Logic Circuits and Signals Hardware/Software Connection

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

L.S.M. Course

Logic Circuits

Logic Circuits

Basics of Logic Circuits

- Logic circuits are characterized by the fact that voltage of wires can assume only two values:
- $0 V$, corresponding to Logic/bit-value " 0 "
- $+V_{D D}$, corresponding to Logic/bit-value " 1 "
- where $V_{D D}$ is the power supply of the whole circuit, it may be $5 \mathrm{~V}, 3.3 \mathrm{~V}, 1.8 \mathrm{~V}$

Logic Circuits Classification

Combinatorial Circuits

- They are logic circuits where the output is dependent only on the current state of the inputs
- Logic gates (AND, OR, NOT, etc.) are kind of combinatorial circuits
- Their behaviour is represented by a truth table

Special Combinatorial Circuits

Multiplexers

- Multiplexers are combinatorial circuits that act as signal switches
- One data input at time is routed to the output on the basis of the values of control input bits

Logic Circuits Classification

Sequential Circuits

- They are logic circuits where the output is dependent only on the current and past state of the inputs
- They are sensible to variations of the inputs
- They are logic circuits that have a memory
- Flip-Flops and their derivatives are kind of combinatorial circuits
- Their behaviour is represented by a finite-state machine
- In general, a clock signal drives their behaviour

Logic Circuits Classification

Kind of Sequential Circuits

- Flip-flops
- Counters
- Registers

Logic Signals

Logic Signals

Logic Signals

Constant Signals

- They are logic states that does not vary in time

Variable Signals

- They are logic states that may vary in time
- They are featured by edges
- Falling Edge: variation from " 1 " to " 0 "
- Rising Edge: variation from "0" to "1"

Variable Signal

Logic Signals

Edges and Sequential Circuits

- Sequential Circuits are sensible to edges
- Edge inputs are represented in circuits by "triangles"
- simple triangle: rising edge
- circle + triangle: falling edge

Logic Signals

Periodic Signals

- They are kind of variable signals where the time distance between two edges of the same time is constant
- This distance is called Period, P and measured in seconds
- The frequency, computed as $f=\frac{1}{P}$, is the number of "periods" per second and is measured in Hertz, Hz

Logic Signals

Periodic Signals

- Periodic signals can be:
- symmetric: the time durations of state " 0 " and state " 1 " is the same and equal to $T_{0}=T_{1}=\frac{P}{2}$
- asymmetric: the time durations of state " 0 " and state " 1 " is different $T_{0} \neq T_{1}$
- The "asymmetry" is called duty cycle and is the percentage of period in which the signal is " 1 "

$$
D C=\frac{T_{1}}{T_{0}+T_{1}} 100=\frac{T_{1}}{P} 100
$$

Time and Frequency Measures

Time Measures

- milliseconds: $1 \mathrm{~ms}=10^{-3} \mathrm{~s}$
- microseconds: $1 \mu s=10^{-6} s$
- nanoseconds: $1 n s=10^{-9} s$
- picoseconds: $1 p s=10^{-12} s$

Frequency Measures

- KiloHertz: $1 \mathrm{KHz}=10^{3} \mathrm{~Hz}$
- MegaHertz: $1 \mathrm{MHz}=10^{6} \mathrm{~Hz}$
- GigaHertz: $1 \mathrm{GHz}=10^{9} \mathrm{~Hz}$
- TeraHertz: $1 \mathrm{THz}=10^{12} \mathrm{~Hz}$

Hardware/Software Connection

Hardware/Software Connection

Hardware/Software Connection

Hardware/Software Connection

- Circuits of a MCU are "connected" to the software through registers/counters
- A register is mapped in memory at a known memory address
- Hardware/software interaction is performed by reading/writing at that memory address

Hardware/Software Connection

An Example: Piece Counter

- A "presence sensor" generates a pulse each time a "piece" is identified
- The pulse is connected to an external counter MCU input
- Each time the sensor generates a pulse, the counter increments (in hardware)

Hardware/Software Connection

Reading/Writing the Counter

```
int32_t * counter_prt = (int32_t *)0x80c000;
...
/* clearing the counter */
*counter_ptr = 0;
/* printing the counter */
printf("Counter value %d\n", *counter_ptr);
```


Hardware/Software Connection

Configuring the Counter

```
int32_t * config_prt = (int32_t *)0x80c004;
/* counter input from Internal Oscillator */
*config_ptr = 0;
/* counter input from External Counter Input */
*config_ptr = 0x40;
```


Logic Circuits and Signals Hardware/Software Connection

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy
santoro@dmi.unict.it

L.S.M. Course

