How to drive a DC Motor

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Electric Motors

- An Electric Motor is a machine that transforms electric energy into mechanical energy
- This is obtained by exploiting some magnetic properties of materials and electric current
- There are different kind of electric motors
 - DC Motors (DC=direct current) or brushed motors
 - AC Motors (AC=alternate current) or brushless motors
 - Special brushless motors (stepper motors)

Electric Motors

- Any electric motor is made of two parts:
 - Stator, a static part
 - Rotor, the part which is made rotating thus generating the mechanical energy
- One of the two parts is made of permanent magnets
- The other part is made of coils of copper wire that generate magnetic field when the electric current flows
- The rotation is generated by the contrast of the magnetic fields generated by the stator and the rotor
- In order to ensure rotation, the magnetic field must change continuously
- The angular velocity of the motor is proportional to the intensity of the magnetic field which, in turn, is proportional to the voltage applied to the motor

Direct Current (Brushed) Motor

- In a direct current motor.
 - the stator is the external container, it is made by permanent magnets
 - the rotor is a set of copper wire coils
- A system of "brushes" (crawling contacts) are able to continuously change the polarity of the voltage applied to the coils, thus causing the continuous inversion of the magnetic field

DC Driving - H Bridge

- The basics of DC motor driving is made of an electronic based on four electronic switches (transistor MOSFET) A, B, C, D connected as in figure
- The configuration is called H-bridge because it has the shape of the letter "H"

Clock-wise and Counter-clock-wise rotation

- By activating switches A e D, the current will flow in the direction depicted at the left → motor will rotate clock-wise
- By activating switches B e C, the current will flow in the direction depicted at the right (opposite to the previous case) → the motor will rotate counter-clock-wise

Rotazione CW (Clockwise)

Rotazione CCW (Counter-Clockwise)

Modulating rotation speed

- In order to modulate the speed of the rotor, we must change the voltage applied to the motor
- As in any other power system, the technique used is based on a periodic sequence of power-on and power-off of the motor
- This is made possible by using a Pulse Width Modulation=PWM signal

Connecting a DC Motor to a Microcontroller

- The H-bridge is implemented in a integrated circuit called DC motor driver
- It acts a an interface between the microcontroller (logic part) and the power part, usually at high voltages (12V and above)
- The MCU has only to provide a PWM Signal and a Direction signal

Connecting a DC Motor to a Microcontroller

- The H-bridge is implemented in a integrated circuit called DC motor driver
- It acts a an interface between the microcontroller (logic part) and the power part, usually at high voltages (12V and above)
- The MCU has only to provide a PWM Signal and a Direction signal

- **CW**→Dir1=1, Dir2=0
- CCW→Dir1=0, Dir2=1
- **STOP**→Dir1=0, Dir2=0

DC Motor Control

Reading Speed and Position

Encoder

- Electric motors can have a position sensor called encoder
- An encoder translates the angular position of the axis in a numeric value (properly scaled)
- Encoders can be:
 - Resistive
 - Optical
 - Magnetic

Optical Encoders

- An optical encoder is made of a disc with a set of holes (e.g. 500, 1000, 2000, etc.) that rotates with the motor axis
- In the area of the holes, there are a LED and a photodiode that can detected holes
- Disc rotation causes the photodiode to generate a burst of pulses: the higher the rotation speed, the higher the frequency of the pulse signal
- The pulse signal is connected to a hardware interface that can count the generated pulses thus providing the numeric value to the software in a proper variable

Encoders and measures

- Optical encoder can determine:
 - angular position, by counting "ticks"
 - Speed, by computing the tick difference between two subsequent time instant, divided by the time interval
- However, it cannot determine the rotation direction

Quadrature Encoders

- An optical quadrature encoder is made of a disc with two concentric series of holes
- There are two pairs LED/photodiode, called channels "A" e "B"
- The holes are displaced of "half a tick" (see figure)

Quadrature Encoders

- The "half tick" displacement causes a different generation of the pulses in the channel A and B, on the basis of rotation direction CW or CCW
- The signal sequences generated on channels A and B are:
 - CW: $AB = 01 \rightarrow 11 \rightarrow 10 \rightarrow 00 \rightarrow 01 \rightarrow 11 \rightarrow ...$
 - CCW: $AB = 01 \rightarrow 00 \rightarrow 10 \rightarrow 11 \rightarrow 01 \rightarrow 00 \rightarrow \dots$

Quadrature Encoders

- Hardware interfaces for this type of sensors are called QEI -Quadrature Encoder Interface
- These interfaces identify the different sequences:

• CW:
$$AB = 01 \rightarrow 11 \rightarrow 10 \rightarrow 00 \rightarrow 01 \rightarrow 11 \rightarrow \dots$$

• CCW:
$$AB = 01 \rightarrow 00 \rightarrow 10 \rightarrow 11 \rightarrow 01 \rightarrow 00 \rightarrow \dots$$

- The counter value is
 - incremented if CW
 - decremented if CCW

Motor Position and Speed Control

How to drive a DC Motor

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems