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Introduction

Control of avionic systems implies to determine the
attitude of an aircraft in terms of its Euler angles:

Roll

Pitch

Yaw

Inertial sensors normally used are not able to directly
sense these angles

The solution is to adopt special complementary filters or
Kalman filters that are able to perform a “sensor fusion”
among the various intertial data in order to esimate the
attitude of the aircraft
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Sensors

Gyroscopes
They measure the angular speeds (rates) along the roll,
pitch and yaw axis

By means of numeric integration we can approximatelly
compute the roll, pitch and yaw angles
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Sensors

Accelerometers
They measure the linear acceleration along the roll, pitch
and yaw axis

They measure mechanical solicitations but also the gravity
vector

If we compute the inclination of the g vector measured,
we can estimate roll and pitch
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Sensors

Magnetometers
They measure the Earth magnetic field along roll, pitch
and yaw axis

By computing the inclination of the measured vector w.r.t.
the magnetic north, we can estimate the yaw
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AHRS and Filters

Approaches used for AHRS
PI Controller: Complementary Filter

Kalman Gain: Kalman Filter
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AHRS: the Complementary Filter
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Algoritmo di Sensor Fusion

AHRS: Attitude and Heading Reference System
(caso Roll e Pitch)

while True do
On each ∆T ;
{ax , ay , az} ← read accelerometers();
{gx , gy , gz} ← read gyroscopes();
/ ∗ Rotate Gravity Vector using φ, θ, ψ ∗ /
{gravX , gravY , gravZ} ← rotate vector({0, 0, 1});
/ ∗ Normalize Acceleration Data ∗ /
{ax , ay , az} ← {ax,ay,az}

||{ax,ay,az}|| ;
/ ∗ Compute Error using Cross Product ∗ /
{ex , ey , ez} ← {ax , ay , az} × {gravX , gravY , gravZ};
/ ∗ Apply PI Controller to each element of the error vector ∗ /
{corrX , corrY , corrZ} ← PI control({ex , ey , ez});
/ ∗ Correct Gyro Measures ∗ /;
{gx , gy , gz} ← {gx , gy , gz}+ {corrX , corrY , corrZ};
/ ∗ Update angles using integration ∗ /
{φ, θ, ψ} ← {φ, θ, ψ}+ {gx , gy , gz}∆T ;

end
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Dynamic Compensation of the Accelerations

When a rigid body is subject to mechanical solicitations,
accelerometers will measures both the g vector and such
solicitations

But they are “noise” with respect to the measurement
algorithm

We note that:
In static conditions, we have

√
ax2 + ay2 + az2 = g

In case of solicitations, we have
√

ax2 + ay2 + az2 6= g

The g-compensation is applied by weighting the gyroscope
correction on the basis of the difference:√

ax2 + ay2 + az2 − g
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Computational Aspects of the Sensor Fusion
Algorithm

while True do
On each ∆T ;
...
{gravX , gravY , gravZ} ← rotate vector({0, 0, 1});
...

end

The most critical part is the rotation of the vector {0,0,1}
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Rotation of a Vector in R3

Rotation along x axis, roll

x ′

y ′

z ′

 =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ

x
y
z

 = Rφ

x
y
z


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Rotation of a Vector in R3

Rotation along y axis, pitch

x ′

y ′

z ′

 =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

x
y
z

 = Rθ

x
y
z


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Rotation of a Vector in R3

Rotation along z axis, yaw

x ′

y ′

z ′

 =

 cosψ − sinψ 0
− sinψ cosψ 0

0 0 1

x
y
z

 = Rψ

x
y
z


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Rotazione di un Vettore in R3

Rotazione intorno tutti gli assi usando roll, pitch e yaw

x ′

y ′

z ′

 = RφRθRψ

x
y
z

 = DCM

x
y
z


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Direction Cosine Matrix

The DCM is the rotation matrix of a rigid body whose attitude
is expressed with Euler angles θ, φ, ψ

Direction Cosine Matrix[
cosθcosψ sinφsinθcosψ − cosφsinψ cosφsinθcosψ + sinφsinψ
cosθsinψ sinφsinθsinψ + cosφcosψ cosφsinθsinψ − sinφcosψ
−sinθ sinφcosθ cosφcosθ

]

For each step of the algorithm, we should compute the DCM
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Quaternions

Definition
A quaternion is a complex number with four components, a
real part and three imaginary parts:

q = {q0,q1,q2,q3} = q0 + q1i + q2j + q3k

i , j e k are imaginary units and are characterised by the
following properties:

i2 = −1 j2 = −1 k2 = −1
−ij = ij = k −jk = kj = i −ki = ik = j

Quaternions obey to an algebra in with the classical operations
are defined: (algebraic) sum, products, ration, norm, etc.
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Quaternions

Quaternions and Rotations

x

y

z

v

vz

vx

vy

Any vector v = {vx , yy , vz} in R3, and rotated (on itself) of an
angle α can be represented by a quaternion:

q = {cos
α

2
, vxsin

α

2
, vysin

α

2
, vzsin

α

2
}
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Quaternions

Quaternions and Rotations

x

y

z

v

vz

vx

vy

x

y

z

v

vz

vx

vy

x

y

z

v

vz

vx

vy

Any vector v = {vx , yy , vz} in R3, and rotated (on itself) of an
angle α can be represented as the vector {||v ||,0,0} to which
two rotations (two angles) plus the angle α are applied,→ the
Euler angles.
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Quaternions

Quaternions and Rotations

x

y

z

v

vz

vx

vy

x

y

z

v

vz

vx

vy

x

y

z

v

vz

vx
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q = {q0,q1,q2,q3}

If we consider a unit vector, a quaternion can represent that
vector rotated according the Euler angles
→a quaternion is an alternative representation of Euler
angles φ, θ, ψ
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Quaternions

Quaternions e DCM

q = {q0,q1,q2,q3}

The DCM can be computed by a quaternion as::[
cosθcosψ sinφsinθcosψ − cosφsinψ cosφsinθcosψ + sinφsinψ
cosθsinψ sinφsinθsinψ + cosφcosψ cosφsinθsinψ − sinφcosψ
−sinθ sinφcosθ cosφcosθ

]
[

q2
0 − q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q3q2 + q0q1)

2(q1q3 + q0q2) 2(q2q2 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

]
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Quaternions

Rotation of the gravity vector

The gravity vector {0,0,1} can be rotated by means of a
multiplication with the rotation matrix

The rotated vector is the third column of the rotation matrix:[
cosθcosψ sinφsinθcosψ − cosφsinψ cosφsinθcosψ + sinφsinψ
cosθsinψ sinφsinθsinψ + cosφcosψ cosφsinθsinψ − sinφcosψ
−sinθ sinφcosθ cosφcosθ

]
[

q2
0 − q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q3q2 + q0q1)

2(q1q3 + q0q2) 2(q2q2 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

]

By using a quaternion, trigonometric functions are not needed
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Quaternions

Integration of a quaternion
When Euler angles are represented by a quaternion q, we must
update it on the basis of the angular speeds {φ̇, θ̇, ψ̇} provided
by gyroscopes

By using the derivation rules of quaternions, we have:

q = q +
∆T
2

 0 −φ̇ −θ̇ −ψ̇
φ̇ 0 ψ̇ −θ̇
θ̇ −ψ̇ 0 φ̇

ψ̇ θ̇ −φ̇ 0

q

Corrado Santoro Attitude and Heading Reference System



Quaternions

From quaternions to Euler angles

The equivalence quaternion/rotation matrix allows us to
determine the formulas to compute Euler angles from a
quaternion:

φ = tan−1 2(q0q1 + q2q3)

q2
0 − q2

1 − q2
2 + q2

3

θ = sin−1 2(q0q2 + q1q3)

ψ = tan−1 2(q1q2 + q0q3)

1− 2(q2
2 + q2

3)
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AHRS e Quaternioni
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Quaternions are used in the cyan blocks
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