a variable
type = DDS.DDS_TYPE_INT or DDS.DDS_TYPE_FLOAT

@ read(name:string)
reads a published variable

@ wait (name:string)
waits for a publication event and reads the given variable

Corrado Santoro Dynamic Systems

The Time Helper Class

lib/utils/time.py

class Time

@ Time (), constructor

@ start ()
starts the time helper

@ get() — float
gets the current time (since object creation)

@ elapsed() — float
gets the time interval since last “elapsed” call

.

Corrado Santoro Dynamic Systems

Example of Godot Interaction

(examples/godot_plot/godot_ball_test.ipynb)
(examples/godot_plot/godot_ball_test_position.ipynb)

Corrado Santoro Dynamic Systems

Data Processing

Implementation of Basic Systems J

Corrado Santoro Dynamic Systems

Basic Implementation Model of a System

class System:

def _ init__ (self):
initialise members

def evaluate(self, delta t : float, _input : any): -> any
implement a delta_t computation step using _input
and generate _output

return _output

Corrado Santoro amic Systems

The Derivator

Software

Driver

@ Let’s us consider that we have a position sensor but we need (also)
the speed

@ We must derivate the sensed data

Corrado Santoro Dynamic Systems

The Derivator

The “dotted” notation
A dot over a variable represents the derivative w.r.t time:

. ap
p= ot 4
Two dots over a variable represent the second derivative w.r.t
time:)
. dp .
P="ae

Corrado Santoro Dynamic Systems

The Derivator

u d P
dt
. du(t)
i —
at

To implement a derivator we approximate the derivative with the
incremental ratio:
0 du(t) u(t+AT)—u(t) u(t)—u(t—AT)
- dt AT B AT

Corrado Santoro Dynamic Systems

The Derivator

class Derivator:

def _ _init__ (self):
self.prev_input = 0

def evaluate(self, delta_t, _input):
out = (_input - self.prev_input) / delta_t
self.prev_input = _input
return out

Corrado Santoro amic System

Example of Derivative

(examples/basic/godot_ball_test_derivative.ipynb)

Corrado Santoro Dynamic Systems

The Integrator

Software

Driver

@ Let’s us consider that we have a speed sensor but we need (also) the
position

@ We must integrate the sensed data

Corrado Santoro Dynamic Systems

The Integrator

— /u(t)dt S N

y = /Otdu(r)dr

To implement an integrator we compute the inverse function
that is a derivative:

u(t) = d};(tt) - y(t+ AAT7)_—y(t)

Corrado Santoro Dynamic Systems

The Integrator

— /u(t)dt Y >

To implement an integrator we compute the inverse function
that is a derivative:

y(t+ AT) = y(t)+ u(t)AT

Corrado Santoro Dynamic Systems

The Integrator

= / u(tydt | —r s

class Integrator:

def _ _init__ (self):
self.prev_output = 0

def evaluate(self, delta_t, _input):
out = self.prev_output + _input * delta_t
self.prev_output = out
return out

Corrado Santoro amic System

Example of Integral

(examples/basic/godot_ball_test_integral.ipynb)

Corrado Santoro Dynamic Systems

The Gain (Proportional System)

Software

Driver

@ Let’s us consider that we have a sensor that gives data in a measure
unit different than what we need

@ We must apply a proportional factor to the sensed data

Corrado Santoro Dynamic Systems

The Gain (Proportional System)

class Proportional:

def _ init_ (self, _kp):
self.kp = _kp

def evaluate(self, delta_t, _input):
return _input * self.kp

Corrado Santoro Dynamic Systems

The Summary

Any dynamic system (linear, time-invariant) can be represented
as a linear combination of the basic systems:

@ Proportional

@ Integral

@ Derivative

Corrado Santoro Dynamic Systems

Composition of Systems

Composition of Systems J

Corrado Santoro Dynamic Systems

Series Composition of Systems

~

class Series:

def _ init__ (self):
self.sl = System(...)
self.s2 = System(...)

def evaluate(self, delta_t, _input):
out_sl = self.sl.evaluate(delta_t, _input)
out_s2 = self.s2.evaluate(delta_t, out_sl)
return out_s2

Corrado Santoro amic Systel

Parallel Composition of Systems

S1

S2

~
class Parallel:

def _ init__ (self):
self.sl = System(...)
self.s2 = System(...)
def evaluate(self, delta_t, _input):
out_sl = self.sl.evaluate(delta_t, _input)
out_s2 = self.s2.evaluate(delta_t, _input)
out = out_sl + out_s2
return out

Corrado Santoro

Parallel Composition of Systems

S1

S2

~
class Parallel:

def _ init__ (self):
self.sl = System(...)
self.s2 = System(...)
def evaluate(self, delta_t, _input):
out_sl = self.sl.evaluate(delta_t, _input)
out_s2 = self.s2.evaluate(delta_t, _input)
out = out_sl - out_s2
return out

Corrado Santoro

Feedback

S1

S2

@ The presence of a Feedback implies the concept of memory
@ We must consider the previous value of the variable in feedback

@ Indeed the input to S1 is the current value of u plus the output of S2
given the previous value of y as input

@ Therefore we must save the previous value of y

Corrado Santoro Dynamic Systems

u

S1

S2

class Feedback:

def _ _init__ (self):
self.sl = System(...)
self.s2 = System(...)
self.prev_out = 0

def evaluate(self, delta_t, _input):
out_s2 = self.s2.evaluate(delta_t, self.prev_out)
input_sl = out_s2 + _input
out = self.sl.evaluate(delta_t, input_sl)
self.prev_out = out
return out

)

Corrado Santoro namic System

A Compound System

class Compound:
def _ _init__ (self):
self.sl = Proportional (K1)
self.s2 = Proportional (K2)
self.s3 = Derivator ()
self.s4 = Integrator()
self.yl = 0
. v

Corrado Santoro

def evaluate(self, delta_t, _input):
out_sl = self.sl.evaluate(delta_t, _input)

out_s3

self.s3.evaluate(delta_t, self.yl)

out_s2 = self.s2.evaluate(delta_t, out_s3)

yl
y2

self.

out_sl - out_s2
self.sd4.evaluate(delta_t, yl)

y yl
return (yl, y2)

Corrado Santoro

Introduction to Dynamic Systems

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

Robotic Systems

Corrado Santoro

