Digital Signal Filtering

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

Robotic Systems
Measures and Errors

Measure of state variables is a fundamental aspect of control systems.

If the measure is not precise or affected by a significant amount of noise, the whole control system cannot work properly.

However, any measurement system is always affected by errors.

Measurement errors have different characteristics and depend on the kind of sensor used.
The behaviour of a sensor is in general represented by its **characteristic curve**

- It is plot over a **XY** chart that reports in the **X** axis the **real data** and in the **Y** axis the **measured data**
- For an **ideal** sensor, the characteristic is a 45-degrees straight line
- But for a **real** sensor, the characteristic is a **curve** the is close to the 45-degrees straight line
Measures and Errors

Sensor Errors

- **Offset**: it is the non-zero value given by the sensor when the real data is zero.

- **Non-linearity**: it is the difference between the ideal and real characteristic.

- **Noise**: it is the variation of the measured data when the real data is constant.

Offset and Non-linearity can be reduced by means of sensor calibration.

Noise (that is harder to be removed) can be reduced by means of digital filters.
Noise Errors

- Here is a plot of the data sampled by a gyroscope, Z-axis, when the system is stopped.

![Graph showing data sampled by a gyroscope, Z-axis, when the system is stopped. The real data should be zero, but we have an offset and a certain amount of noise. The blue line is the average, if we subtract it, we can remove the offset but not the noise.]()

- The **real data** should be zero, but we have an **offset** and a certain amount of **noise**.
- The **blue line** is the **average**, if we subtract it, we can remove the offset but not the noise.
Noise Characteristics

- If we plot the **histogram** of sampled data, we obtain the following chart.

![Histogram Chart]

- Here we have, on **X axis**, the **values of a sampled data**, and, on **Y axis**, the **number of times** that value is got (data is organized in subintervals).

- The plot is the classical **Gaussian Curve** or **Normal Distribution** that is a common characteristic of noise errors.
Measures and Errors

Noise Characteristics

- The plot is the classical **Gaussian Curve** or **Normal Distribution** that is a common characteristic of noise errors.

- This curve is characterised by the **average** and the **variance**.

- Given that we have \(N \) measures, and given \(x_i \) the measures, we have:

\[
\bar{x} = \frac{1}{N} \sum_{i} x_i
\]

\[
\sigma_x^2 = \frac{1}{N} \sum_{i} (x_i - \bar{x})^2
\]
Noise Filters
A Noisy Process

Robot over a XY plane

Let us consider a robot moving over a XY plane with a straight trajectory and using a constant speed:

\[x(k + 1) = x(k) + v_x \Delta T \]
\[y(k + 1) = y(k) + v_y \Delta T \]

with \(v_x, v_y \) constants

Let us consider a position sensor the however has a gaussian noise:

\[\hat{x}(k) = x(k) + \sigma_x \]
\[\hat{y}(k) = y(k) + \sigma_y \]

\(\hat{x}(k), \hat{y}(k) \): measured values
\(\sigma_x, \sigma_y \): random gaussian variables with zero average
Ideal and Measured Trajectory

(see filtering/noise_plot.py)
A digital filter is a discrete dynamic system characterised by the following relation:

\[y(k) + a_1 y(k - 1) + a_2 y(k - 2) + \cdots + a_m y(k - m) = b_0 u(k) + b_1 u(k - 1) + \cdots + b_n u(k - n) \]

\[y(k) = -a_1 y(k - 1) - a_2 y(k - 2) + \cdots - a_m y(k - m) + b_0 u(k) + b_1 u(k - 1) + \cdots + b_n u(k - n) \]

- \(u(k) \), input
- \(y(k) \), output
- \(\text{max}(n, m) \) filter order
- Coefficients \(a_i, b_i \in [0, 1] \subset \mathbb{R} \) determine the filter type and the noise cut capability
- The filter behaves as a weighted average of past inputs and outputs
Order-1 Digital Filter

\[y(k) = (1 - \alpha)y(k - 1) + \alpha u(k) \]
\[\alpha \in [0, 1] \]

- **if** \(\alpha \) is close to 0, the new sampled data (input) is weighed less than the previous output: **high filtering capability** but measured values are propagated slowly

- **if** \(\alpha \) is close to 1, the new sampled data (input) is weighed more than the previous output: **low filtering capability** but measured values are propagated fast
Ideal, Measured and Filtered Trajectory

\[\alpha = 0.5 \]

(see `filtering/first-order-filter.py`)
Ideal, Measured and Filtered Trajectory

\(\alpha = 0.1 \)

(see `filtering/first-order-filter.py`)
Ideal, Measured and Filtered Trajectory

\[\alpha = 0.05 \]

(see `filtering/first-order-filter.py`)
Prediction and Adaptation
Predictive filters are based on a model of the behaviour of the system. By means of the model, an estimate of the state variable is performed. The estimate is compared with sensor data and an error is computed. The error is then passed to a PI controller and the output is (algebraically) added to the estimate.
Pedictive Filters

Kalman Filters

- Predictive filters are able to reduce measurement error on the basis of the knowledge of the system model.
- But they require the tuning of controller constants K_P and K_I.

Kalman Filters are predictive filters with a P-controller whose K_P is updated at each iteration.

K_P is computed by using an approach that has the objective on minimizing the error.

The approach is based on the statistic characterisation of the system model and the measure.
The system is considered characterised by the discretized model

\[x(k + 1) = A \cdot x(k) + w \]

where
- \(x \) is the state vector
- \(A \) is the state matrix
- \(w \) is a vector representing the uncertainty of the behaviour of the system
Measure Model

Sensors are considered characterised by the following relation

\[z(k) = H x(k) + v \]

where

- \(z \) is the vector of the measured values
- \(H \) is a matrix that specifies the state variables measured
- \(v \) is a vector representing the uncertainty (noise) of the behaviour of the measure
Statistic Characterisation

- In the previous models w and v are random variables that we suppose gaussian and with zero average.
- The Kalman filter needs the knowledge of the statistics of w and v.
- In details, it is necessary to have the variance and covariance of each element of w and v.
- In other words, the self and mutual variance of the system and measure for each of the state variables.
Variance

Given a random variable with x_1, x_2, \ldots, x_n a set of samples and \bar{x} the mean, the variance is:

$$\sigma_x^2 = \frac{1}{N} \sum_i (x_i - \bar{x})^2$$

Covariance

Given two random variables with x_1, x_2, \ldots, x_n and y_1, y_2, \ldots, y_n the set of samples and \bar{x}, \bar{y} the means, the covariance is:

$$\sigma_{xy}^2 = \frac{1}{N} \sum_i (x_i - \bar{x})(y_i - \bar{y})$$

If the two variables are statistically independent, then the covariance is close to 0.
The Kalman Filter needs two matrices:

- \(Q \) is the covariance matrix of the uncertainty of the system \(w \)
- \(R \) is the covariance matrix of the uncertainty of the measure \(v \)

In these matrices:

- Element \((i, i)\) is the variance of the \(i^{th} \) variable
- Element \((i, j)\) is the covariance of the \(i^{th} \) and \(j^{th} \) variables
Kalman Filter

Kalman Filter Algorithm

Let

- \(x \) the state vector \textbf{real} (that is unknown)
- \(\hat{x} \) the \textbf{estimated} state vector

The Kalman filter algorithm works as follows

1. \(\hat{x} = A \hat{x} \) new estimate
2. \(E = z - H\hat{x} \) error computation with respect to the estimate
3. \(K = \ldots \) computation of the \textbf{optimal gain} (\(K_P \))
4. \(\hat{x} = \hat{x} + K E \) estimate correction

Step 3 has the objective of \textit{minimising the error} between the real and predicted state:

\[\min \{ \hat{x}(k) - x(k) \} \]

but \(x \) is not known and we have only its statistical characterisation \(w \) and \(Q \)
The Optimal Gain

Starting from covariance matrix Q, the **error covariance** P is determined, then the algorithm computes the K such that P is minimised.

1. $P = A P A^T + Q$
 Error covariance estimate

2. $K = P H^T (H P H^T + R)^{-1}$
 optimal gain

3. $P = (I - K H) P$
 Update of the error covariance on the basis of the optimal gain
Kalman Filter

Complete Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\hat{x} = A \hat{x}$</td>
<td>Prediction</td>
</tr>
<tr>
<td>2</td>
<td>$P = A P A^T + Q$</td>
<td>Update of Error Covariance</td>
</tr>
<tr>
<td>3</td>
<td>$K = P H^T (H P H^T + R)^{-1}$</td>
<td>Gain</td>
</tr>
<tr>
<td>4</td>
<td>$\hat{x} = \hat{x} + K (z - H\hat{x})$</td>
<td>Measure Correction</td>
</tr>
<tr>
<td>5</td>
<td>$P = (I - K H) P$</td>
<td>Error Covariance Correction</td>
</tr>
</tbody>
</table>
An Example: Robot over a XY plane

Let us consider a robot moving over a XY plane with a straight trajectory and using a constant speed:

\[x(k + 1) = x(k) + v_x \Delta T \]
\[y(k + 1) = y(k) + v_y \Delta T \]

with \(v_x, v_y \) constants

State vector: \([x, y, v_x, v_y]^T\)

State matrix:

\[
A = \begin{bmatrix}
1 & 0 & \Delta T & 0 \\
0 & 1 & 0 & \Delta T \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Modelling the Process

An Example: Robot over a XY plane

Let us consider a robot moving over a XY plane with a straight trajectory and using a constant speed:

\[
x(k + 1) = x(k) + v_x \Delta T \\
y(k + 1) = y(k) + v_y \Delta T
\]

with \(v_x, v_y \) constants

State Equation:

\[
\begin{bmatrix}
x \\
y \\
v_x \\
v_y
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & \Delta T & 0 \\
0 & 1 & 0 & \Delta T \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
v_x \\
v_y
\end{bmatrix}
\]
class KalmanFilter:
 def __init__(self, delta_t):
 # state vector x y vx vy, initial state to 0
 self.x = np.matrix([0, 0, 0, 0]).transpose()
 # process matrix
 self.A = np.matrix([1, 0, delta_t, 0],
 [0, 1, 0 , delta_t],
 [0, 0, 1 , 0],
 [0, 0, 0 , 1])

 # process covariance
 self.Q = np.eye(4,4) * 0.05

 # measure covariance (initially high)
 self.R = np.eye(4,4) * 1000

 # measure matrix (only x and y measured)
 self.H = np.matrix([1, 0, 0, 0],
 [0, 1, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0])

 # error covariance matrix
 self.P = np.matrix([0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0],
 [0, 0, 0, 0])
class KalmanFilter:

 def prediction(self):
 self.x = self.A * self.x

 def measure(self, measures):
 measures = np.matrix(measures).transpose()
 self.x = self.x + self.K * (measures - self.H * self.x)

 def update(self):
Low-pass vs. Kalman

![Graphs showing comparison between low-pass and Kalman filtering techniques.](image-url)
Digital Signal Filtering

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

Robotic Systems