
Locomotion of a Mobile Robot in a 2D Space
Ackermann Steering

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Ackermann Steering



Ackermann Steering

It is the locomotion model of the cars

It is based on a (rear or front) single traction actuator (motor) plus a
mechanism to steer front wheels

The traction (rear in figure) is connected to a gearbox called differential
that allow traction wheels to rotate at different speeds during turns

Corrado Santoro Ackermann Steering



Ackermann Steering

Geometric Model
ICR: Instantaneous Center of Rotation

R: Radius of Rotation

B: Wheelbase

L: Lateral Wheelbase

αi : Inner wheel steering angle

αo: Outer wheel steering angle

αc : Center (virtual) wheel steering angle

Corrado Santoro Ackermann Steering



Ackermann Steering

Kinematics
In Ackermann steering vehicle the speeds of the rigid body (v , ω) are
not independent

ω depends on v and the steering angle αc

ω =
v
R

R =
L

tanαc

Corrado Santoro Ackermann Steering



Ackermann Steering

T

Dynamics
In Ackermann steering vehicle the motor generates a torque T that, on
the basis of the radius of traction wheels, becomes a traction force

The dynamics can be modeled in a similar way as to what we did for the
cart

F =
T

rwheel
v̇ = − b

M
v +

1
M

F

Corrado Santoro Ackermann Steering



Ackermann Steering

lib/models/cart2d.py�
class AckermannSteering:

def __init__(self, _mass, _lin_friction,
_r_traction, _lateral_wheelbase):

self.M = _mass
self.b = _lin_friction
self.r_wheels = _r_traction
self.l_wb = _lateral_wheelbase
self.v = 0
self.w = 0
self.x = 0
self.y = 0
self.theta = 0

def evaluate(self, delta_t, torque, steering_angle):
_force = torque / self.r_wheels
new_v = self.v * (1 - self.b * delta_t / self.M) + \

delta_t * _force / self.M
if steering_angle == 0:

new_w = 0
else:

curvature_radius = self.l_wb / math.tan(steering_angle)
new_w = new_v / curvature_radius

self.x = self.x + self.v * delta_t * math.cos(self.theta)
self.y = self.y + self.v * delta_t * math.sin(self.theta)
self.theta = self.theta + delta_t * self.w
self.v = new_v
self.w = new_w
� �

Corrado Santoro Ackermann Steering



Ackermann Steering

Ackermann

Vehicle

PID

(Speed Control)

Speed Control
The linear speed v can be directly controlled using a classical PID

Angular speed ω cannot be directly controlled since it depends on both
the steering angle and the linear speed

Corrado Santoro Ackermann Steering



Ackermann Steering

Ackermann

Vehicle


Linear Speed

Controller


+

-

Linear Position

Controller


Angular Position

Controller


Cartesian

To


Polar +

-

Position Control
The polar position control can be directly used by considering steering
angle instead of angular speed

The output of the angular position controller is not the target ω but the
steering angle αc

Remember that that both linear and angular position controllers are
P-controllers with saturation

Corrado Santoro Ackermann Steering



Ackermann Steering

Ackermann

Vehicle


Linear Speed

Controller


+

-

Linear Position

Controller


Angular Position

Controller


Cartesian

To


Polar +

-

Trajectory Generator

(StraightLine2DMotion)

Trajectory Following
The polar position control can be in turn driven by the trajectory
generator in order to follow a certain straight line towards a final point

Corrado Santoro Ackermann Steering



Locomotion of a Mobile Robot in a 2D Space
Ackermann Steering

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

Robotic Systems

Corrado Santoro Ackermann Steering


