Implementation of a Generic Dynamic System

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

A System

Each **real system** (any object belonging to the real world) is an object with finite number of freedom degrees that evolves in time according to a certain law

A real system can be represented as a **black box** that can be externally stimulated from an input (that we call u(t)), producing a certan **effect** which is the output (that we call y(t))

$$y(t) = f(u(t))$$

The behaviour is **totally represented** by function $f(\cdot)$

Definition of Dynamic System

A **dynamic system** is a (physical) system where, given a certain time instant t, the output y(t) depends on the current value u(t) and the past of u(t) and y(t)

A dynamic system (time-continuous) is described by a differential equation in the time domain:

$$y = f(\dot{y}, \ddot{y}, ..., u, \dot{u}, \ddot{u}, t)$$

Definition of Dynamic System

Characteristics

A dynamic system (time-continuous) is described by a differential equation in the time domain:

$$y = f(\dot{y}, \ddot{y}, ..., u, \dot{u}, \ddot{u}, t)$$

- The order of a system is the highest derivative that appears
- A linear system is a system described by a linear differential equation
- If the coefficients are constants (not dependent on the time) the system is called time-invariant

Let us consider

$$\dot{y} + 3y = 5u$$

We can implement it by discretisation:

$$\frac{y(t+\Delta T)-y(t)}{\Delta T}+3y(t)=5u(t)$$

then

$$y(t + \Delta T) = y(t)(1 - 3\Delta T) + 5\Delta T u(t)$$

$$y(t + \Delta T) = y(t)(1 - 3\Delta T) + 5 \Delta T u(t)$$

```
class MySystem:
    def __init__(self):
        self.y = 0

    def evaluate(self, delta_t, _input):
        self.y = self.y * (1 - 3 * delta_t) + 5 * delta_t * _input
        return self.y
```


Let us consider

$$\ddot{y} + 3\dot{y} + y = 5u$$

It's a second order system, how can be implemented it?

Using the incremental ratio of the second derivative is hard.... but we can use a "trick"

$$\ddot{y} + 3\dot{y} + y = 5u$$

The aim is to remove the second derivative and have variables that are derivated only one time

Let us introduce two new variables x_1 and x_2 and assume:

$$x_1 = y$$

$$x_2 = \dot{y} = \dot{x}_1$$

$$\dot{x}_2 = \ddot{y}$$

We obtain the following equation system:

$$\begin{cases} \dot{x_2} + 3x_2 + x_1 & = 5u \\ \dot{x_1} & = x_2 \end{cases}$$

$$\begin{cases} \dot{x_2} + 3x_2 + x_1 &= 5u \\ \dot{x_1} &= x_2 \end{cases}$$

Let's reorder:

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = -3x_2 - x_1 + 5u \end{cases}$$

Let's discretise:

$$\begin{cases} \frac{x_1(t+\Delta T)-x_1(t)}{\Delta T} &= x_2(t) \\ \frac{x_2(t+\Delta T)-x_2(t)}{\Delta T} &= -3x_2(t)-x_1(t)+5u(t) \end{cases}$$

And reorder:

$$\begin{cases} x_1(t+\Delta T) &= x_1(t) + x_2(t)\Delta T \\ x_2(t+\Delta T) &= x_2(t) - 3\Delta T x_2(t) - \Delta T x_1(t) + 5\Delta T u(t) \end{cases}$$


```
\begin{cases} x_1(t + \Delta T) &= x_1(t) + x_2(t)\Delta T \\ x_2(t + \Delta T) &= x_2(t) - 3\Delta T x_2(t) - \Delta T x_1(t) + 5\Delta T u(t) \end{cases}
```

(examples/systems/second_order.ipynb)

$$\ddot{y} + 3\dot{y} + y = 5u$$

(examples/systems/second_order.ipynb)

$$\ddot{y} + 3\dot{y} + 10y = 5u$$

(examples/systems/second_order_2.ipynb)

$$\ddot{y} + 3\dot{y} - 10y = 5u$$

(examples/systems/second_order_3.ipynb)

$$S1: \ddot{y} + 4\dot{y} + 2y = 5u$$

$$S2: \dot{y} + 0.5y = u$$

$$S1: \ddot{y} + 4\dot{y} + 2y = 5u$$

$$S2: \dot{y} + 0.5y = u$$

$$S1: \ddot{y} + 4\dot{y} + 2y = 5u$$

$$S2: \dot{y} + 0.5y = u$$

Implementation of a Generic Dynamic System

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems