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Each real system (any object belonging to the real world) is an object with
finite number of freedom degrees that evolves in time according to a certain
law

A real system can be represented as a black box that can be externally
stimulated from an input (that we call u(t)), producing a certan effect which
is the output (that we call y(t))

u(t) y(t)
—> -

y(t) = f(u(t))

The behaviour is totally represented by function f(-)
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Definition of Dynamic System

A dynamic system is a (physical) system where, given a certain time instant
t, the output y(t) depends on the current value u(t) and the past of u(t) and

y(1)

A dynamic system (time-continuous) is described by a differential
equation in the time domain:

y=1fy,y,...,u,u,i,t)
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The Cart as a Dynamic System

velocita' del robot

v(t)
—
forza di attrito
forza generata M b v(t) dell'aria
dai motori P
f(t)
) O
Input = f(t) Output =p(t)

Let’s consider again the cart. If we use the force f(t) as the input and the
position p(t) as the output, we can model the cart using the following
differential equation:

f—bp=Mp

(recall that v = p and a = p)

It is a second-order differential equation, that, at first sight, is hard to solve
and also to simulate
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The Cart as a Dynamic System

velocita' del robot

v(t)
—
forza di attrito
forza_genera_ta M b v(t) dell'aria
dai motori f(t) <
) O
Input = 1(t) Output =p(t)
f-bp=Mp

But if we introduce also the v variable, we can rewrite the equation above as
a system of differential equation:

Vo= —bv+ yf
p o= v

Here we have only first-order differential equations that can be handled more
easily
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Representation of a Dynamic System

A dynamic system described by a n-order differential equation as:
y = H 7,y U, U0, 1)
can be represented as a system of n differential equations of the

first-order by using additional variables that are equal to the first-derivative,
second-derivative, etc.

Variables that are derivated are called state variables and represent the
instantaneous condition of the system
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The Cart as a Dynamic System

State Variables

velocita' del robot
v(t)
—
forza di attrito
forza generata M b v(t) dell'aria
dai motori <
f(t)
) O
Input = f(t) Output =p(t)
o= b 1
v = —gv+puf
p =V
Here p and v are the state variables of our cart and the equations above
that describe the evolution of such state variables are called state equations
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Linear Systems

A linear system is a system described by a set of first-order linear differential
equations

A linear differential equation is a differential equation in which a derivated
variable lineary depends on the variable itself and other variables

Xt =  anXy+ ..+ anXn

Xn anm X1 + ... + annXn

v = —Bv+Lf
p = v

Our cart model is a linear system with p and v as state variables
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Inside a linear system

Parts of a linear system model

Given a certain system represented by a linear model, we can identify, in
each equations, two basic parts:

@ Terms that give dependency of other state variables (in red)
@ Terms that give the dependency of the input(s) (in blue)

- b
Vo= — v+ yf
p = v

@ Terms in red represent the free evolution of the system (i.e. the
evolution without any input)

@ Terms in blue represent the forced evolution of the system
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Standard Representation of Dynamic Systems

Standard Representation of Dynamic Systems |
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Standard Representation of a Dynamic System

The Cart

y — _b 1
°5taleEqualions{; - VMV+Mf

@ We know, from algebra, that a set of linear equations can be
represented in a matrix form

@ Let’s incapsulate state variables in a (geometric) vector:

=] e li]

P p
v —5 0] [v e
_|™M M
o= [ o] o]+ (3]
_ _b 9 1
B v/ M
<[ el
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Standard Representation of a Dynamic System
State Equation in matrix form

Let:
_b 9 1

We obtain the general state equation in matrix form:

X=Ax+Bu
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Standard Representation of a Dynamic System
Output Equation in matrix form

@ The output of our system y is (in general) a linear combination of state

variables (state vector) x = {;}

@ If we consider the position p as output, to obtain it we can simply
multiply the state vector with [0 1]

o]

Generalising we have:
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Linear Dynamic Systems

Standard Representation of a Linear Dynamic System

In summary, a linear system time-continuous is totally specified by the
following matrix equations:

X = Ax-+Bu
y Cx

@ x, state vector (n elements)

u, input vector (m elements)
@ y, output vector (p elements)

@ A, state matrix n x n

B, input matrix n x m

@ C, output matrix p x n
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Roles of Matrices in the Matrix Form

x = Ax+Bu (1)

The state equation has two parts:
@ Matrix A characterises the evolution of the state
@ Matrix B represents the contribution of the input

@ When u = 0, we have the free evolution and the state equation
becomes: x = A x

@ The dynamics (behaviour) of the system is totally specified by matrix A

@ In other words, if we have a representation in the form (1) we do not
need to solve the differential equations or perform a simulation to
understand the behaviour of the system, but it is sufficient to analyse
matrix A
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Discretization of a Linear System Model

Discretization of a Linear System Model |
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Discretization of a Linear System

@ In order to handle/implement a linear system (given its model in matrix
form), we can consider the sampling of any variable with prefixed AT

@ The derivative becomes incremental ratio (first-order approximation):
x(t),teR X(KAT), k e N
x((k+1)AT) — x(kKAT)

N keN

x(t),teR

x(k)
- x(k + 1A )T— x(k)

=
A
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Discretization of a Linear System

The system
X = Ax+Bu
y = Cx

discretized using a sampling interval AT becomes:

{X(/<+1A>T—X(k> = Ax(k) + Bu(k)
y(k) = Cx(k)

{x(k+1)—x(k) = AATx(k) + BATu(k)
y(k) = Cx(k)

{x(k+1) = AATx(k) + x(k) + BATu(k)
y(k) = Cx(k)

{ x(k+1) (AAT + I)x(k) + BATu(k)
y(k) = Cx(k)
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Discretization of a Linear System

The system:
X = Ax+Bu
y = Cx
becomes: N N
x(k+1) = Ax(k)+ B u(k)
y(k) = C x(k)
here:
A = AAT+1
B = BAT
c =C
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Linear Systems

Equilibrium )
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Equilibrium

Generic Definition of Equilibrium state

Given a dynamic system defined by state equation x = f(x, u),
with u = u(t) as input, the state X = x(T*) is an equilibrium if

f(x,u(t))=0,vt>T"

that is, no state variations, thus x = 0

In other words, an equilibrium state means no further state
variations for t > T*

Corrado Santoro Dynamic Systems



Equilibrium

Equilibrium in Continuous Linear Systems

Given a linear system defined by the state equation

X = Ax + Bu

the state X is an equilibrium if

0=Ax+ Bu

Searching for equilibrium states in a linear system implies to solve the (linear)

equation:
x=—-A""Bu

if Ais not invertible then there are either no equilibrium states or infinite
equilibrium states
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Equilibrium

Equilibrium in Discrete Linear Systems
Given a linear system defined by the state equation

x(k+1) =Ax(K)+ Bu
the state X is an equilibrium if

7:;\?+§u

Searching for equilibrium states in a linear system implies to solve the (linear)

equation:
x=—(A-1)""Bu

if A— lis not invertible then there are either no equilibrium states or
infinite equilibrium states
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Equilibrium

Equilibrium in the Cart
0 _ b 1 f

Let’s consider the cart: { o=
p = vV
1

b= ol e+ (8]

Let’s consider a constant input F; here matrix A is singular so we have:

0 = —2v+4F
0 = v

Oolm

and:
%
%

Relations above are in contrast and this comes from the singularity of A

Indeed the solution is v = g and p =any (so infinite equilibrium points)
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Equilibrium

Equilibrium in the Arm

Let’s consider the arm: { “ — e — 90+ 35 Mo
0 = w
Given a constant input M, we have:
0 = w
and:
_ M,

0 = g I\/(; r

w = 0
(for small oscillations)
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Equilibrium without Input

Equilibrium in the Cart

<
1

_b
Let’s consider the cart in free evolution: { v m’
If we determine the equilibrium points we have:
v = 0
p = any
Indeed, if we have no inputs, there are infinite equilibrium points where the
speed is 0

v
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Equilibrium without Input

] 8 - = —pw—go
Let’s consider the arm |nfreeevolut|on:{°;- L =g

we have:

0 = 0
w = 0

However, if we consider a real system (without the sin approximation):

{5

—fw—gsmb‘

w

we have:
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Equilibrium without Input

Equilibrium in the Arm

Basically there are two equilibrium points:

O 0 =0 | 9 = =
‘ w =0 w =0

But it’s clear that the two points are somewhat different
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Linear Systems

Stability |

Corrado Santoro Dynamic Systems



Stability

Simple Stability

An equilibrium point xo = x(T") is stable, when, after a
perturbation of the state at time ¢ > T*, the resulting state
evolution (trajectory) is always near point x, vVt > t:

IM >0 [[x(t) — xo|| < M, ¥t >1
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Stability

Asymptotical Stability

An equilibrium point xo = x(T*) is asymptotically stable,
when, after a perturbation of the state at time t > T+, the
resulting state evolution (trajectory) tends to xj:

lim x(t) = xo
t—oco
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Stability

Instability

An equilibrium point xo = x(T7) is instable, when, after a
perturbation of the state at time > T*, the resulting state
evolution (trajectory) always steps away from xj:

lim x(t) = co or it does not exists
t—oo
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Stability

Stability in the Cart
The equilibrium is:

It is simply stable

Given a position py, if perturbate it as p», the cart remains in po
thus “near” p;
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Stability

Stability in the Arm

The point:

is asymptotically stable.

If we move the mass to a position w # 0, it returns to 0
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Stability

Stability in the Arm

The point:
)

is simply stable.

If we move the mass to a position w # T, it returns to 0, thus
“near” to 7
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Stability of a System

Stability in a Linear System

A linear system is said to be stable if all state trajectories are
stable
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Linear Systems

Trajectories of a Linear System |
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Trajectories of a System

Trajectories of a Linear System

Given a linear system in an equilibrium point, if we perturbate
the state, the resulting trajectory, in free running state, and for
each state variable has the following form:

A1 it Am. il it o
X/(t) = K17/'e W+ Kmvl-e M= + Km+1‘/60m“'f sin wm1’jt+

In other words, it's a weighted sum of:

| Exponential Terms el |
| Exponential-Sinusoidal Terms | e°’sinwt |

This result comes from the theorems on the integration of linear
differential equations
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Trajectories of a System

Trajectories of a Linear System

Terms of the trajectory in free running state of a linear system:

Exponential Terms el
Exponential-Sinusoidal Terms | e?!sinwt

The exponentials play a fundamental role in understanding
stability, in particular according to sign of the exponent,
i.e. parameters A and o (given that we always consider ¢ > 0)

v
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Trajectories of a System

Trajectories of a Linear System

A>0,0>0
The term
Exponential Terms e diverges
Exponential-Sinusoidal Terms | e°!sinwt | diverges

The system is instable
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Trajectories of a System

Trajectories of a Linear System

A=0,0=0

The term
Exponential Terms et is 1
Exponential-Sinusoidal Terms | e°!sinwt | becomes sinwt
and oscillates
between [—1, 1]

The system is simply stable
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Trajectories of a System

Trajectories of a Linear System

A<0,0<0
The term
Exponential Terms e tends to 0
Exponential-Sinusoidal Terms | e°!sinwt | tends to 0

The system is asymptotically stable
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Trajectories of a System

Trajectories and Stability

Given a trajectory:

Aq it Am.jt it <
Xj(t) = Ku-e WL+ Km‘je mI" 4+ Km+1’je"m+‘~f/ sin Wm1,jt+

the stability depends only on the sign of parameters );; and

Condition Stability
Al ) <0,0;; <0 Asymptotical
All /\,'J' < 0,0’,‘J <0
buta A\« ;= 0,05 ;=0 Simple
At least one \;- ; > 0,0 ; > 0 Instability
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Eigenvalues

Trajectories, Stability and Eigenvalues )
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The Fundamental Theorem of the Algebra

Roots of a Polynomial

Given of polynomian in x with degree n with real coefficients:

ap+ aiX+ ax®+ ...+ ax" aeRrR

then the roots will be:
@ either all real (¢ R)

@ or, if some of them are complex, they will be complex and
conjugate
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Algebra and Matrices
The Characteristic Polynomial

Given a square matrix A = {a;;} € R"*", then its eigenvalues
will be:

@ either all real (¢ R)

@ or, if some of them are complex, they will be complex and
conjugate

Let’s recall that the eigenvalues of a matrix A are the roots of
the characteristic polynomial:

A — Al

Corrado Santoro Dynamic Systems



Algebra, Matrices and Dynamic Systems

Merging all the worlds

Given a linear system in free running defined by

X = Ax
given that the eigenvalues of A are:
)\1 y )\2, ey Ok + iw;ﬁ O k41 + iwk+1

with \; € R and and o, + iw, € C then the trajectory will have
the form:

X(l’) = K;j e’\” AF coo AR Kk_1eAk*1’ A Kke”kt sinwgl + ...

(the explaination will be given below)
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Linear Systems, Eigenvalues and Stability

Eigenvalues and Stability

Given a linear system defined by
x =Ax + Bu
given that the eigenvalues of A are:
Aj € C  (remind that R C C)

i.e. A; may be either real or complex and conjugate, we have

Condition System Stability
All Re(\j) <0 Asymptotical
At least Re(\j«) = 0,
but, if \;« is compl-and-conj,
it is simple (mutiplicity = 1) Simple
All other cases Instability
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues

Given a square matrix A = {a;;} € R"*" whose eigenvalues
are )\;, then the following holds:

A=T'ET

where:
@ T is a n x ninvertible matrix

@ Eis a n x ndiagonal matrix whose diagonal elements are
the eigenvalues of A
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues

Given a linear system defined by
X = Ax + Bu
and given that the eigenvalues of A are: \;, we can write:
x = TTVETx+Bu
Tx = TT'ETx+TBu
Tx = ETx+TBu

Let's assume that x — Tx and B — T B, we have:

X = EX+Bu
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues

The system:

X = Ax + Bu
and _
X=E X+BuU
are equivalent, i.e. the same, so they feature the same
response and the same stability conditions

We have only applied a change of reference frame for state
variables defined by matrix T
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Linear Systems, Eigenvalues and Response

Link between Response and Eigenvalues

Let’s consider:

Xx=FE X
that can be rewritten as:
Xq = /\1 Xq
Xo = Ao Xo
)?n — /\n )?n

If \; € R then each differential equation can be easily
integrated as:
X; (1) = e

C.V.D.
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Dyamic Systems and Control Systems

Dyamic Systems and Control Systems |
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Linear Systems and Control Systems

|
+

error =u—y

— Kp System J

X = Ax+Bu
= Cx
in feedback loop with a proportional controller

Let’s consider a linear system

Is the resulting system a linear system as well?
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Linear Systems and Control Systems

U, emor—u-y

{)’( = Ax+ Bu

y = Cx

u = Kperror

= Kp(U—-y)
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Linear Systems and Control Systems

Ax + B(Kpu — Kpy)
Cx

< Xx-

Ax + BKpu — BKpy
Cx

—N—
< Xx-
|

x = Ax+ BKpu— BKpCx
Cx

<
|

x = (A-BKpC)x + BKpu
y = Cx
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Linear Systems and Control Systems

U, emor—u-y

The resulting system is

Xx = Ax+Bu
y Cx

with

— A—BKsC
— BKp

W >
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Linear Systems and Control Systems

or =Ty

T |, em

Given that:

— A-BKsC
— BKp

@ >

we have:
@ The closed loop system is a linear system

@ The dynamics (behaviour) of the closed loop system depends of
A, B, C, Kp (while the dependency of the orginal system were only w.r.t
to A)

@ The parameter Kp strongly affects both the dynamics and the stability
of the closed loop system
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Linear Systems and Control Systems

W, emor—t-y u

— A-BKs-C
= BKp

®@ >

By acting on Kp we can:
@ Make instable a stable system
@ Make stable an instable system

@ Completely change the system’s response, e.g. by introducing or
removing oscillation
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Canonical Signals

Canonical Signals )
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Canonical Signals

System Theory often uses some specific input signals, called
canonical signals, to study the behaviour of a system:

@ Impulse or Dirac Delta
@ (Unitary) Step

@ Ramp
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Dirac Delta

| ¢

The Dirac Delta /(1) is an impulsive signal that, from the
mathematical point of view, is defined as:
() = 0O,vt#0
o(t) = oo, t=0
[ st = 1

It is used to represent a physical fenomena with a great
intensity but with an infinitesimal duration
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Unitary Step

t
The step u(t) is a signal defined as follows:

u(t) = 0,vt<0
u(ty = 1,vt>0

It is used to model the application, at time 0, of a constant
stimulus to a system
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Ramp

I t
The ramp r(t) is an increasing signal defined as follows:

r(t) = 0,vt<0
r(t) = tvt>0

It is used to model the application to a system, at time 0, of a
simulus that grows indefinitely
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Relationship between Canonical Signals

Responses

@ Given a Iinlear system, if y4(t) is the impulse response, then the step
response is:
wo = [ Yo(r)dr
@ and the ramp response is:
ye(t) = /Otys(r)df
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Canonical Signals and Control Systems

u error =u—y
J 3 Controller £ System yJ Z
= t

@ Given a control system, its performaces are measured on the basis of
canonical inputs
@ The step represents a constant reference that is suddenly applied

@ The ramp represents a moving reference, thus making it possible to
measure the ability of the control system to follow changing references
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Canonical Signals and Control Systems
Transient and Steady-State Regimes

Transient t I Steady-State Transient I Steady-Stato|

<— Target
o rent

The response of a system to a step (or a pulse is composed of two parts:

@ Transient: initial part of the response; the output changes substantially
during time

@ Steady-State: when the transient is over, the output features small or
no changes and stabilise to a specific value

@ According to the response type (left or right figures above), the transient
features some specific characteristics

v
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Canonical Signals and Control Systems

K

@ Steady-State Value: K = limi— y(1)

@ Rise Time Ts (“tempo di salita”): the time required to go from 10% of K
to 90% of K

@ Set-up Time T, (“tempo di assestamento”): the time required to have
the output around the 98% of K

v
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Canonical Signals and Control Systems

@ Steady-State Value: K = lim;— o y(t)

@ Rise Time Ts (“tempo di salita”): the time required to go from 10% of K
to 90% of K
@ Set-up Time T, (“tempo di assestamento”): the time required to have
the output around the 98% of K
@ Overshot S (“sovraelongazione”): the percentage w.r.t. K of the first
peak—K

peak S = %5
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System Response and Eigenvalues

System Response and Eigenvalues )
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System Reponse and Eigenvalues

@ Eigenvalues of state matrix A not only are able to determine system
stability but also encode important information about the transient

Transient D Steady-State Transient D Steady-State

@ Left-side response represents a system with real and negative
eigenvalues

@ Right-side response represents a system with at least a couple of
complex and conjugate eigenvalues with negative real part
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System Reponse and Eigenvalues

Real Negative Eigenvalues

Let us consider a system with A1 = —1 e A\» = —3, then the response will be
of type:

e '+e ™

From the plots we see that the duration of the transient for \; is greater than
the one of \»

In other words, )\ is “slower” than X\,

0 exp(-1t) 1 exp(-3t)

0.2

0.0
o

1 2 3 4 5 0 1 2 3 4 5
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System Reponse and Eigenvalues

Real Negative Eigenvalues

If we combine the plots and see the complete response, we observe that its
transient is more influenced by \¢ rather than \,

In other words, the overall response is as “slow” as the one with only A4

o1 . e

exp(-1t) + exp(-3t)
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System Reponse and Eigenvalues

Dominant Eigenvalues
In other words, the overall response is as “slow” as the one with only \;

We say that \; dominates \,, or that \| is a dominant eigenvalue

o1 oxpt30

exp(-1t) + exp(-3t)

Corrado Santoro Dynamic Systems



System Reponse and Eigenvalues

Complex and Conjugate Eigenvalues

If we have a couple of complex and conjugate eigenvalue, i.e. o + iw the
response has the form
e sinwt

and the value of o (the real part) characterised the duration of the transient
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System Reponse and Eigenvalues

Dominant Eigenvalue
Let’'s consider a asymptotically stable system with eigenvalue:

A, A2, ..., 01 & iwy, 02 £ dwo, ...

The dominant eigenvalue is \* = max(\1, A2, ..., 01,02, ...), i.€. the highest
value of the real parts

Corrado Santoro Dynamic Systems



System Reponse and Eigenvalues

Natural Frequencies or Modes
Let’s consider a asymptotically stable system with eigenvalue:

A, A2, ..., 01 & iwy, 02 £ wo, ...

The real parts contribute to the response as an exponential term:

For this reason, eigenvalues are called natural frequencies or modes of the
system

<
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System Reponse and Eigenvalues

Dominant Eigenvalue and Transient Duration
Let’s consider a asymptotically stable system with eigenvalue:

)\1,)\27 veny O ae iw1,0'2 E= iwg,

The real parts contribute to the response as an exponential term:

At

ot

e e

The inverse-absolute of a real part of an eigenvalue is called time constant

1 1
Ti=—  T=
Y " ol

Given that ). is the dominant eigenvalue (real part), the duration of the
transient (set-up time) is approximately:

TAﬁi

3
| As]

Corrado Santoro Dynamic Systems



Dynamic Systems

The Theory Behind

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, Italy
santoro@dmi.unict.it

Corrado Santoro



