Controlling a Rotating Arm

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

Robotic Systems

The Arm

Discretisation

$$\omega(k+1) = (1 - \frac{3}{2} \frac{\Delta T}{ML} \beta) \omega(k) - \frac{3}{2} \frac{\Delta T}{L} g \cos \theta(k) + \frac{3\Delta T}{ML^2} T(k)$$

$$\theta(k+1) = \theta(k) + \omega(k) \Delta T$$

Simple Position Control

- Let us a consider a "simple" position controller
- For the cart a P Controller has been enough, but...
- in the arm, the presence of gravity requires a "push" (non-zero output) in case of error = 0
- A PI Controller is mandatory
- However, the natural oscillating behaviour of the system creates some hard problems...

(see examples/simple_control/arm_simple_position_control_PID.ipynb)

Incrementing K_P does not help...

Simple Position Control

Also incrementing K_l does not help...

Let's Analyse the trend of the error

- When the error decreases, the control action is OK
- When the error increases, we need more control action

Let's derivate the error

$$\dot{e} = \frac{de(t)}{dt}$$

- When the error decreases, $\dot{e} < 0$, the control action is OK
- When the error **increases**, $\dot{e} > 0$, we can increase control action

The PID Controller

Let's add a factor proportional to the derivative of the error:

$$ControlAction = PI(error) + K_D \dot{e}$$

- When the error **decreases**, $\dot{e} < 0$, so the derivative action acts a as "brake" reducing the control action (this is OK, because the trend of the error is, in any case, decreasing)
- When the error increases, $\dot{e} > 0$, so the derivative factor improves the control action

The PID Contoller

(see examples/simple_control/arm_simple_position_control_PID.ipynb)

- System is fast and no oscillation occurs
- The value of K_l (that is high) is needed due the fact that we must compensate the gravity

Position and Speed Control

Position and Speed Cascading Control

Position and Speed Control

- As in the cart, also in the arm the best solution for position control is the double loop position + speed
- In oscillating systems, the position controller is usually a PD, while the speed controller is usually a PID

(see examples/position_control/arm_position_control.ipynb and godot/arm_no_physics/)

Controlling a Rotating Arm

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

Robotic Systems