Canonica Signals System Responses

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Canonical Signals

Canonical Signals

Canonical Signals

System Theory often uses some specific input signals, called canonical signals, to study the behaviour of a system:

- Impulse or Dirac Delta
- (Unitary) Step
- Ramp

Dirac Delta

The **Dirac Delta** $\delta(t)$ is an impulsive signal that, from the mathematical point of view, is defined as:

$$\begin{cases} \delta(t) &= 0, \forall t \neq 0 \\ \delta(t) &= +\infty, t = 0 \end{cases}$$
$$\int_{-\infty}^{+\infty} \delta(t) dt = 1$$

It is used to represent a physical fenomena with a great intensity but with an infinitesimal duration

Unitary Step

The **step** u(t) is a signal defined as follows:

$$\begin{cases}
 u(t) = 0, \forall t < 0 \\
 u(t) = 1, \forall t \ge 0
\end{cases}$$

It is used to model the application, at time 0, of a constant stimulus to a system

Ramp

The ramp r(t) is an increasing signal defined as follows:

$$\begin{cases}
 r(t) = 0, \forall t < 0 \\
 r(t) = t, \forall t \ge 0
\end{cases}$$

It is used to model the application to a system, at time 0, of a simulus that grows indefinitely

Relationship between Canonical Signals

Signals

$$u(t) = \int_0^t \delta(\tau) d\tau \qquad \frac{du(t)}{dt} = \delta(t)$$
$$r(t) = \int_0^t u(t) d\tau \qquad \frac{dr(t)}{dt} = u(t)$$

Responses

• Given a linear system, if $y_d(t)$ is the impulse response, then the step response is:

$$y_s(t) = \int_0^t y_d(\tau) d\tau$$

and the ramp response is:

$$y_r(t) = \int_0^t y_s(\tau) d\tau$$

- Given a control system, its performaces are measured on the basis of canonical inputs
- The step represents a constant reference that is suddenly applied
- The ramp represents a moving reference, thus making it possible to measure the ability of the control system to follow changing references

Transient and Steady-State Regimes

The response of a (asymptotically stable) system to a step (or a pulse) is composed of two parts:

- Transient: initial part of the response; the output changes substantially during time
- Steady-State: when the transient is over, the output features small or no changes and stabilise to a specific value
- According to the response type (left or right figures above), the transient features some specific characteristics

Transient Characteristics

- Steady-State Value: $K = \lim_{t \to \infty} y(t)$
- Rise Time T_S ("tempo di salita"): the time required to go from 10% of K
 to 90% of K
- Set-up Time T_A ("tempo di assestamento"): the time required to have the output around the 98% of K

Transient Characteristics

- Steady-State Value: $K = \lim_{t \to \infty} y(t)$
- Rise Time T_S ("tempo di salita"): the time required to go from 10% of K
 to 90% of K
- Set-up Time T_A ("tempo di assestamento"): the time required to have the output around the 98% of K
- Overshot S ("sovraelongazione"): the percentage w.r.t. K of the first peak $S = \frac{peak K}{K}$

Canonica Signals System Responses

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems