
Controlling a Cart

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling a Cart

Modelling the Cart

Let’s start (once again) from the model based on differential equations:{
v̇ = − b

M v + 1
M f

ṗ = v

Controlling the Cart: Questions
1 Given a certain speed v , what is the force f that we must apply to let the

cart travelling at the speed v?
2 Given a certain position p, at what time instant we must stop the cart in

order to let it stop at p?

Corrado Santoro Controlling a Cart

Controlling the Cart

The Analytical Way (1)
1 Given a certain speed v , what is the force f that we must apply to let the

cart travelling at the speed v?{
v̇ = − b

M v + 1
M f

ṗ = v

If we consider the use of a constant force F and the cart not moving at t = 0,
i.e. v(0) = 0, we can solve the equations analytically:

v(t) =
F
b

(1− e− b
M t)

Corrado Santoro Controlling a Cart

Controlling the Cart

The Analytical Way (2)
Since the speed is given as v , we have:

v =
F
b

(1− e− b
M t)

If we invert the relation above to solve it, we must determine both F and t ; in
other words, the question should be changed as:

1 Given a certain speed v , what is the force F that we must apply to let
the cart travelling at the speed v after a given time T ?

F = v
b

1− e− b
M T

Corrado Santoro Controlling a Cart

Controlling the Cart

The Analytical Way (3)

v̇ = − b
M

v +
1
M

F F = v
b

1 − e−
b
M T

Yeah!! Problem solved?? Ehm...NO!:

The differential equation is a model, so the mathematical relations are
approximation of the real object

For example, once we stop the cart by applying f = 0, according to the
model the speed reaches 0 for t → +∞ (see the exponential factor),
while, in real word, the speed reaches 0 in a finite time

The problem depends on b and M, which can be estimated but not
measured with precision (above all b), thus leading to a high
approssimation

Once the target speed v has been reached at time T , we can guarantee
the it will be maintained for t > T ?

Corrado Santoro Controlling a Cart

Controlling the Cart

The Algorithmical Way
Given a certain speed v , what is the force f that we must apply to let the
cart travelling at the speed v?

1 Measure the current speed v
2 Compute the error with respect to target speed error = v − v
3 Given the error use a proper function F = control(error) that is able to

reduce and cancel the error
4 Apply F
5 Go to step 1

Corrado Santoro Controlling a Cart

Controlling the Cart

The Algorithmical Way

Given a certain position p, at what time instant we must
stop the cart in order to let it stop at p?

1 Measure the current position p
2 Compute the error with respect to target position error = p − p
3 Given the error use a proper function F = control(error) that is able to

anticipate the cart inertia (and thus reduce and cancel the error)
4 Apply F
5 Go to step 1

Corrado Santoro Controlling a Cart

Controlling the Cart

The Control System Model: Feedback
The algorithms above can be represed as the following data-flow
diagram:

CartController
+

-

Control Algorithm Physical System

Position
Sensor

This is the typical scheme to control dynamic systems and is called
feedback
The advantage is that the exact model of the system is not needed but
only its behaviour, in a qualitative way
The problem here is instead in the control block that must be properly
designed

Corrado Santoro Controlling a Cart

Controlling the Cart

Position Control

Corrado Santoro Controlling a Cart

Controlling the Cart

CartController
+

-

Control Algorithm Physical System

Position
Sensor

Position Control
We can make the following “generic” assumptions:

1 If we are far from the target position (error is large), we can apply
a large F

2 As soon as we approach the target, it’s better to reduce F
accordingly, thus anticipating the behaviour of the system and
stop the cart in the target position

In other words, we can try to control the system by applying a F that is
directly proportional to the error :

F = KP error

with KP a constant determined in a sperimental way

Corrado Santoro Controlling a Cart

Controlling Cart Position

Let’s implement our controller
lib/controllers/standard.py�
class Proportional:

def __init__(self, kp):
self.kp = kp

def evaluate(self, target, current):
error = target - current
return self.kp * error
� �

tests/test position control cart gui.py�
from controllers.standard import *
...
class CartRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
Mass = 1kg, friction = 0.8
self.cart = Cart(1, 0.8)
self.controller = Proportional(0.2) # Kp = 0.2
self.target_position = 4 # 4 meters

def run(self):
F = self.controller.evaluate(self.target_position, self.get_pose())
self.cart.evaluate(self.delta_t, F)
return True
� �

Corrado Santoro Controlling a Cart

Controlling Cart Position

Effect of KP

KP = 1.0

Too much!!! The cart overcomes the target and go back

Corrado Santoro Controlling a Cart

Controlling Cart Position

Effect of KP

KP = 0.5

Still too much!!! The cart overcomes the target and go back

Corrado Santoro Controlling a Cart

Controlling Cart Position

Effect of KP

KP = 0.2

Good enough!!!

Corrado Santoro Controlling a Cart

Controlling Cart Position

Effect of KP

In a Proportional Controller, KP controls the “speed” (dyamics) of the
system

If KP is small, the system reaches “slowly” the target

If KP is large, the system is “fast” to reach the target but if it is “too
much”, the target is overcome and the system oscillates

therefore...

for each system to be controlled, there is a KP limit L; if KP > L, the
system oscillates

we cannot have a system “fast” and “not oscillating”, but always a
compromise between these two aspect

Corrado Santoro Controlling a Cart

Controlling the Cart

Speed Control

Corrado Santoro Controlling a Cart

Controlling the Cart

CartController
+

-

Control Algorithm Physical System

Speed
Sensor

Speed Control
We can think to the way in which we drive our car and use the accelerator pedal
to reach and maintain a certain speed:

1 We push the pedal, from “0” to a certain point, thus increasing F

2 When we reach the target speed (i.e. the error is “0”), we keep the foot on
the pedal in order to provide a (more-or-less) constant F able to maintain
the target speed

In other words, we can try to control the system by applying a F that increases
as soon as the error 6= 0, using an increasing factor directly proportional to the
error :

F = F + KI error

with KI a constant determined in a sperimental way

Corrado Santoro Controlling a Cart

Controlling the Cart

CartController
+

-

Control Algorithm Physical System

Speed
Sensor

Speed Control - The Integral Controller

F = F + KI error

If error > 0, F increases at a rate determined by KI

If error < 0, F decreases at a rate determined by KI

If error = 0, F does not change

Our control action (the F) “accumulates” the error for each iteration

In other words, the F is somewhat proportional to the integral of the
error

Corrado Santoro Controlling a Cart

Controlling the Cart

CartController
+

-

Control Algorithm Physical System

Speed
Sensor

Speed Control - The Integral Controller

F (t) = KI

∫ t

0
error(τ)dτ

by using the approximation dτ ' ∆T :

F (t) = KI

t
∆T∑
i=0

error(i∆T)∆T

or, recursively:

F (t + ∆T) = F (t) + KIerror(t)∆T

with F (0) = 0
Corrado Santoro Controlling a Cart

Controlling Cart Speed

Let’s implement our integral controller
lib/controllers/standard.py�
class Integral:

def __init__(self, ki):
self.ki = ki
self.output = 0

def evaluate(self, delta_t, target, current):
error = target - current
self.output = self.output + self.ki * error * delta_t
return self.output
� �

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Let’s implement our integral controller
tests/test speed control cart gui plot.py�
from controllers.standard import *
...
class CartRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
Mass = 1kg, friction = 0.8
self.cart = Cart(1, 0.8)
self.controller = Integral(0.2) # Ki = 0.2
self.target_speed = 1.5 # 1.5 m/s

def run(self):
F = self.controller.evaluate(self.delta_t,

self.target_speed, self.get_speed())
self.cart.evaluate(self.delta_t, F)
...
� �

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KI

KI = 1.0

Too much!!! The cart overcomes the target and go back

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KI

KI = 0.5

Still too much!!! The cart overcomes the target and go back

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KI

KI = 0.2

Good enough!!! ...but maybe too slow??

Corrado Santoro Controlling a Cart

Controlling the Cart

Speed Control - The Integral Controller

F = F + KI ∆T error

Here the effect of the intergral controller is to “accumlate” the control
action

At the beginning, the accumulated value is low, so the control action is
not so strong

To make the control action “strong enough”, we must wait that the
accumulated value becomes enough high, but this is done late in time

Can we speed-up the control action in other ways rather than increasing
KI?

Can we combine another control action able to respond “very fast”?

Corrado Santoro Controlling a Cart

Recalling Actions

Proportional Action

F = KP error

Responds immediatelly

Integral Action

F = F + KI ∆T error

Responds when the accumulated action is enough

Proportional-Integral Actions

INT = INT + error∆T

F = KP error + KI INT

Let’s combine both actions in order to gain the advantages of both

Corrado Santoro Controlling a Cart

The “PI” Controller

lib/controllers/standard.py�
...
class ProportionalIntegral:

def __init__(self, kp, ki):
self.p = Proportional(kp)
self.i = Integral(ki)

def evaluate(self, delta_t, target, current):
return self.p.evaluate(target, current) + \

self.i.evaluate(delta_t, target, current)

...
� �

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Let’s implement our integral controller
tests/test speed pi control cart gui plot.py�
from controllers.standard import *
...
class CartRobot(RoboticSystem):

def __init__(self):
super().__init__(1e-3) # delta_t = 1e-3
Mass = 1kg, friction = 0.8
self.cart = Cart(1, 0.8)
self.controller = ProportionalIntegral(3.0, 2.0)

kp = 3.0, ki = 2.0
self.target_speed = 1.5 # 1.5 m/s

def run(self):
F = self.controller.evaluate(self.delta_t,

self.target_speed, self.get_speed())
self.cart.evaluate(self.delta_t, F)
...
� �

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KP and KI

KP = 2.0,KI = 0.2

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KP and KI

KP = 3.0,KI = 0.2

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KP and KI

KP = 3.0,KI = 1.0

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KP and KI

KP = 3.0,KI = 2.0

Corrado Santoro Controlling a Cart

Controlling Cart Speed

Effect of KP and KI

KP = 3.0,KI = 3.0

Corrado Santoro Controlling a Cart

Controlling a Cart

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Controlling a Cart

