The Startup Sequence of STM32

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

¢/‘|§“Lb¥\)
o

L.S.M. Course

Corrado Santoro The Startup of STM32

Startup and “main” function

@ When an STM32 MCU is powered-on, it does not execute
immediatelly the main() function

@ A boot sequence is instead activated with includes the
execution of some intialization code

@ At the end of the boot sequence, the main() function is
finally run

Corrado Santoro The Startup of STM32

The “startup.s” file

@ The real program that executes at power-on is placed in a
startup assembly source file called
startup_stm32f401xe.s

@ It contains:

e A code that prepares the memory to run the user program
e The definition of interrupt vectors

@ Indeed, everything starts from the definitions placed in the
interrupt vector table

Corrado Santoro The Startup of STM32

The Interrupt Vector Table

@ The Interrupt Vector Table is a region of the flash memory starting at a
fixed address, for the STM32F4 is 0x0800 0000

@ |t contains 32-bit word elements, each one specifying the a jump
address to handle a specific interrupt

Figure 11. Vector table

Exception number [RQ number Offset Vector
255 239 IRQ239
Ox03FC
0x004C
18 2 IRG2
0x0048
17 1 IRQ1
Ox0044
16 0 IRQO
0x0040 .
15 - Systick
0x003C
14 2 PendSV
0x0038
13 Reserved
12 Reserved tfor Debug
1 5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fautt
0x000C
2 14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000

Corrado Santoro The Startup of

The Interrupt Vector Table and the Startup File

@ The startup file startup_stm32f401xe.s includes a section
that defines the interrupt vector table:

.section .isr_vector,"a", $progbits

.word _estack

.word Reset_Handler
.word NMI_Handler

.word HardFault_ Handler
.word MemManage Handler
.word BusFault_Handler
.word UsageFault_ Handler
.word 0

.word 0

.word 0

.word 0

.word SVC_Handler

.word DebugMon_Handler
.word 0

.word PendSV_Handler
.word SysTick Handler

@ The first code executed at startup is thus referred by the
label Reset_Handler

Corrado Santoro The Startup of STM32

The Reset Handler

@ The code of the Reset_Handler includes a part that
prepares the memory (it copies into RAM the initial values
of the variables) and then calls (in sequence):

@ The systemInit function
@ The __libec_init_array function
e The main function (finally!)

.section .text.Reset_Handler

l.lé;et_ﬂandler H
bl ‘SystemInit /* Call the clock system intitialization function.#*/
bl _ libec_init_array /* Call static constructors #*/

bl main /* Call the application’s entry point.x/

Corrado Santoro The Startup of STM32

The startup functions

@ Systemlnit is a user function that has the role of
configuring the clock of the processor

@ ltis placed in the source file system_init.c of the
stm32_unict_lib

@ _libc init_array is a library function that initializes all the
structures needed by the libc

@ ltis placed in the source files of the libc

Corrado Santoro The Startup of STM32

The Startup Sequence of STM32

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Universita di Catania, ltaly
santoro@dmi.unict.it

¢/‘|§“Lb¥\)
o

L.S.M. Course

Corrado Santoro The Startup of STM32

