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Measures and Errors

Measure of state variables is a fundamental aspect of control systems

If the measure is not precise or affected by a significant amount of
noise, the whole control system cannot work properly

However any measurement system is always affected by errors

Measurement errors have different characteristics and depends on the
kind of sensor used
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Measures and Errors

Sensor Characteristics
The behaviour of a sensor is in general represented by its
characteristic curve

It is plot over a XY chart that reports in the X axis the real data and in
the Y axis the measured data

For an ideal sensor, the characteristic is a 45-degrees straight line

But for a real sensor, the characteristic is a curve the is close to the
45-degrees straight line
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Measures and Errors

Sensor Errors
Offset: it is the non-zero value given by the sensor when the real data
is zero

Non-linearity: it is the difference between the ideal and real
characteristic

Noise: it the variation of the measured data when the real data is
constant

Offset and Non-linearity can be reduced by means of sensor
calibration

Noise (that is harder to be removed) can be reduced by means of
digital filters
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Measures and Errors

Noise Errors
Here is a plot of the data sampled by a gyroscope, Z-axis, when the
system is stopped

The real data should be zero, but we have an offset and a certain
amount of noise

The blue line is the average, if we subtract it, we can remove the offset
but not the noise
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Measures and Errors

Noise Characteristics
If we plot the histogram of sampled data, we obtain the following chart

Here we have, on X axis, the values of a sampled data, and, on Y axis,
the number of times that value is got (data is organized in subintervals)

The plot is the classical Gaussian Curve or Normal Distribution that
is a common characteristic of noise errors
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Measures and Errors

Noise Characteristics
The plot is the classical Gaussian Curve or Normal Distribution that
is a common characteristic of noise errors

This curve is characterised by the average and the variance

Given that we have N measures, and given xi the measures, we have:

x =
1
N

∑
i

xi

σ2
x =

1
N

∑
i

(xi − x)2
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Filters

Noise Filters
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A Noisy Process

Robot over a XY plane
Let us consider a robot moving over a XY plane with a straight trajectory and
using a constant speed:

x(k + 1) = x(k) + vx ∆T

y(k + 1) = y(k) + vy ∆T

with vx , vy constants

Let us consider a position sensor the however has a gaussian noise:

x̂(k) = x(k) + σx

ŷ(k) = y(k) + σy

x̂(k), ŷ(k): measured values

σx , σy : random gaussian variables with zero average
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Ideal and Measured Trajectory

(see filtering/noise plot.py)
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Digital Filters

Digital Filters
A digital filter is discrete dynamic system characterised by the following
relation:

y(k) + a1y(k − 1) + a2y(k − 2) + · · ·+ amy(k −m) =

= b0u(k) + b1u(k − 1) + · · ·+ bnu(k − n)

y(k) = −a1y(k − 1)− a2y(k − 2) + · · · − amy(k −m) +

+b0u(k) + b1u(k − 1) + · · ·+ bnu(k − n)

u(k), input

y(k), output

max(n,m) filter order
Coefficients ai , bi ∈ [0, 1] ⊂ R determine the filter type and the noise
cut capability
The filter behaves as a weighted average of past inputs and outputs

Corrado Santoro Digital Signal Filtering



Digital Filters

Order-1 Digital Filter

y(k) = (1− α)y(k − 1) + αu(k)
α ∈ [0,1]

if α is close to 0, the new sampled data (input) is weighed less than the
previous output: high filtering capability but measured values are
propagated slowly

if α is close to 1, the new sampled data (input) is weighed more than
the previous output: low filtering capability but measured values are
propagated fast
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Ideal, Measured and Filtered Trajectory

α = 0.5

(see filtering/first-order-filter.py)
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Ideal, Measured and Filtered Trajectory

α = 0.1

(see filtering/first-order-filter.py)
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Ideal, Measured and Filtered Trajectory

α = 0.05

(see filtering/first-order-filter.py)
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Digital Filters

Prediction and Adaptation
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Predictive Filters

Predictive filters are bsaed on a model of the behaviour of the system

By means of the model, an estimate of the state variable is performed

The estimate is compared with sensor data and an error is computed

The error is then passed to a PI controller and the output is
(agebrically) added to the estimate
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Pedictive Filters

Kalman Filters
Predictive filter are able to reduce measurement error on the basis of
the knowledge of the system model

But they require the tuning of controller constants KP e KI

Kalman Filters are predictive filters with a P-controller whose KP is
updated at each iteration

KP is computed by using an approach that has the objective on
minimising the error

The approach is based on the statistic characterisation of the system
model and the measure
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Kalman Filter

System Model
The system is considered characterised by the discretized model

x(k + 1) = A x(k) + w

where

x is the state vector

A is the state matrix

w is a vector representing the uncertainty of the behaviour of the
system
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Kalman Filter

Measure Model
Sensors are considered characterised by the following relation

z(k) = H x(k) + v

where

z is the vector of the measured values

H is a matrix that specifies the state variables measured

v is a vector representing the uncertainty (noise) of the behaviour of the
measure
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Kalman Filter

Statistic Characterisation
In the previous models w and v are random variables that se suppose
gaussian and with zero average

The Kalman filter needs the knowledge of the statistics of w and v

In details, it is necessary to have the variance and covariance of each
element of w and v

In other words, the self and mutual variance of the system and measure
for each of the state variables
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Kalman Filter

Variance
Given a random variable with x1, x2, ..., xn a set of samples and x the mean,
the variance is:

σ2
x =

1
N

∑
i

(xi − x)2

Covariance
Given two random variables with x1, x2, ..., xn and y1, y2, ..., yn the set of
samples and x , y the means, the covariance is:

σ2
xy =

1
N

∑
i

(xi − x)(yi − y)

if the two variables are statistically independent, then the covariance is
close to 0
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Kalman Filter

Covariance Matrix
The Kalman Filter needs two matrices

Q is the covariance matrix of the uncertainty of the system w

R is the covariance matrix of the uncertainty of the measure v

In these matrices

element (i , i) is the variance of the i th variable

element (i , j) is the covariance of the i th and j th variables
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Kalman Filter

Kalman Filter Algorithm
Let

x the state vector real (that is unknown)

x̂ the estimated state vector

The Kalman filter algorithm works as follows
1 x̂ = A x̂ new estimate
2 E = z − Hx̂ error computation with respect to the estimate
3 K = .... computation of the optimal gain (KP )
4 x̂ = x̂ + K E estimate correction

Step 3 has the objective of minimising the error between the real and
predicted state:

min{x̂(k)− x(k)}

but x is not known and we have only its statistical characterisation w and Q
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Kalman Filter

The Optimal Gain
Starting form covariance matrix Q, the error covariance P is determined,
then the algorithm computes the K such that P is minimised

1 P = A P AT + Q
Error covariance estimate

2 K = P HT (H P HT + R)−1

optimal gain
3 P = (I − K H) P

Update of the error covariance on the basis of the optimal gain
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Kalman Filter

Complete Algorithm

1 x̂ = A x̂ Prediction

2 P = A P AT + Q Update of Error Covariance

3 K = P HT (H P HT + R)−1 Gain

4 x̂ = x̂ + K (z − Hx̂) Measure Correction

5 P = (I − K H) P Error Covariance Correction
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Modelling the Process

An Example: Robot over a XY plane
Let us consider a robot moving over a XY plane with a straight trajectory and
using a constant speed:

x(k + 1) = x(k) + vx ∆T

y(k + 1) = y(k) + vy ∆T

with vx , vy constants

State vector: [x , y , vx , vy ]T

State matrix:

A =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1
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Modelling the Process

An Example: Robot over a XY plane
Let us consider a robot moving over a XY plane with a straight trajectory and
using a constant speed:

x(k + 1) = x(k) + vx ∆T

y(k + 1) = y(k) + vy ∆T

with vx , vy constants

State Equation: 
x
y
vx

vy

 =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1




x
y
vx

vy
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Implementation

�
class KalmanFilter:

def __init__(self, delta_t):
# state vector x y vx vy, initial state to 0
self.x = np.matrix( [ 0, 0, 0, 0 ]).transpose()
# process matrix
self.A = np.matrix( [ [1, 0, delta_t, 0 ],

[0, 1, 0 , delta_t],
[0, 0, 1 , 0 ],
[0, 0, 0 , 1 ] ])

# process covariance
self.Q = np.eye(4,4) * 0.05

# measure covariance (initially high)
self.R = np.eye(4,4) * 1000

# measure matrix (only x and y masured)
self.H = np.matrix( [ [1, 0, 0, 0],

[0, 1, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0] ])

# error covariance matrix
self.P = np.matrix( [ [0, 0, 0, 0],

[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0] ])
� �
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Implementation

�
class KalmanFilter:

...
def prediction(self):

self.x = self.A * self.x
self.P = self.A * self.P * self.A.transpose() + self.Q
S = self.H * self.P * self.H.transpose() + self.R
self.K = (self.P * self.H.transpose()) * S.I

def measure(self, measures):
measures = np.matrix(measures).transpose()
self.x = self.x + self.K * (measures - self.H * self.x)

def update(self):
self.P = (np.eye(4,4) - self.K * self.H) * self.P
� �
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Low-pass vs. Kalman
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