
The I2C BUS Interface

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

L.S.M. 1 Course

Corrado Santoro The I2C BUS Interface



What is I2C?

I2C Bus or IIC Bus is the acronym for Inter-Integrated Circuit Bus.

It is a standard digital communication bus designed to interconnect
integrated circuits belonging to the same board.

It has been introduced by Philips to interconnect integrated circuits in
TV-sets in the ’80s in the transition from discrete transistors to
integrated-circuits.

The bus has been initially used in TV-sets and VCRs, and then widely
adopted in any integrated device which needs data communication.

Corrado Santoro The I2C BUS Interface



I2C BUS: Philosophy and Connections

I2C has a two wires bus which interconnect all devices

Devices in a I2C network has a role:
Master, is the “head” of the bus and has the responsibility of starting a
communication; only one master can be present in a I2C network and is -
in general - a MCU;
Slave, all the other devices which “respond” to master solicitations.

Corrado Santoro The I2C BUS Interface



I2C BUS: Philosophy and Connections

The I2C wires have the following meaning:
SDA: Serial DAta, bidirectional; here data bits flow serially (one bit at time)
SCL: Serial CLock, undirectional from master to slaves; it holds the timing
of the transmission

Therefore I2C is a synchronous interface which (according to
standards) can reach the max speed of 400 Kbps

Corrado Santoro The I2C BUS Interface



I2C Addressing

I2C 
Master 

SDA

SCL

Accelerometer 
Address = 0xd6 

Distance
Sensor 

Address = 0x30 
Color Sensor 

Address = 0x44 

Each slave device in I2C has a well-know address

The standard specifies two types of addresses:
7-bit, widely used
10-bit, used only in some special cases

An additional bit (at B0) is added to the address to specify direction of
transfer:

“0” = write to slave device
“1” = read from slave device

Example: the accelerometer has address 0xd6:
1 1 0 1 0 1 1 0 = 0xd6 = write to accelerometer
1 1 0 1 0 1 1 1 = 0xd7 = read from accelerometer

Corrado Santoro The I2C BUS Interface



I2C Addressing

I2C 
Master 

SDA

SCL

Accelerometer 
Address = 0xd6 

Config1 0x00
Config2 0x01

Name RegAddr

... ...
Data1 0x08
Data2 0x09

Each slave device has also a register map
Each register is identified by a 8-bit address and a 8-bit value
Each register is used to:

Configure the device
Send commands to the device
Hold a sensed data
etc.

Each register can be read or written from the master through proper
transaction protocols.

Corrado Santoro The I2C BUS Interface



I2C Transaction Model

A Write Transaction uses the following sequence:
1 Master sends the START CONDITION (S)
2 Master sends the device address (with B0 = 0)
3 Master sends the register number to be written
4 Master sends the register data to be written
5 Previous point is repeated for each subsequent register to be written
6 Master sends the STOP CONDITION (P)

For each written byte, the Slave replies with an ACKNOWLEDGE, that
is a bit 0 sent over SDA line

Corrado Santoro The I2C BUS Interface



I2C Transaction Model

A Read Transaction uses the following sequence:
1 Master sends the START CONDITION (S)
2 Master sends the device address (with B0 = 0)
3 Master sends the register number to be read
4 Master sends a new START CONDITION (S)
5 Master sends the device address (with B0 = 1)
6 Salve sends the register data read
7 Previous point is repeated for each subsequent register to be read
8 Master sends the STOP CONDITION (P)

For each byte transmitted over SDA, the peer device (Master or Slave)
replies with an ACKNOWLEDGE, that is a bit 0 sent over SDA line

Corrado Santoro The I2C BUS Interface



I2C: Timing and Bus States

BUS IDLE, both SDA and SCL lines are in 1 state.

START CONDITION (S)
A transition high-to-low in SDA, while SCL is high, is a Start Condition
It is used to start communication on the bus
It is always initiated by the Master

Corrado Santoro The I2C BUS Interface



I2C: Data Transfer

Data transfer occurs serially MSB-first:
1 The bit value is set on the SDA line
2 A pulse low-to-high-to-low occurs on the SCL line
3 The next bit is sent ...

After transmission of all the 8 bits, an acknowledge (ACK) is expected:
1 The master generates a 9th clock pulse
2 The receiving device holds the SDA line low to signal that it has

understood the byte sent

Corrado Santoro The I2C BUS Interface



I2C: Stop Condition

When communication is over, a STOP CONDITION (P) is generated:
A transition low-to-high in SDA, while SCL is high, is a stop condition
It is used to stop any communication on the bus
It is always made by the Master

After a Stop Condition, the bus goes in the Idle state.

Corrado Santoro The I2C BUS Interface



Sending Data to a Slave Device

First the Master initiates communication with a Start Condition

The Master sends the Write Command, a 8-bit data, composed of:
The 7-bit address of the Slave device
The R/W bit at 0, which means write-to-slave

The addressed Slave acks, by holding SDA line low in the 9th clock
pulse

If no Slave exists at that address, the SDA line will remain to high, thus
indicating a NACK; this situation is recognised by the Master which
stops communication.

Corrado Santoro The I2C BUS Interface



Sending Data to a Slave Device

After the address, the Master sends a 8-bit data which has the meaning
of register number
The addressed Slave acks data, by holding SDA line low in the 9th

clock pulse

Then the Master sends a 8-bit data which has the meaning of register
value
The addressed Slave acks data, by holding SDA line low in the 9th

clock pulse

The Master closes the transmission by sending a Stop Condition

Corrado Santoro The I2C BUS Interface



Receiving Data from a Slave Device

First the Master initiates communication with a Start Condition

The Master sends the Write Command, a 8-bit data, composed of:
The 7-bit address of the Slave device
The R/W bit at 0, which means write-to-slave

The addressed Slave acks, by holding SDA line low in the 9th clock
pulse

Corrado Santoro The I2C BUS Interface



Receiving Data from a Slave Device

After the address, the Master sends a 8-bit data which has the meaning
of register number
The addressed Slave acks data, by holding SDA line low in the 9th

clock pulse
The Master sends a new Start Condition.
The Master sends the Read Command, a 8-bit data, composed of:

The 7-bit address of the Slave device
The R/W bit at 1, which means read-from-slave

The addressed Slave acks, by holding SDA line low in the 9th clock
pulse

Corrado Santoro The I2C BUS Interface



Receiving Data from a Slave Device

Slave device is now ready to send bytes

The Slave sends a 8 bit data value

The Master acks, by holding SDA line low in the 9th clock pulse

The Slave sends the next 8 bit data value (next register value)

The Master acks, by holding SDA line low in the 9th clock pulse

When the Master is no more interested to data, it closes the
communication by sending a NACK (holding SDA line high in the 9th

clock pulse) and then a Stop Condition.

Corrado Santoro The I2C BUS Interface



The I2C functions of the stm32 unict lib

Initialize the I2C interface:
void I2C init(I2C TypeDef * port, int speed);

port, the interface (usually I2C1)
speed, clock speed (e.g. 100000, 400000)

Corrado Santoro The I2C BUS Interface



The I2C functions of the stm32 unict lib

Write a single register:
void I2C write register(I2C TypeDef * port,

short addr, short reg adr,
short reg val);

port, the interface (usually I2C1)
addr, device address
reg adr, register address
reg val, register value

Read a single register:
void I2C read register(I2C TypeDef * port,

short addr, short reg adr,
short * reg val);

port, the interface (usually I2C1)
addr, device address
reg adr, register address
reg val, pointer to the variable that will receive register value

Corrado Santoro The I2C BUS Interface



The I2C functions of the stm32 unict lib

Write a set of registers:
void I2C write buffer(I2C TypeDef * port,

short addr, short reg adr,
unsigned char * data, int len);

port, the interface (usually I2C1)
addr, device address
reg adr, register address
data, the buffer holding register values
len, the buffer length (number of registers)

Read a set of registers:
void I2C read buffer(I2C TypeDef * port,

short addr, short reg adr,
unsigned char * data, int len);

port, the interface (usually I2C1)
addr, device address
reg adr, register address
data, the buffer that will receive register values
len, the buffer length (number of registers)

Corrado Santoro The I2C BUS Interface



The I2C BUS Interface

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory
Dipartimento di Matematica e Informatica - Università di Catania, Italy

santoro@dmi.unict.it

L.S.M. 1 Course

Corrado Santoro The I2C BUS Interface


