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A System

Each real system (any object belonging to the real world) is an object with
finite number of freedom degrees that evolves in time according to a certain
law

A real system can be represented as a black box that can be externally
stimulated from an input (that we call u(t)), producing a certan effect which
is the output (that we call y(t))

y(t) = f (u(t))
The behaviour is totally represented by function f (·)
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Definition of Dynamic System

A dynamic system is a (physical) system where, given a certain time instant
t , the output y(t) depends on the current value u(t) and the past of u(t) and
y(t)

A dynamic system (time-continuous) is described by a differential
equation in the time domain:

y = f (ẏ , ÿ , ..., u, u̇, ü, t)
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The Cart as a Dynamic System

Input = f (t) Output =p(t)

Let’s consider again the cart. If we use the force f (t) as the input and the
position p(t) as the output, we can model the cart using the following
differential equation:

f − b ṗ = M p̈

(recall that v = ṗ and a = p̈)

It is a second-order differential equation, that, at first sight, is hard to solve
and also to simulate
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The Cart as a Dynamic System

Input = f (t) Output =p(t)

f − b ṗ = M p̈

But if we introduce also the v variable, we can rewrite the equation above as
a system of differential equation:{

v̇ = − b
M v + 1

M f
ṗ = v

Here we have only first-order differential equations that can be handled more
easily
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Representation of a Dynamic System

A dynamic system described by a n-order differential equation as:

y = f (ẏ , ÿ , ..., u, u̇, ü, t)

can be represented as a system of n differential equations of the
first-order by using additional variables that are equal to the first-derivative,
second-derivative, etc.

Variables that are derivated are called state variables and represent the
instantaneous condition of the system
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The Cart as a Dynamic System

State Variables

Input = f (t) Output =p(t){
v̇ = − b

M v + 1
M f

ṗ = v

Here p and v are the state variables of our cart and the equations above
that describe the evolution of such state variables are called state equations
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Linear Systems

A linear system is a system described by a set of first-order linear differential
equations

A linear differential equation is a differential equation in which a derivated
variable lineary depends on the variable itself and other variables

ẋ1 = a11x1 + ...+ a1nxn

... ... ...
ẋn = an1x1 + ...+ annxn

{
v̇ = − b

M v + 1
M f

ṗ = v

Our cart model is a linear system with p and v as state variables
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Inside a linear system

Parts of a linear system model
Given a certain system represented by a linear model, we can identify, in
each equations, two basic parts:

Terms that give dependency of other state variables (in red)

Terms that give the dependency of the input(s) (in blue)

{
v̇ = − b

M v + 1
M f

ṗ = v

Terms in red represent the free evolution of the system (i.e. the
evolution without any input)

Terms in blue represent the forced evolution of the system
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Standard Representation of Dynamic Systems

Standard Representation of Dynamic Systems
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Standard Representation of a Dynamic System

The Cart

State Equations
{

v̇ = − b
M v + 1

M f
ṗ = v

We know, from algebra, that a set of linear equations can be
represented in a matrix form
Let’s incapsulate state variables in a (geometric) vector:

x =

[
v
p

]
ẋ =

[
v̇
ṗ

]

State equations in matrix form[
v̇
ṗ

]
=

[
− b

M 0
1 0

] [
v
p

]
+

[ 1
M
0

]
f

ẋ =

[
− b

M 0
1 0

]
x +

[ 1
M
0

]
f

Corrado Santoro Dynamic Systems



Standard Representation of a Dynamic System

State Equation in matrix form[
v̇
ṗ

]
=

[
− b

M 0
1 0

] [
v
p

]
+

[ 1
M
0

]
f

ẋ =

[
− b

M 0
1 0

]
x +

[ 1
M
0

]
f

Let:

A =

[
− b

M 0
1 0

]
B =

[ 1
M
0

]
u = f

We obtain the general state equation in matrix form:

ẋ = A x + B u
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Standard Representation of a Dynamic System

Output Equation in matrix form
The output of our system y is (in general) a linear combination of state

variables (state vector) x =

[
v
p

]
If we consider the position p as output, to obtain it we can simply
multiply the state vector with

[
0 1

]
y =

[
0 1

] [v
p

]
Generalising we have:

y = C x

C =
[
0 1

]
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Linear Dynamic Systems

Standard Representation of a Linear Dynamic System
In summary, a linear system time-continuous is totally specified by the
following matrix equations: {

ẋ = Ax + Bu
y = Cx

x , state vector (n elements)

u, input vector (m elements)

y , output vector (p elements)

A, state matrix n × n

B, input matrix n ×m

C, output matrix p × n
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Roles of Matrices in the Matrix Form

ẋ = A x + B u (1)

The state equation has two parts:

Matrix A characterises the evolution of the state

Matrix B represents the contribution of the input

When u = 0, we have the free evolution and the state equation
becomes: ẋ = A x

The dynamics (behaviour) of the system is totally specified by matrix A

In other words, if we have a representation in the form (1) we do not
need to solve the differential equations or perform a simulation to
understand the behaviour of the system, but it is sufficient to analyse
matrix A
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Discretization of a Linear System Model

Discretization of a Linear System Model
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Discretization of a Linear System

In order to handle/implement a linear system (given its model in matrix
form), we can consider the sampling of any variable with prefixed ∆T

The derivative becomes incremental ratio (first-order approximation):

x(t), t ∈ R ⇒ x(k∆T ), k ∈ N

ẋ(t), t ∈ R ⇒ x((k + 1)∆T )− x(k∆T )

∆T
, k ∈ N

x(t) ⇒ x(k)

ẋ(t) ⇒ x(k + 1)− x(k)

∆T
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Discretization of a Linear System

The system {
ẋ = Ax + Bu
y = Cx

discretized using a sampling interval ∆T becomes:{ x(k+1)−x(k)
∆T = Ax(k) + Bu(k)

y(k) = Cx(k)

{
x(k + 1)− x(k) = A∆Tx(k) + B∆Tu(k)

y(k) = Cx(k){
x(k + 1) = A∆Tx(k) + x(k) + B∆Tu(k)

y(k) = Cx(k){
x(k + 1) = (A∆T + I)x(k) + B∆Tu(k)

y(k) = Cx(k)
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Discretization of a Linear System

The system: {
ẋ = Ax + Bu
y = Cx

becomes: {
x(k + 1) =

∼
A x(k)+

∼
B u(k)

y(k) =
∼
C x(k)

here:
∼
A = A∆T + I
∼
B = B∆T
∼
C = C
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Linear Systems

Equilibrium
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Equilibrium

Generic Definition of Equilibrium state

Given a dynamic system defined by state equation ẋ = f (x ,u),
with u = u(t) as input, the state x = x(T ∗) is an equilibrium if

f (x ,u(t)) = 0,∀t ≥ T ∗

that is, no state variations, thus ẋ = 0

In other words, an equilibrium state means no further state
variations for t ≥ T ∗
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Equilibrium

Equilibrium in Continuous Linear Systems
Given a linear system defined by the state equation

ẋ = Ax + Bu

the state x is an equilibrium if

0 = Ax + Bu

Searching for equilibrium states in a linear system implies to solve the (linear)
equation:

x = −A−1Bu

if A is not invertible then there are either no equilibrium states or infinite
equilibrium states
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Equilibrium

Equilibrium in Discrete Linear Systems
Given a linear system defined by the state equation

x(k + 1) =
∼
A x(k)+

∼
B u

the state x is an equilibrium if

x =
∼
A x+

∼
B u

Searching for equilibrium states in a linear system implies to solve the (linear)
equation:

x = −(A− I)−1Bu

if A− I is not invertible then there are either no equilibrium states or
infinite equilibrium states
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Equilibrium

Equilibrium in the Cart

Let’s consider the cart:
{

v̇ = − b
M v + 1

M f
ṗ = v[

v̇
ṗ

]
=

[
− b

M 0
1 0

] [
v
p

]
+

[ 1
M
0

]
f

Let’s consider a constant input F ; here matrix A is singular so we have:{
0 = − b

M v + 1
M F

0 = v

and: {
v = F

b
v = 0

Relations above are in contrast and this comes from the singularity of A

Indeed the solution is v = F
b and p =any (so infinite equilibrium points)
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Equilibrium

Equilibrium in the Arm

Let’s consider the arm:
{
ω̇ = − br

M ω − gθ + 1
Mr Mo

θ̇ = ω

Given a constant input Mo we have:{
0 = − b r

M ω − gθ + 1
M r Mo

0 = ω

and: {
θ = Mo

g M r
ω = 0

(for small oscillations)
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Equilibrium without Input

Equilibrium in the Cart

Let’s consider the cart in free evolution:
{

v̇ = − b
M v

ṗ = v

If we determine the equilibrium points we have:{
v = 0
p = any

Indeed, if we have no inputs, there are infinite equilibrium points where the
speed is 0
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Equilibrium without Input

Equilibrium in the Arm

Let’s consider the arm in free evolution:
{
ω̇ = − br

M ω − gθ
θ̇ = ω

we have: {
θ = 0
ω = 0

However, if we consider a real system (without the sin approximation):{
0 = − br

M ω − g sin θ
0 = ω

we have: {
θ = kπ
ω = 0
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Equilibrium without Input

Equilibrium in the Arm
Basically there are two equilibrium points:

Motor

{
θ = 0
ω = 0

Motor {
θ = π
ω = 0

But it’s clear that the two points are somewhat different
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Linear Systems

Stability
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Stability

Simple Stability

An equilibrium point x0 = x(T ∗) is stable, when, after a
perturbation of the state at time t ≥ T ∗, the resulting state
evolution (trajectory) is always near point x0,∀t ≥ t :

∃M > 0 : ‖x(t)− x0‖ < M,∀t ≥ t
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Stability

Asymptotical Stability

An equilibrium point x0 = x(T ∗) is asymptotically stable,
when, after a perturbation of the state at time t ≥ T ∗, the
resulting state evolution (trajectory) tends to x0:

lim
t→∞

x(t) = x0
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Stability

Instability

An equilibrium point x0 = x(T ∗) is instable, when, after a
perturbation of the state at time t ≥ T ∗, the resulting state
evolution (trajectory) always steps away from x0:

lim
t→∞

x(t) =∞ or it does not exists
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Stability

Stability in the Cart
The equilibrium is: {

v = 0
p = any

It is simply stable

Given a position p1, if perturbate it as p2, the cart remains in p2
thus “near” p1
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Stability

Stability in the Arm
The point:

Motor

{
θ = 0
ω = 0

is asymptotically stable.

If we move the mass to a position ω 6= 0, it returns to 0
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Stability

Stability in the Arm
The point:

Motor {
θ = π
ω = 0

is simply stable.

If we move the mass to a position ω 6= π, it returns to 0, thus
“near” to π
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Stability of a System

Stability in a Linear System
A linear system is said to be stable if all state trajectories are
stable
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Linear Systems

Trajectories of a Linear System
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Trajectories of a System

Trajectories of a Linear System
Given a linear system in an equilibrium point, if we perturbate
the state, the resulting trajectory, in free running state, and for
each state variable has the following form:

xj(t) = K1,jeλ1,j t + ...+ Km,jeλm,j t + Km+1,jeσm+1,j t sinωm1,j t + ...

In other words, it’s a weighted sum of:

Exponential Terms eλt

Exponential-Sinusoidal Terms eσt sinωt

This result comes from the theorems on the integration of linear
differential equations
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Trajectories of a System

Trajectories of a Linear System
Terms of the trajectory in free running state of a linear system:

Exponential Terms eλt

Exponential-Sinusoidal Terms eσt sinωt

The exponentials play a fundamental role in understanding
stability, in particular according to sign of the exponent,
i.e. parameters λ and σ (given that we always consider t ≥ 0)
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Trajectories of a System

Trajectories of a Linear System

λ > 0, σ > 0

The term
Exponential Terms eλt diverges

Exponential-Sinusoidal Terms eσt sinωt diverges

The system is instable
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Trajectories of a System

Trajectories of a Linear System

λ = 0, σ = 0

The term
Exponential Terms eλt is 1

Exponential-Sinusoidal Terms eσt sinωt becomes sinωt
and oscillates

between [−1,1]

The system is simply stable
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Trajectories of a System

Trajectories of a Linear System

λ < 0, σ < 0

The term
Exponential Terms eλt tends to 0

Exponential-Sinusoidal Terms eσt sinωt tends to 0

The system is asymptotically stable

Corrado Santoro Dynamic Systems



Trajectories of a System

Trajectories and Stability
Given a trajectory:

xj(t) = K1,jeλ1,j t + ...+ Km,jeλm,j t + Km+1,jeσm+1,j t sinωm1,j t + ...

the stability depends only on the sign of parameters λi,j and
σi,j

Condition Stability
All λi,j < 0, σi,j < 0 Asymptotical
All λi,j < 0, σi,j < 0

but a λi∗,j = 0, σi∗,j = 0 Simple
At least one λi∗,j > 0, σi∗,j > 0 Instability
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Eigenvalues

Trajectories, Stability and Eigenvalues
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The Fundamental Theorem of the Algebra

Roots of a Polynomial
Given of polynomian in x with degree n with real coefficients:

a0 + a1x + a2x2 + . . .+ anxn ai ∈ R

then the roots will be:
either all real (∈ R)
or, if some of them are complex, they will be complex and
conjugate
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Algebra and Matrices

The Characteristic Polynomial

Given a square matrix A = {ai,j} ∈ Rn×n, then its eigenvalues
will be:

either all real (∈ R)
or, if some of them are complex, they will be complex and
conjugate

Let’s recall that the eigenvalues of a matrix A are the roots of
the characteristic polynomial:

|λI − A|
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Algebra, Matrices and Dynamic Systems

Merging all the worlds

Given a linear system in free running defined by

ẋ = Ax

given that the eigenvalues of A are:

λ1, λ2, ..., σk ± iωk , σk+1 ± iωk+1...

with λi ∈ R and and σk ± iωk ∈ C then the trajectory will have
the form:

x(t) = K1eλ1t + ...+ Kk−1eλk−1t + Kkeσk t sinωk t + ...

(the explaination will be given below)
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Linear Systems, Eigenvalues and Stability

Eigenvalues and Stability

Given a linear system defined by

ẋ = Ax + Bu

given that the eigenvalues of A are:

λi ∈ C (remind that R ⊂ C)

i.e. λi may be either real or complex and conjugate, we have

Condition System Stability
All Re(λi) < 0 Asymptotical

At least Re(λi∗) = 0,
but, if λi∗ is compl-and-conj,
it is simple (mutiplicity = 1) Simple

All other cases Instability
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues

Given a square matrix A = {ai,j} ∈ Rn×n whose eigenvalues
are λi , then the following holds:

A = T−1E T

where:
T is a n × n invertible matrix
E is a n × n diagonal matrix whose diagonal elements are
the eigenvalues of A
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues

Given a linear system defined by

ẋ = Ax + Bu

and given that the eigenvalues of A are: λi , we can write:

ẋ = T−1E T x + B u
T ẋ = T T−1E T x + T B u
T ẋ = E T x + T B u

Let’s assume that
∼
x = T ẋ and

∼
B = T B, we have:

∼̇
x = E

∼
x +

∼
B u
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues
The system:

ẋ = Ax + Bu

and
∼̇
x = E

∼
x +

∼
B u

are equivalent, i.e. the same, so they feature the same
response and the same stability conditions

We have only applied a change of reference frame for state
variables defined by matrix T
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues
Let’s consider:

∼̇
x = E

∼
x

that can be rewritten as:

∼̇
x1 = λ1

∼
x1

∼̇
x2 = λ2

∼
x2

...
∼̇
xn = λn

∼
xn

If λi ∈ R then each differential equation can be easily
integrated as:

∼
xi (t) = eλi t

C.V.D.
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Dyamic Systems and Control Systems

Dyamic Systems and Control Systems
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Linear Systems and Control Systems

System
+

-

Let’s consider a linear system
{

ẋ = Ax + Bu
y = Cx

in feedback loop with a proportional controller

Is the resulting system a linear system as well?
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Linear Systems and Control Systems

System
+

-

{
ẋ = Ax + Bu
y = Cx

u = KPerror
= KP(u − y)

= KPu − KPy
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Linear Systems and Control Systems

System
+

-

{
ẋ = Ax + B(KPu − KPy)
y = Cx{
ẋ = Ax + BKPu − BKPy
y = Cx{

ẋ = Ax + BKPu − BKPCx
y = Cx{
ẋ = (A− BKPC)x + BKPu
y = Cx
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Linear Systems and Control Systems

System
+

-

The resulting system is{
ẋ = Ax + B u
y = Cx

with

A = A− BKPC
B = BKP
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Linear Systems and Control Systems

System
+

-

Given that:

A = A− BKPC

B = BKP

we have:

The closed loop system is a linear system

The dynamics (behaviour) of the closed loop system depends of
A,B,C,KP (while the dependency of the orginal system were only w.r.t
to A)

The parameter KP strongly affects both the dynamics and the stability
of the closed loop system
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Linear Systems and Control Systems

System
+

-

A = A− BKPC

B = BKP

By acting on KP we can:

Make instable a stable system

Make stable an instable system

Completely change the system’s response, e.g. by introducing or
removing oscillation

...

Corrado Santoro Dynamic Systems



Canonical Signals

Canonical Signals
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Canonical Signals

System Theory often uses some specific input signals, called
canonical signals, to study the behaviour of a system:

Impulse or Dirac Delta

(Unitary) Step

Ramp

Corrado Santoro Dynamic Systems



Dirac Delta

The Dirac Delta δ(t) is an impulsive signal that, from the
mathematical point of view, is defined as:

δ(t) = 0,∀t 6= 0
δ(t) = +∞, t = 0∫ +∞

−∞ δ(t)dt = 1

It is used to represent a physical fenomena with a great
intensity but with an infinitesimal duration
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Unitary Step

The step u(t) is a signal defined as follows:{
u(t) = 0, ∀t < 0
u(t) = 1, ∀t ≥ 0

It is used to model the application, at time 0, of a constant
stimulus to a system
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Ramp

The ramp r(t) is an increasing signal defined as follows:{
r(t) = 0, ∀t < 0
r(t) = t , ∀t ≥ 0

It is used to model the application to a system, at time 0, of a
simulus that grows indefinitely
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Relationship between Canonical Signals

Signals

u(t) =

∫ t

0
δ(τ)dτ

du(t)
dt

= δ(t)

r(t) =

∫ t

0
u(t)dτ

dr(t)
dt

= u(t)

Responses

Given a linear system, if yd (t) is the impulse response, then the step
response is:

ys(t) =

∫ t

0
yd (τ)dτ

and the ramp response is:

yr (t) =

∫ t

0
ys(τ)dτ
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Canonical Signals and Control Systems

+

-

Given a control system, its performaces are measured on the basis of
canonical inputs
The step represents a constant reference that is suddenly applied

The ramp represents a moving reference, thus making it possible to
measure the ability of the control system to follow changing references
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Canonical Signals and Control Systems

Transient and Steady-State Regimes

Transient Steady-State Transient Steady-State

The response of a system to a step (or a pulse is composed of two parts:

Transient: initial part of the response; the output changes substantially
during time

Steady-State: when the transient is over, the output features small or
no changes and stabilise to a specific value

According to the response type (left or right figures above), the transient
features some specific characteristics
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Canonical Signals and Control Systems

Transient Characteristics

Steady-State Value: K = limt→∞ y(t)

Rise Time TS (“tempo di salita”): the time required to go from 10% of K
to 90% of K

Set-up Time TA (“tempo di assestamento”): the time required to have
the output around the 98% of K
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Canonical Signals and Control Systems

Transient Characteristics

Steady-State Value: K = limt→∞ y(t)

Rise Time TS (“tempo di salita”): the time required to go from 10% of K
to 90% of K

Set-up Time TA (“tempo di assestamento”): the time required to have
the output around the 98% of K

Overshot S (“sovraelongazione”): the percentage w.r.t. K of the first
peak S = peak−K

K
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System Response and Eigenvalues

System Response and Eigenvalues
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System Reponse and Eigenvalues

Eigenvalues of state matrix A not only are able to determine system
stability but also encode important information about the transient

Transient Steady-State Transient Steady-State

Left-side response represents a system with real and negative
eigenvalues

Right-side response represents a system with at least a couple of
complex and conjugate eigenvalues with negative real part
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System Reponse and Eigenvalues

Real Negative Eigenvalues
Let us consider a system with λ1 = −1 e λ2 = −3, then the response will be
of type:

e−t + e−3t

From the plots we see that the duration of the transient for λ1 is greater than
the one of λ2

In other words, λ1 is “slower” than λ2
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System Reponse and Eigenvalues

Real Negative Eigenvalues
If we combine the plots and see the complete response, we observe that its
transient is more influenced by λ1 rather than λ2

In other words, the overall response is as “slow” as the one with only λ1
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System Reponse and Eigenvalues

Dominant Eigenvalues
In other words, the overall response is as “slow” as the one with only λ1

We say that λ1 dominates λ2, or that λ1 is a dominant eigenvalue
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System Reponse and Eigenvalues

Complex and Conjugate Eigenvalues
If we have a couple of complex and conjugate eigenvalue, i.e. σ ± iω the
response has the form

eσt sinωt

and the value of σ (the real part) characterised the duration of the transient
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System Reponse and Eigenvalues

Dominant Eigenvalue
Let’s consider a asymptotically stable system with eigenvalue:

λ1, λ2, ..., σ1 ± iω1, σ2 ± iω2, ...

The dominant eigenvalue is λ∗ = max(λ1, λ2, ..., σ1, σ2, ...), i.e. the highest
value of the real parts
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System Reponse and Eigenvalues

Natural Frequencies or Modes
Let’s consider a asymptotically stable system with eigenvalue:

λ1, λ2, ..., σ1 ± iω1, σ2 ± iω2, ...

The real parts contribute to the response as an exponential term:

eλi t eσi t

The real part of an eigenvalue is a frequency and its measure unit is:

Hz = s−1 =
1
s

For this reason, eigenvalues are called natural frequencies or modes of the
system
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System Reponse and Eigenvalues

Dominant Eigenvalue and Transient Duration
Let’s consider a asymptotically stable system with eigenvalue:

λ1, λ2, ..., σ1 ± iω1, σ2 ± iω2, ...

The real parts contribute to the response as an exponential term:

eλi t eσi t

The inverse-absolute of a real part of an eigenvalue is called time constant

Ti =
1
|λi |

Ti =
1
|σi |

Given that λ∗ is the dominant eigenvalue (real part), the duration of the
transient (set-up time) is approximately:

TA '
3
|λ∗|
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